New Phytologist Supporting Information

Article title: CsiLAC4 modulates boron flow in *Arabidopsis* and *Citrus* via high-boron-dependent lignification of cell walls

Authors: Jing-Hao Huang, Ling-Yuan Zhang, Xiong-Jie Lin, Yuan Gao, Jiang Zhang, Wei-Lin Huang, Daqiu Zhao, Rhuanito Soranz Ferrarezi, Guo-Cheng Fan, Li-Song Chen Article acceptance date: 03 November 2021

- The following Supporting Information is available for this article:
- Fig. S1 Information of the pBI121 vector
- Fig. S2 Alignment of CsiLAC4 and CsiLAC17
- Fig. S3 Topology of CsiLAC4 and CsiLAC17
- Fig. S4 Subcellular localization of CsiLAC4 and CsiLAC17
- Fig. S5 Phylogenetic analysis of CsiLAC17
- Fig. S6 Lignin contents of transgenic Arabidopsis
- Fig. S7 Effects of boric acid and NaCl supplements on hypocotyl growth
- Fig. S8 Boric acid excess stimulates early flowering in the CsiLAC4^{OE} lines
- Fig. S9 Effects of boric acid excess on hypocotyl anatomy
- Fig. S10 Effects of boric acid treatments on gene expression in Arabidopsis
- Fig. S11 Melting curves of genes tested in this study
- Fig. S12 Effects of boric acid excess on interfascicular fiber thickness in the CsiLAC4^{OE} lines
- Fig. S13 Expression of LACCASE-like family genes in boric acid-treated *Citrus* leaves
- Fig. S14 Effects of boric acid excess on the nutrient accumulation in Arabidopsis
- Table S1 Primers for PCR cloning and hybridization
- Table S2
 Primers for site-directed mutagenesis

 Table S3 miRNA northern blotting probe

 Table S4 Specific and nested primers for 5'-RACE PCR

 Table S5 Primers for RT-PCR of LACCASE-like family genes

Table S6 Boron fractions in Citrus leaves treated with different boric acid treatments

Fig. S2 Alignment of CsiLAC4 and CsiLAC17. A BLAST search of the *Citrus* genomic database (http://citrus.hzau.edu.cn/cgi-bin/orange/blast) displayed that CsiLAC4 (Cs6g07800, from *C. sinensis*) shares 99.94% identity with CgiLAC4 (Cg6g006410.1, from *C. grandis*) and that CsiLAC17 (Cs8g17630) shares 99.77% identity with CgiLAC17 (Cg8g021370.1). Therefore, we used only CsiLAC4 and CsiLAC17 for the subsequent studies. Blue lines indicate signal peptides predicted by the SignalP v5.0 program (http://www.cbs.dtu.dk/services/SignalP).

