ChemSusChem

Supporting Information

Atomistic Studies on Water-Induced Lithium Corrosion

Matthias van den Borg, Daniel Gaissmaier, Donato Fantauzzi, Edwin Knobbe, and Timo Jacob*© 2021 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

FULL PAPER

Convergence studies

Table 1. Convergence study for the energy cutoff and number of *k*-points. Shown are the binding energies per molecule E_{bm} on Li(100) for the respective settings. The Li(100)-H₂O_{brl} structure corresponds to a Li(100) surface with a single water molecule on the bridge position. On the point $P_{c}O_{brl}$ structure corresponds to a Li(100) surface with a single water molecule on the bridge position. On the point $P_{c}O_{brl}$ structure the water molecule dissociated in a OH molecule in the *sidebridge* and a H atom in the *bridge* position. The energies were related to a position the gas phase and are reported in eV.

Structure	k -points	ENCUT 300 eV	ENCUT 400 eV	ENCUT 500 eV
Li(100)-H ₂ O _{bri.}	2x2x1	-0.788	-0.777	0.780
	3x3x1	-0.783	-0.773	-0.75
	4x4x1	-0.783	-0.772	-0.774
	5x5x1	-0.784	-0.772	-0.774
	6x6x1	-0.783	-0.7	-0.775
	7x7x1	-0.783	-0.772	-0.774
Li(100)-OH _{sidebri.} + H _{bri.}	2x2x1	-2.744	0.668	-2.661
	3x3x1	-2.745	-2.665	-2.657
	4x4x1	-2.740	-2.663	-2.655
	5x5x1	-2.741	-2,662	-2.654
	6x6x1	-2.743	-2.661	-2.655
	7x7x1	-2.741	-2.661	-2.655

Barriers and frequency analysis of transition states

(a) Energy profile for reaction of H_2O and a hydrogen atom in the front.

(b) Energy profile for the reaction of H_2O and a hydrogen atom at the side.

Figure 1. The second provide up of the hydrogen evolution through the reaction of a hydrogen atom in the *bridge* position in the front of a H₂O molecule and in (b) the reaction path with a hydrogen atom at the side. Both profiles show the dissociation of the respective molecule under the release of one of their hydrogen atoms towards the adsorbed hydrogen atom. The framed relative energies are related to the respective undissociated structures.

FULL PAPER

Table 2. Summary of the ΔE_{for} and ΔE_{back} barriers in eV for the backward and forward diffusion, dissociation and reaction processes on Li(100) and the imaginary frequency of the respective transition states in cm⁻¹.

Process			$\Delta E_{ m for}$ Δ	E _{back}	Imaginary frequency
Li(100)-H _{hollow}	\rightarrow	Li(100)-H _{bridge}	0.151	0.120	-202.22
Li(100)-H _{bridge}	\rightarrow	Li(100)-H _{subbridge}	0.124	0.003	-67.72
Li(100)-H _{subbridge}	\rightarrow	Li(100)-H _{subsurface}	0.082		-51.58
Li(100)-H _{2,top}	\rightarrow	Li(100)-H _{bridge,bridge}	0.271	1.44	-231.57
Li(100)-OH _{bri.}	\rightarrow	Li(100)-OH _{sidebri.}	0.08		-138.85
Li(100)-OH _{sidebri.}	\rightarrow	Li(100)-OH _{sidehol.}	0.03	0.0	-57.15
Li(100)-OH _{sidehol} .	\rightarrow	Li(100)-OH _{hol.}	0.02		-105.92
Li(100)-OH _{sidehol} .	\rightarrow	Li(100)-O _{hol.} + H _{hol.}	0.89	2.30	-1420.24
Li(100)-OH _{sidehol.} + H _{bri.}	\rightarrow	Li(100)-O _{hol.} + H _{2,top}	0.40	0.61	-626.62
Li(100)-H ₂ O _{bri.,1} (flip-bridge)	\rightarrow	Li(100)-H ₂ O _{bri.,2}	0.05	0.05	-97.81
Li(100)-H ₂ O _{bri.,1} (twist)	\rightarrow	Li(100)-H ₂ O _{bri.,2}	0.14	0.14	-59.37
Li(100)-H ₂ O _{bri.,1} (flip-top)	\rightarrow	Li(100)-H ₂ O _{bri.,2}	0.1	0.15	-63.06
Li(100)-H ₂ O _{bri.}	\rightarrow	Li(100)-OH _{sidebri.} + H _{bri.}	0.22	1.77	-1300.23
Li(100)-H ₂ O _{bri.} + H _{bri.} (front)	\rightarrow	Li(100)-OH _{sidebri.} + H _{2,top}	0.06	0.66	-487.62
Li(100)-H ₂ O _{bri.} + H _{bri.} (side)	\rightarrow	Li(100)-OH _{sidebri.} + H _{2,top}	14,	0.89	-186.49

Adsorbate-adsorbate interactions

Figure 1. Top view of the different arrangements of H_2O dimers on Li(100) in (a)–(f). Hydrogen is shown in white, oxygen in red and the coordinating lithium atoms in blue.

WILEY-VCH

FULL PAPER

Table. Binding energies per H₂O molecule $E_{\text{bind,mol}}^{\text{dim}}$ for the respective arrangements of a water dimer on Li(100) shown in Fig. 1. The energies were related to water in the gas phase and are reported in eV. The interaction energy E_{Int} refers to the difference of the binding energy of the water dimers towards the one of a single water molecule $E_{\text{bind,mol}}^{\text{sing}}$ and is reported in meV: $E_{\text{Int}} = E_{\text{bind,mol}}^{\text{dim}} - E_{\text{bind,mol}}^{\text{sing}}$.

	Structure	$E_{ m bind,mol}^{ m dim}$	4	
	(a)	-0.706	71	N
	(b)	-0.767	9	
Li(100)-(H ₂ O _{bri.}) ₂	(c)	-0.763	14	
	(d)	-0.767	10	
	(e)	-0.771	5	
	(f)	-0.729	48	