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1. Data Availability 

Repeat Library for previously unknown Repeat 

Entries, UCSC assembly hub browser, 

RepeatMasterv2 Track CHM13v1.1, RepeatMaskerv2 

Track GRCh38 + chrY, RepeatMaskerv2 Track 

HG002 chrX, RepeatMasterv2 Track Composites 

CHM13v1.1, RepeatMasterv2 Track previously 

unknown satellites and arrays CHM13v1.1, all scripts 

and codes used herein 

 

 (121) 

Sequencing data and assemblies  

BioProject PRJNA559484 

Sequencing data, assemblies, and other supporting 

data on AWS 

(11) 

PRO-seq CHM13/RPE-1 PRJNA559484 

PRO-seq HeLa GSE179576 

RNA-seq CHM13 PRJNA559484 

CHM13v1.1 Meryl 21-mers and 51-mers (114) 



2. Repeat Annotations 

Repeats model discovery with RepeatModeler & loci identification with RepeatMasker 

To assess previously unannotated repetitive regions of the genome, a RepeatMasker4.1.2-p1 run was 

completed on the T2T-CHM13v1.1 assembly using the Dfam 3.3 library (6) with the following settings: 

sensitive setting (-s), using the species tag of human (-species human) and the NCBI BLAST-derived 

search engine RMBlast (-e ncbi): $ RepeatMasker -s -species human -e ncbi. These regions (RA1a) 

were then hard-masked, producing “hard masked genome 1”, HM1 (fig. S1). A RepeatModeler2.0.1 

analysis was performed on the remaining (unmasked) regions. The output file, T2T-

CHM13_Modeler_Repeats.fa, was run through LTR Harvest (123) (accessed from 

genometools/1.5.10) and Transposon PSI (v08222010) (124) to further refine previously unknown 

repeat calls. As the RepeatModeler2.0.1 algorithm implements a random sampling of the genome, the 

consensi generated from RepeatModeler2.0.1 (All_T2T-CHM13_repeats.fa) were used as a library for 

a secondary RepeatMasker run to collect all associated instances for each model generated on the 

T2T-CHM13 genome assembly (RA1b). 

Annotation of tandem repeats and satellites  

Tandem repeats and satellites were initially annotated in the above RepeatMasker run, based on a 

combination of alignments to satellite sequences in the RepeatMasker library and de novo repeat 

identification with Tandem Repeats Finder (TRF) v4.09 GUI version using standard parameters (125). 

This workflow left large sections of the genome unannotated, either because repeats within the 

sequence were too decayed to be recognized by TRF, or because the satellites were not contained in 

RepeatMasker’s database. We expanded annotation coverage of missing repetitive regions using 

ULTRA (9), an open-source tool that can annotate and provide statistically consistent scoring for very 

large repeat units (up to a repeat period of 4000), arbitrarily-long repetitive regions, and ancient 

repeats that have highly decayed repetitive signals. ULTRA v1.0 was run with the settings: $ ultra -mi 

2 -md 2 -p 4001 -mu 2 -ws 90000 -os 10000, respectively impacting maximum number of insertions (-

mi), deletions (-md), and repeat periodicity (-p), minimum number of repeat units (-mu), and window 

size and overlap (-ws and -os). 

GAP identification 

Gaps in the T2T-CHM13 repeat annotation were identified via bedtools v 2.29.0 (89) by subtracting  

RA1a and RA1b (fig. S1) from the whole T2T-CHM13 genome sequence. The resulting regions were 

then filtered for size (only gaps larger than 5Kbp were considered). These gaps were manually 



curated in a UCSC Genome Browser session to check for any feature annotation overlap. Tandemly 

repeated sequences for each gap were identified with a combination of TRF v4.09 (125) and ULTRA 

(9). Additionally, self-alignment plots generated in YASS (126) confirmed sequence repeat monomer 

length. Monomers and full tandem arrays of these regions were compared via alignment in MAFFT 

v7.471 (107) and Geneious v2019.1.3 to check for any possible overlap with either the region or 

previously annotated tandem repeats; only previously unknown repeats were kept and classified as 

“previously unknown array/monomer”. 