AtLACCASE-4 CsiLAC4 Consensus	MCSHMWWFILFLVSFFSVFPAPS <mark>B</mark> SMVRHYKFNVVMKNV <mark>RRLCSSKPTVTVNGRYPGPTIYAREDDILLI</mark> KVVNHVKYNV <mark>S</mark> IHWHGVRQVRTGWADGPAYI MDS.WWRLLLLVACLFPALVBCRVRHYKFNVVMKNSTKLCSSKPTVTVNGKPGPTIYAREHDTVLVKVVNHVKYNVTIHWHGVRQIRTGWADGPAYI m s v l lv fpa e vrhykfnvvmkn t lcsskp vtvng pgpt yare dt l kvvnhvkynv ihwhgvrq rtgwadgpayi	100 97
AtLACCASE-4 CsiLAC4 Consensus	TQCPIQFQYWTTNYTIFGQRGTIWWHAHILWLRATWYGALVILPKRGVPYPFFKPDNBKW <mark>IVIG</mark> BWWKSDTENIINEALKSGLAPNVSDSHWINGHPGP TQCPIQSGHSWYNFTIIGQRGTLLWHAHILWLRATWHGAIVILPKRGVPYPFFKHKBYWVVLABWWKSDTEAVINCAIRSGLAPNVSDSHTINGOPGP tqcpiq g y yn t tgqrgtl whahilwlratv ga vilpkrgvpypfpkp e v vl ewwksdte in al sglapnvsdsh ing pgp	200 197
AtLACCASE-4 CsiLAC4 Consensus	VRN <mark>EPSQC.YKISWENGKTYILRLWNAALNEELFFK</mark> VAGHIFTVVEVDAWVVKPFKTDTVLFAPGQTTNVLF <mark>TASK</mark> SASKYLVTASPFMDAPIAVDNVTA ISS <mark>SSSQGGFTFPVDSGKTYMLRIINAALNEELFFKIAGH</mark> KLTVVEVDATVVKPFKTDTIV <mark>IAPGQTTNVLISADK</mark> TS <mark>GKYLV</mark> AASPFMDAPIAVDN <mark>A</mark> TA c sqg l v gkty lr naalneelffk agh tvvevda yvkpfktdt iapgqttnvll a k gkylv aspfmdapiavdn ta	299 297
AtLACCASE-4 CsiLAC4 Consensus	TATVHYSGTISSSFTILTLPPPONATSIANNETNSLRSLNSKKYPALVPTTIDHHIFTVGLGINACETCKAGNGSRVVASINNVTFIMEKTALLPAHYF TAT <mark>LHYSGTLASSATTLT</mark> STPEKNGTAIANKEID <mark>SLRSLNSKKYPAKVPOTVDHNILFTVGLGVNFCESCKAGNGSRVVASINNVTFVMETIALLCAH</mark> FE tat hysgtl ss t lt pp n t ian f slrslnskkypa vp t dh l ftvglg n cp ckagngsrvvasinnvtf mp all ah f	399 397
AtLACCASE-4 CsiLAC4 Consensus	NTSGVFTTDEF KNPPHVENYSGGSVTNMANETGTRLÄKLEYNAEVQLVLQDTGVTAPENHEVHLHGENFFEVGRGLGNENSTKDPKNENLVDEVERNTIG NISGVFTTDEFGNPPHTYNFTG.TPKNLQTSNGTKAYRHAYNSTVQLILQDTGILAPENHPVHLHGENFFAVGKGLGNENPKKDPKKPNLVDEVERNTIG n sgvfttdfp npph n g n t gt y l yn tvql lqdtg iapenhpvhlhgfnff vg glgnfn kdpk fnlvdpverntig	499 496
AtLACCASE-4 CsiLAC4 Consensus	VPSGGWY <mark>VIRB</mark> RADNPGVWFMHCHLEVHTTWGLKMAFLW <mark>ENGKGPNC</mark> SILPPPKDLPK VPSGGWV <mark>AIRB</mark> SADNPGVWFMHCHLEVHTTWGLKMAFLV <mark>DNGKGPNE</mark> SILPPPSDLPK vpsggwv irf adnpgvwfmhchlevhttwglkmaflv ngkgpn s lppp dlpk	557 554