Manual curation of previously unknown repeat models 

Following the production of RA1b, curation steps were implemented to refine previously unknown 

repeat models and produce RA1c (fig. S1A, S1B). Overlaps with CAT/gene annotations (11), 

segmental duplications (65), and tandem repeats found within GAPs and through ULTRA overlaps 

were manually curated. In the case of segmental duplications, if a previously unknown repeat was 

found only as a component of linked segmental duplications, it was not considered a repeat for 

classification. If, however, the repeat was found outside of linked segmental duplications, it was 

considered a repeat that had been captured by duplication events after its formation. Multiple 

sequence alignment (MSA) plots of the transposable element (TE) instances from RA1a aligned to the 

putative repeat consensi from RA1b were used to determine the divergence, and therefore the overall 

age of the TE family. Highly diverged, older sequences were set aside for later assessment (table S1), 

as these sequences may correspond to old fragments of known TEs. This hypothesis was reinforced 

following a cross_match analysis of the older consensi to the Dfam database consensi. In addition, 

repeats that failed to match a known repeat, even distantly, were assessed by evaluating 100 nt on 

the 5’ and 3’ flanking region of the instances contributing to the initial RepeatModeler consensi. 

RepeatMasker was used to assess the flanking regions to determine if the neighboring sequence 

matched consistently to known repeats and were saved for later evaluation as possible ancestral 

repeats (table S1). To confirm the set of additional repeat families (Tables 1 and 2, table S2) had not 

been previously defined in the Dfam database, we performed a cross_match analysis of the consensi 

corresponding to the repeat families to the curated consensi in the Dfam database. In addition, a 

cross_match self-comparison of the consensi was performed to assess possible array sequence 

structures or intra-library duplicates. Intra-library duplicates and matches to the Dfam database were 

removed. The identification of composite subunits was accomplished through assessment of genome-

wide instances with Circa and pattern recognition in both the UCSC browser and RM output. 

BEDtools closest v2.29.0 (-k 2 -iu -D ref) and (-k 2 -id -D ref) was also used to assess the neighboring 

repeats and their frequency increasing the likelihood that they were part of a larger repeat, or 

composite. This curation led to the generation of a repeat library (RMv2) (final_repeats.fa) of 



previously unknown or unannotated repeats, satellites monomers, variants of previously 

known/classified satellites, subunits of composites and composite elements.  

Compilation and polishing of Repeat Annotationv2 

The models discovered as a result of the RepeatModeler2 analysis contained pieces of simple 

repeats and small pieces of previously defined TEs. As such, a RepeatMasker analysis performed by 

simply adding entries alongside previously annotated TE/repeat models in a library resulted in a large 

number of false positives. Therefore, a pipeline was developed (fig. S1C) to combine the additional 

entry annotations and the previously generated TE models in the Dfam database to produce a high 

confidence repeat masker annotation track for CHM13. A third RepeatMasker run was performed on 

HM1 using a library which included the Dfam database plus all additional entries resulting in Repeat 

Annotations 1c (RA1c). RA1c was then combined with RA1a (Dfam library only) and the resulting 

combined outputs were intersected with gap entries (“previously unknown array/monomer”) and 

additional family entries. Additional family entries were filtered for elements with high confidence 

based on MSA plots and a SW score of 250. These combined efforts resulted in the production of a 

final T2T-CHM13v1.1 RepeatMaskerv2 track (RMv2) for the UCSC genome browser. 

Following development of RMv2, unit-length and composite unit genomic instances were determined 

by performing a self-comparison via cross_match to determine the maximum SW score for a 

particular TE model. A score conservatively lower than the determined maximum was then used in the 

alignAndCallConsensus.pl program (-sc #) to align the TE instances to the consensus. The resulting 

MSA were used for the classification of composite repeats and subunits therein (6, 127, 128) . 

Reverse liftOver analysis and repeat fasta comparison 

Liftover chains were generated from LASTZ sequence alignments between GRCh38 and T2T-

CHM13. It is important to note that while liftOver will accurately give the coordinates between the 

alignments of two assemblies, there could be problems with misalignments with large sequences, a 

persistent source of error in any alignment. Such a misalignment would result in the correct coordinate 

given as part of the LiftOver output, but not the same sequence contained within. This scenario is true 

for this study as GRCh38 contains gaps and estimated sequence sizes for centromeres and 

telomeres, leading to misalignments when compared to the more complete T2T-CHM13 assembly. In 

addition, different matrices automatically calculated based on GC content as part of the 

RepeatMasker program might be used to identify repeats in GRCh38 vs. T2T-CHM13, leading to 

different repeat boundaries and/or subtle changes in repeat annotations for aligned regions between 

the assemblies (and see (19)).  



 

A bed file was generated from the T2T-CHM13v1.1 RM2 output and a reverse liftOver (129) 

performed to the GRCh38 genome assembly. The IntersectBED tool (89) was used with default 

parameters to compare the unlifted T2T-CHM13v1.1 coordinates with regions lacking synteny to 

GRCh38 and separate these coordinates into one of two categories: syntenic or non-syntenic (table 

S6-S7). The IntersectBed tool (89) was also used with both strict (-f 0.9 -r) and permissive (-f 0.5 -r) 

parameters to compare the lifted GRCh38 coordinates to the GRCh38 RM-comp output. The results 

of the intersection were parsed based on the TE annotation match. The possible categories of the 

intersection analysis included: full match, class match, family match, no match, set asides. A full 

match required, under either the strict or the loosened parameters detailed above, that both the family 

(e.g., AluSx) and class (e.g., SINE/Alu) of the T2T-CHM13 and GRCh38 RM-comp loci were identical. 

In the event the family differed, the intersected locus was labeled as a class match. If the family 

matched, but the subfamily differed it was labeled as a family match whereas if the class, family, and 

subfamily differed, it was subsequently labeled as a no match. Loci lacking a repeat match altogether 

following intersection analysis were set aside for a further detailed direct fasta comparison as 

described below. Special attention was paid to intersection loci in which the locus was identified as an 

SVA element, as these elements contain, and are frequently mislabeled, Alu elements. Exceptions 

were made in the level of match if an SVA in the T2T-CHM13 output matched to an Alu in the 

GRCh38 RM output and vice versa. 

 

A parallel and complementary analysis comparing the set aside T2T-CHM13v1.1 loci fasta sequences 

was completed. A similarity score was assigned to each repeat based on crossmatch output as a 

percentage of the maximum score. Sequences with a score of greater than 90% and/or shorter than 

50 bp were the threshold for concordant similarity or insufficient information for comparison, 

respectively. These were labeled as highly diverged and/or short loci. All other sequences were 

considered as potential polymorphic loci. The term polymorphic is used here to describe the genetic 

variation occurring between individuals in a population, such that each individual may contain a 

different repertoire of TE insertions. 

Composite Elements 

We defined a composite element as a repeating unit consisting of three or more repeated sequences, 

including TEs, simple repeats, composite subunits, and/or satellites, that is found as a tandem array in 

at least one location in the genome. A composite subunit is a previously unknown repeat annotation 

that is most often found within a composite. Note that a composite subunit repeat may be found 

outside of the composite, but it is not common. Segmental duplications (SDs) were called for T2T-



CHM13 using a 1Kbp cutoff (65); while the location of some composite elements within a family are 

present as a single copy and thus are likely SDs derived by non-allelic homologous recombination 

(NAHR) (90), a composite family is distinguished by the presence of composite elements in an array 

in at least one location, thus falling into a “megasatellite” classification (130). 

Most composites are found in a tandem array only on a single chromosome (figs. S6A-F and S7B-G), 

and in eight cases each core unit contains protein-coding annotations (fig. S7), indicating that unequal 

crossing over events and concerted evolution among composite units contribute to the expansion or 

contraction of gene families within humans. Several of these composites were annotated as 

staggered segmental duplications encompassing only the tandem array (e.g. fig. S8). One composite, 

5SRNA_Comp, consists of a portion of the 5SRNA, an AluY and two subunit repeats as an array of 

128 repeating units with high sequence similarity on Chromosome 1 (fig. S9A,B). Monomers of 

5SRNA_Comp are located at 49 locations across 13 chromosomes, (fig. S9C) and lack the AluY; 

rather they carry an LTR2 (fig. S9D). Thus, the distribution of monomers is likely the result of 

segmental duplication events through non-allelic homologous recombination (NAHR). In contrast, the 

AluY insertion (resulting in deletion of the LTR2) preceded the expansion of this composite into a high 

copy number array. Alternatively, TE-free copies (lacking either TE) expanded slightly and then two 

separate copies each experienced a de novo TE insertion (one with AluY and one with LTR2). Since 

the LTR2 copies only have a single LTR and no internal sequence, it is possible that after a full-length 

LTR2 insertion a NAHR event resulted in the near-complete loss of this sequence, leaving the solo 

LTR2 behind. The copies with AluY then expanded to form the array and the LTR2 copies were 

involved in more segmental duplications (as is common with Chromosome 9 and the acrocentric 

chromosomes). 