AtLACCASE-17 CsiLAC17 Consensus	MALQLLLANESCVILLEOPAG <mark>ITRHY</mark> TLEIKMO <mark>NVTRLCHTKSLVSVNGQFPGE</mark> KLIAREGDQVLIKVVNOVPNNISLHWHGIRQLRSGWADG MGASFALMGFVLITVLS.LCLLEESVLAITRHYKFNVELKNVTRLCHTKTLVSVNGQPPGERIVAREGDRILIKVVNEVQHNISTHWHGIRQLRSGWADG al ll v s llp itrhy nvtrlchtklvsvngqfpgp aregd likvvn v nis hwhgirqlrsgwadg	94 99
AtLACCASE-17 CsiLAC17 Consensus	PAYITQCPIQTGQSYVYNYFIVGQRGTLW <mark>YHAHISWLRST</mark> VYGELIILPKRGVPYPFAKE <mark>KEVPMIFGGWFNADTEAIIROATQTGGGPNVSDAYTI</mark> NG PAYITQCPIQTGQSYVYNFTIVGQRGTLWMHAHISWLRST <mark>IYGEIILLPKRGIPYPFAKE</mark> YKEVFIVFGGWFKS <mark>DTEAIINQALQTGGGPNVSDAYTF</mark> NG payitqcpiqtgqsyvyn tivgqrgtlw hahiswlrst ygp iilpkrg pypfakp kevp fgewf dteaii qa qtgggpnvsdayt ng	194 199
AtLACCASE-17 CsiLAC17 Consensus	LPGPLYNCSAKDTFR <mark>URVKE</mark> GKTYLLRLI <mark>N</mark> AALNDELFFSIANHTVIVVE <mark>ADAL</mark> YVKPFETETILIIAPGQTTNVLLKIKSSYPSASFFMTARPYNTGQGT LPGPLYNCSAKDTFK <mark>U</mark> KVKSGKTYLLRLVNSALNDDLFFSIANHTLTVVEVDADYVKPFETETLVITPGQTTNVLLEIKPHYPSATFFMTARPYATGLGT lpgplyncsakdtf l vk gktyllrl n alnd lffsianht tvve da yvkpfetet i pgqttnvll tk ypsa ffmtarpy tg gt	294 299
AtLACCASE-17 CsiLAC17 Consensus	FDNSTVAGILEYPPEKOTKGAHSRT5IKN <mark>I</mark> OLFKPILPALNDTNFA <mark>RKFS</mark> NKLRSINSKNFPANVPLNVDRKFFFTVGLGT <mark>N</mark> PONHKNNOTCOGFTNTTM FDNSTVAGILEYEKPLNFIHSCNSIKK <mark>L</mark> PLFKPILPPLNDTNFVNNEVNKLRSIGSACFPANVPONFDKRFFFTVGLGTSPOPRNOTCOGF.NGTM fdnstvagileye p hs sik 1 lfkpilp Indtnf t f nklrsl s fpanvp n d ffftvglgt pc nqtcqgp n tm	394 394
AtLACCASE-17 CsiLAC17 Consensus	FAASISNISFIMETKALLOSHYSQQHGVYSFKFFWSFIVFFNYTGTPPNNTMYSNGTNLXVLFYNTSVELVMQDTSILGABSHPLHLHGFNFFVVGQGF FPASIDNISFVMFTTALLQAHFTGQSNGVYVPDFFTSFLIPFNYTGNPPNNTMVSSGTKLVVLFNTSVELIMQDTSILGABNHPLHLHGYNFFVVGQGF f asi nisf mpt allq h gqs gvy p fp sp pfnytg ppnntmvs gt l vlp ntsvel mqdtsilgae hplhlhg nffvvgqgf	494 494
AtLACCASE-17 CsiLAC17 Consensus	GNFDENKDE <mark>RNFNLVDEIERNTVGVESGGN</mark> AAIRFLADNEGVWEMHCHLEVHTSWGI <mark>R</mark> MAWLVLDGDKED <mark>O</mark> KLLPEPADLEK GNFDENKDEAKFNLVDEIERNTVGVESGGN <mark>VAIRFLADNEGVWEMHCHLEVHTSWGIKTAWLVLDGKLENO</mark> KLLPEPADLEK gnfdpnkdp fnlvdpierntvgvpsggw airfladnegvwfmhchlevhtswgl awlvldg p gkllpepadlek	576 576