Two composites are found arrayed across several chromosomes. The ACRO_Comp (131, 132) is a 

unit found across 12 chromosomes (fig. S10A), including as tandemly arrayed sequences across the 

five acrocentric chromosomes (Chromosomes 13, 14, 15, 21, 22) with high sequence identity across 

composite units (fig. S10B). The LSAU-BETA composite is found across 16 chromosomes and in both 

tandem arrays and as single monomers (fig. S11A, B). The LSAU-BETA composite has a variant form 

(LSAU-5403) in CHM13 (fig. S11B) and includes subunit repeats consisting of D4Z4 (133) and LSAU 

((134), overlaps with the DUX4 genes and microRNA genes (MIR8078) and has been implicated in 

facioscapulohumeral muscular dystrophy (FSHD)(133, 135). Complete reference sequence spanning 

these complex arrays afforded the opportunity to assess intra-array variability. We find that LSAU 

composites found in centromere transition regions share lower identity within an array (80-95%) than 

LSAU composites found within interstitial arrays (near 100% identity), illustrating the utility of the 



CHM13v1.0 reference for future studies of the evolutionary trajectories of repeat arrays contextualized 

to chromosome location. 

We annotated a highly complex composite, TELO_Comp, that consists of multiple arrays and other 

composites (Fig. 1E (top) and fig. S12). TELO-Composites are found on 10 chromosomes (fig. S12A) 

at interstitial, pericentromeric and subtelomeric loci. The canonical TELO_Comp consists of three 

3Kbp composites (TELO-A, -B, -C subunits), each containing multiple TEs, downstream of a variable 

length array of a 49bp satellite repeat unit, ajax, bounded by a duplicated sequence, teucer (Fig. 1E 

and fig. S12B). CHM13 annotations for TELO_Comp TELO-A subunit were extracted from the 

genome as fasta sequences via bedtools (89) (table S8). Sequences were aligned with MUSCLE 

(136). The evolutionary history was inferred by using the Maximum Likelihood method and General 

Time Reversible model (109). The tree with the highest log likelihood (-8364.23) is shown in fig. S12. 

The percentage of trees in which the associated taxa clustered together is shown next to the 

branches. Initial tree(s) for the heuristic search were obtained automatically by applying the Maximum 

Parsimony method. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites (5 categories (+G, parameter = 0.2836)). The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. This analysis involved 24 nucleotide sequences with 

a total of 2845 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (137, 

138).  

Across 24 loci, all TELO_Comp elements contain a TELO-A subunit downstream of the ajax satellite 

array (fig. S12C). Among the subtelomeric elements (fig. S12C, blue arrows), all contain TELO-B and 

TELO-C subunits upstream of a shared subunit repeat found across all TELO-Comp elements 

(10479). In depth analysis of the overall structure of the subunits across all loci, and phylogenetic 

analyses of the TELO-A subunit (table S8), indicates that subtelomeric units are a monophyletic group 

of recent origin, while interstitial and pericentromeric units are polyphyletic. Elements within this latter 

group lack a TELO-B subunit; between the TELO-A and TELO-C subunits, all of these TELO_Comp 

elements contain a second 10479 subunit repeat, with the exception of three elements 

(Chromosomes 1, 10, 11) that also lack a TELO-C subunit. While high bootstrap support for the 

clustering of subtelomeric elements indicates recent derivation, likely by segmental duplication events 

(fig. S13A and table S9), location-specific repeat diversification in subunit content and structure as 

well as ajax repeat copy numbers, which retain high sequence identity (fig. S13C) is observed. 

Moreover, each subtelomeric unit contains the ajax array proximal to the telomere, indicating that 

inverted orientations are favored at subtelomeric loci. 

On Chromosome 7, three TELO_Comp loci contain additional tandem arrays of the TELO-Comp 

subunit consisting of ajax and teucer sequences, with variable ajax repeat numbers and variable 



tandem arrays of the teucer-ajax subunit (Fig. 1E, fig. S13 and table S9). Further phylogenetic 

analyses for both ajax and teucer sequences reveal subtelomeric arrays evolve under neutral 

evolution while pericentromeric arrays evolve under concerted evolution (figs. S14-S15 and tables 

S10-S11). Moreover, phylogenetic analyses of ajax-teucer monomers from the Chromosome 

7:56525533 locus indicate that both elements form a composite that evolves as a single unit, 

suggesting a higher-order repeat, or super-repeat, structure across that locus (figs. S14-S15). 