Fig. S3 Topology of CsiLAC4 (a) and CsiLAC17 (b). Signal peptide and transmembrane topology were predicted with online software Pobius (http://phobius.sbc.su.se/index.html). None of the transmembrane domains could be found by the online software SOSUI

(http://harrier.nagahama-i-bio.ac.jp/sosui). Red lines indicate signal peptides; blue lines display non-cytoplasmic peptides, while green lines indicate cytoplasmic peptides.

Fig. S4 Subcellular localization of CsiLAC4 and CsiLAC17. CsiLAC4-DsRed (g-l) and CsiLAC17-DsRed (m-r) were transiently introduced into tobacco epidermal cells by Agrobacteriummediated transfection. GFP was co-transfected and used as a protoplasmic marker. (d-f, j-l and p-r) Leaf blades were plasmolyzed with 0.8 M sorbitol before being subjected to microscopy. The fluorescence signal was detected 72h post-transfection. White arrows indicate the apoplastic signals. Bars, 90 μm.

Fig. S5 Phylogenetic analysis of CsiLAC17. Multiple alignments were performed using the ClustalW tool of MEGA7 (https://www.megasoftware.net/). An unrooted phylogenetic tree was then constructed using MEGA7 (Neighbor-Joining method with 1000 bootstrap test). The 0.10 scale bar shows substitution distance. LAC17 homologs in woody *C. grandis* and *C. sinensis* and herbaceous plants (*A. thaliana* and *N. tabacum*) are shown.

0.10

Fig. S6 RT-PCR detection of *CsiLAC4* (a) and *CsiLAC17* (b) and lignin contents (c) in the corresponding transgenic *Arabidopsis* lines. (a-b) Gene expression in shoots was detected from two-week-old T3 seedlings. (c) Rosette leaves and inflorescence stems were dissected from two-month-old T3 plants. Ranges of lignin content are 145.8-155.1, 142.3-150.3, 126.3-157.5 and 126.8-141.3 mg per grand cell-wall material (CWM) in rosette leaf, and 232.6-253.4, 178.9-262.2, 275.5-296.0 and 255.3-295.3 in inflorescence stem for Col-0, miR397^{OE}, CsiLAC4^{OE} and CsiLAC17^{OE} line, respectively. Significant difference are shown at *P* < 0.05 level by One-way ANOVA (S-N-K method, n = 3, except for n = 5 for miR397^{OE} line)

Fig. S7 Supplementation of boric acid (a and b) or NaCl (c and d) significantly increases the hypocotyl length of CsiLAC4^{OE} lines. Vernalized seeds sown on 1/2 MS medium were kept in a chamber under standard culture conditions for 14 days. Hypocotyl length was measured by Image J 1.48 (NIH, USA). (b and d) Results were mean +/- SD. '*' and '**' indicate significant difference at *P* < 0.05 and 0.01 level respectively by One-way ANOVA (S-N-K method, n = 6). Bars, 1 cm.

Fig. S8 Boric acid excess advances flowering of the CsiLAC4^{OE} lines. Three-week-old seedlings were irrigated with 1/2 MS liquid medium supplemented with boric acid every other day. Pictures were taken 7 d after the boric acid treatment application.

Fig. S9 Boric acid supplementation increased the diameter of metaxylem vessels in the hypocotyl of the CsiLAC4^{OE} line. (a) Transverse paraffin sections from middle hypocotyls were stained with phloroglucinol-HCl. Red arrows indicated the Casparian strip, and double red arrowheads displayed enlarged metaxylem vessels. The number of xylem vessels (b) were calculated and the diameter of metaxylem vessels (c) were determined with the Image J software. Results were mean +/- SD. '*' and '**' indicate significant difference at *P* < 0.05 and 0.01 level respectively by One-way ANOVA (S-N-K method, n = 4). Bars, 50 µm.

Fig. S10 Relative expressions of *AtLAC4*, *AtLAC17*, *CsiLAC4*, *CsiLAC17* and miR397 in the wild type (Col-0), CsiLAC4^{OE}, and CsiLAC17^{OE} lines (a and b) and alignment of miR397 of different plant species (c). (a-b) low boric acid level promotes *AtLAC4* and *AtLAC17* expression in all the plant lines; however, both *AtLAC4* and *AtLAC17* expressions are suppressed as external boric acid increases. *AtGAPDH* (a) and *AtUBQ5* (b) were used as internal references. (c) Matured miR397 sequences were obtained from miRBase 22.1 (http://www.mirbase.org). hvu, *Hordeum vulgare*; bdi, *Brachypodium distachyon*; tcc, *Theobroma cacao*; vvi, *Vitis vinifera*; csi, *C. sinensis*; ath, *Arabidopsis thaliana*; nta, *N. tabacum*.

TTGAGTGCAGCGTTGATG

tcattgagtgcagcgttgatg

nta-miR397

Consensus

Fig. S11 Melting curves of the laccase-like family members and internal reference genes tested in Fig. S10 and S13.

Fig. S12 Boric acid excess increases the thickness of interfascicular fiber (yellow doublearrowheads) in the inflorescence stem of CsiLAC4^{OE} lines. Hand sections were cut from mature inflorescence stem (5 cm above the rosette) 14 d post the boric acid treatment and stained with phloroglucinol-HCl. Bars, 100 μ m.

Fig. S13 Bioinformatics analysis of LACCASE-like family members in *Citrus* and their expressions in boric acid-treated leaves. (a) The phylogenetic tree was constructed with MEGA7 software (Maximum-Likelihood method with 1000 bootstrap test). The 0.20 scale bar shows substitution distance. (b-c) Relative levels of genes were expressed as $2-\Delta\Delta$ Ct using β -actin (b) or Tubulin (c) as internal control. Results were normalized with Log2 transformation and represented in heatmap using excel software.

Genes	Primers	Sequence (5' - 3')
Pre-miR397	Forward	GGATCCATGGATCTGTTGCAGTTGAAACAAG
	Reverse	GAGCTCTTATTGACGATTGAGTCACAGAGGG
CsiLAC4	Forward	GGATCCATGGACTCCTGGGTTCGGCTTCT
	Reverse	GAGCTCTTAACACTTTGGAAGATCACTTGGAGGT
CsiLAC17	Forward	GGATCCATGGGTGCTTCTCCGGCATTAAT
	Reverse	GAGCTCTCAACACTTTGGAAGATCTGCCGGTG
CsiLAC4-DsRed	Forward	GGGACTCTTGCCTGCAGGTATGGACTCCTGGGTTCGGCTTCT
	Reverse	CGCGCCACTAGTGGATCCTACACTTTGGAAGATCACTTGGAGGT
CsiLAC17-DsRed	Forward	GGGACTCTTGCCTGCAGGTATGGGTGCTTCTCCGGCATTAAT
	Reverse	CGCGCCACTAGTGGATCCTACACTTTGGAAGATCTGCCGGTG
miR397-ISH	Forward	ATTTAGGTGACACTATAGAGCACTTGAAGATTCCCAGATTG
	Reverse	TAATACGACTCACTATAGGGAAAGAAACCTGTCAACCGTCAT
CsiLAC4-ISH	Forward	ATTTAGGTGACACTATAGCAACTCTCACCAGCACTCCT
	Reverse	TAATACGACTCACTATAGGGAGCCTGAAGCAACGCAATC
CsiLAC17-ISH	Forward	ATTTAGGTGACACTATAGGTTGTCGAAGTGGATGCTGTT
	Reverse	TAATACGACTCACTATAGGGTTGAGAGGTGGTAGGATTGGTT

Table S1 Primers for PCR cloning of *pre-miR397*, *CsiLAC4*, *CsiLAC17*, and their corresponding probe template for *in situ* mRNA hybridization (ISH)

Table S2 Primers for site-directed mutagenesis PCR of CsiLAC4 and CsiLAC17

Primers	Sequence (5'-3')
CsiLAC4*-F	CCTACATGCTACGAATAATCAATGCTACCCTAACTGAAGAGCTA
CsiLAC4*-R	TTGATTATTCGTAGCATGTAGGTTTTGCCGCTGTCCACAGGCAATG
CsiLAC17*-F	AATTCTACCCTAACTGATGACCTCTTCTTCAGTATAGCAAAT
CsiLAC17*-R	GTCATCAGTTAGGGTAGAATTGACTAATCGGAGAAGGTAAGTTTT

 Table S3 miRNA northern blotting probe

Probe	Sequence (5' - 3')
miR397	ATCAACGCTGCACTCAATGA
U6	AGGGGCCATGCTAATCTTCTC

Table S4 Specific and nested PCR primers for cleavage site validation

Primers	Sequence (5' - 3')
CsiLAC17_GSP	ATTGTAGCCATGCAAATGAAGAGG
Nested CsiLAC17_GSP	GTTTCTCATACTCTAAGATGCCAGC
CsiLAC4_GSP	TCATTAGGGCCTTTGCCATTGTCAACC
Nested CsiLAC4_GSP	TTGAATCCGTGTAAATGGACTGG

Primer Sequence (5' - 3') β -actin-F(Citrus) AGAACTATGAACTGCCTGATGGC β -actin-R(Citrus) GCTTGGAGCAAGTGCTGTGATT GCATCTTGAACCCGGTAC Tubulin-F Tubulin-R ATCAATTCGGCGCCTTCAG Cs6g06880-F TGCTCAGCCAAAGATACATTCA AGAAAGTGGCATTTGGGTAAGA Cs6g06880-R *Cs6g06920*-F CAGGAAAGACATACCTCTTGAGAC *Cs6g06920-*R AGTGTCGAAAGGCTTGACG Cs8g 17350-F2 ATTTATCGCCCTGTGTCTGCT Cs8g 17350-R2 GACCTCCGTTGAACCACTCTC Cs8g17350-F (iso) CTTCAGCATAGCAAACCACACC Cs8g17350-R (iso) TTTCATACTCTAAGATACCAGCAACG CTTCTCCGATTAGTCAATTCTGC *Cs8g17630*-F (*CsiLAC17*) Cs8g17630-R (CsiLAC17) ATGACTAGCGTTTCGGTCTCAA Cs8g18800-F GAGGCAATTATCAATCAGTCTTTAC GCTTCAACAACAGTGAGCGTA Cs8g18800-R Cs7g23490-F AAACAGGAGGAGCACCGAATA Cs7g23490-R GTTGGCGTTAGGAGCCTTAGAT *Cs6g06890*-F TGGAGAATGGTGGAAAGCAGACA Cs6g06890-R GCAATTATACAAGGGACCAGGAAGA *Cs6g11860-*F CTCTTCCCTTGCTCTGAGAAA *Cs6g11860-*R CAAGAACATTTGTAGTTTGACCTG CTTTCTCTTTCTGCTACTTGGACTT *Cs1g24250*-F Cs1g24250-R GCTAACATTCTTCACTTGAACATCG TCAGGGCAGATAATCCAGGTGTT *Cs7g31620*-F CGTCGGAAGGTCACTAGGAGGAG Cs7g31620-R *Cs6g07800*-F (*CsiLAC4*) CGTCACAGGGAGGCTTTACATT *Cs6g07800*-R (*CsiLAC4*) TGGTTTAACATAAGTGGCATCA Cs8g19850-F CGGGAAGACGTACATGCTGAG

Table S5 Primers for qPCR of LACCASE-like family genes in Citrus and Arabidopsis

<i>Cs8g19850-</i> R	TCAACGACTGTGAGTTTATGGC
<i>Cs8g11710-</i> F	TTGCTTTCGTGGCTTCTCTTTCT
<i>Cs8g11710</i> -R	CTCTTCACTGGCTTGGCTTCA
<i>Cs8g20850-</i> T	AAATGCTGCCTTTGACAATACC
<i>Cs8g20850-</i> R	CCATAGACCTCGGCTTACATTAC
<i>Cs7g30410-</i> F	CAAGCACATCACCACGGCAT
<i>Cs7g30410-</i> R	CTCCAACAGGCACACCAACG
<i>Cs6g07410-</i> F	GCTCTCAAAATCAAACCTACACGC
<i>Cs6g07410-</i> R	GGTCCACCCTTTAATCCAGTCA
<i>Cs6g07400-</i> F	ATCCCTGCTCGGAAAATCAAA
<i>Cs6g07400-</i> R	CGTGTAGGCTGTAGGCGTATCA
<i>Cs6g07450-</i> F	GGAAGGGAAGACATATCTGCTAC
<i>Cs6g07450-</i> R	GACGTAGGGATCAGTGTAGGAA
Orange1.1t00518-F	TATGGCTATGCTTGTTATTCTGTG
Orange1.1t00518-R	GACTGTGACGATGTCTTTGGC
<i>Cs3g22170-</i> F	GGCTTACTACGAACGCATCA
<i>Cs3g22170-</i> R	TTCCGAACCCAAATCCAAC
<i>Cs1g01800-</i> F	TTGAGTAACAAGACGAGTGAGACA
<i>Cs1g01800-</i> R	ATCCATAACGATGAACAGGCA
<i>Cs2g29090-</i> F	GGAAGAAAACCTGAAACCCCT
<i>Cs2g29090-</i> R	TGTTGGAGAATGATTTGCTGTG
<i>Cs7g21890</i> -F	TAGTAGTATTTACGGTGTTGCGG
<i>Cs7g21890</i> -R	CCTCTAATGTCCTTGGCTTGA
<i>Cs7g21880</i> -F	ATCGCATAGTCATTTCTGTCCC
<i>Cs7g21880</i> -R	TTGTAAGCCGTAAGTGAAGTGTT
Orange1.1t01564-F	GGCAGTTTCCAGGACCGAT
Orange1.1t01564-R	CCTTAGTTTCTTATGACTCTTCGT
<i>Cs9g14470-</i> F	ACCAAGTGACATTTACAACCAA
<i>Cs9g14470-</i> R	GAACCATAATGAAAAGAACCCT
<i>Cs5g09230-</i> F	AGAGAGCATCGGGCGGTTTCG
<i>Cs5g09230</i> -R	GAGCCGTGTGGTTCCTCGTGT
<i>Cs9g03540</i> -F	CTTTAGGATACAGGGTCACACG
<i>Cs9g03540</i> -R	CCATAATACTCCGCAAACTTCA
<i>Cs1g23090</i> -F	GGTCCTAGATTGGATGTGGTAA
<i>Cs1g23090-</i> R	TCAGAGTTGATGGGAAGTAAAAGT
<i>Cs2g02940</i> -F	TGCTGGGGATTTTACTGTGCT
<i>Cs2g02940</i> -R	CAAGATGAATGTCAAGGGCGG
<i>Cs2g21220</i> -F	ACTTATTCCTGTGCCCTTTGA
<i>Cs2g21220</i> -R	GTGTTAGCATTTGAACCCCGA
<i>Cs3g26900-</i> F	TTGGGTTGTCGGTATGGATGGAG
<i>Cs3g26900-</i> R	ATGACTTGGGATACACCTGAACG

<i>Cs8g01960</i> -F	CAGCCCCCACAGGATTTCTAC
<i>Cs8g01960-</i> R	GTTTGGTCTTGGTCCACTTGC
AtGAPDH2-F	GTTTGTGTGTGGGTTGAGTTC
AtGAPDH2-R	TTCAATGTTCCAGTTGCCAG
AtUBQ5-F	CTCCTTCTTCTGGTAAACGT
AtUBQ5-R	GGTGCTAAGAAGAGGAAGAAT
AthLAC17-F	GTGCCAAACAACATCTCTCTCCA
AthLAC17-R	CCATCAGCCCAACCACTTCGTAA
AthLAC4-F	CTACGCACGAGAAGATGACAC
AthLAC4-R	ATGTGTAGACTTGACCAGGCT
stl-mi397-RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATCAAC
miR397-Forward	GGTCTCATTGAGTGCAGCGTTG
Universal Reverse	GTGCAGGGTCCGAGGT

Table S6 Boron fractions in *Citrus* leaves treated with different B treatments. Results were mean +/- SD. Different small letters in the same column indicated significant differences at P < 0.05 level (One-way ANOVA).

,		Water-soluble B (µg g ⁻¹ , FW)	Organic-bound B $(\mu g g^{-1}, FW)$	Cell wall-bound B $(\mu g g^{-1}, FW)$
C. sinensis	Control	$4.66 \pm 1.42^{\ b}$	4.33 ± 0.81	5.06 ± 0.61
	B-toxicity	180.65 ± 12.52 ^a	4.51 ± 0.65	5.62 ± 1.08
C. grandis	Control	$4.13\pm1.01^{\text{ b}}$	3.65 ± 0.97	5.33 ± 0.83
	B-toxicity	174 ± 10.18 a	4.30 ± 0.45	4.98 ± 0.77