Collectively, the inclusion of composite elements in the annotation tracks for T2T-CHM13, afforded by 

the polished and contiguous reference assembly, provide the research community with a set of 

guideposts around which to pinpoint potentially pathogenic variants. 

Dot Plot Analyses 

To generate pairwise sequence identity dot-plots we used the software package StainedGlass (139). 

The input for this program is sequence fragmented into windows (1Kbp) after which all possible 

pairwise alignments between the fragments are calculated using minimap2 (140). The color used in 

the dot-plot was then determined by the sequence identity of the alignment which was calculated as: 

$$ ID = 100 \biggl( \frac{M}{M+X+I+D} \biggr) $$ 

where $ID$ was the percent sequence identity, $M$ the number of matches, $X$ the number of 

mismatches, $I$ the number of insertion events, and $D$ the number of deletion events. When there 

were multiple alignments between the same two sequence fragments all alignments other than the 

one with the most matches were filtered out regardless of their sequence identity. The resulting matrix 

of percent identity scores was then visualized using ggplot and geom_tile. All code and 

documentation are available at (141). 

Methylation Metaplots 

Nanopore CpG methylation data for T2T-CHM13 and HG002 was processed according to the 

methods outlined in (21). Genomic coordinates were normalized by the repeat start and end for each 

repeat type and CpG methylation frequency was calculated by fraction of methylated reads to total 

coverage within bins in T2T-CHM13 or HG002 with the BSGenome Bioconductor package (21, 91). 

Multiples of three bins were further smoothed with the “rollmean” function from the R package Zoo 

(https://cran.r-project.org/web/packages/zoo/ index.html). Points represent the median smoothed 

methylation per bin and shaded ribbons represent the 25th and 75th percentiles. 



Identification of full-length and truncated TEs; TE aging 

The active families in the human genome for SINEs, LINEs,and  retroposons are AluY, L1Hs, and 

SVA_E/F, respectively; the recently active family in the human genome for ERVs is HERV-K (93). 

Elements belonging to each family were extracted from the compiled CHM13 and GRCh38 

RepeatMasker outputs. Full-length Alu belonging to the AluY family were defined as having a 3’ start 

no shorter than 4 nucleotides (nt), and a 5’ end position equal to or greater than 267 nt. A parallel 

AluY categorization was conducted based strictly on divergence (< and > 2%) to represent the 

youngest group of AluY elements and therefore more likely to be lineage-specific (fig. S18). Full-

length L1Hs sequences were defined as having a length greater than or equal to 6000 nt. SVA_E and 

SVA_F elements were defined as full-length if the 3’ start was no shorter than 50 nt with an end 

position greater than or equal to 1336 nt, to allow for length variability in the variable number tandem 

repeat (VNTR) region. ERV elements were subdivided into five categories based on sequence length 

and structure (based on presence of flanking 5’ and 3’ long terminal repeats (LTRs) and internal 

coding sequence). These categories are as follows: > 7500 bp elements with both 5’ and 3’ long-

terminal repeats (LTR) (GT/LTR+), > 7500 bp elements with only one LTR (GT/LTR-), < 7500 bp 

elements with both 5’ and 3’ LTRs (LT/LTR+), < 7500 bp elements with only  one LTR (LT/LTR-) and 

< 7500 bp elements with a complex combination of LTR and internal sequences (LT_complex). Full-

length element and ERV structural category counts and locations can be found in table S12. These 

full-length sequences were subsequently cross-referenced with PRO-seq data, with the exception of 

the LT_complex category to determine transcriptional activity.  

All classes of TEs (excluding DNA transposons) were grouped into relative age groups based on 

divergence and phylogenetic distribution (6, 88, 94–99), according to table S13. LINEs, SINEs and 

retroposons were grouped by subfamily, while LTRs were grouped by family.  

3. TE-based Precision Run-on Sequencing (PRO-seq) analyses 

Cell permeabilization for CHM13 and RPE-1  

For each replicate, adherent cells were washed 2x in cold 1x PBS before adding 5mL of buffer P 

(10mM Tris-Cl pH 8.0, 10mM KCl, 250mM sucrose, 5mM MgCl2, 1mM EDTA, 0.05% Tween-20, 

0.5mM DTT, 10% Glycerol). Cells were scraped, collected and 10uL was removed for cell counting 

and the remainder was centrifuged at 1000xg for 5 min. 1mL of buffer W (10mM Tris-Cl pH 8.0, 10mM 

KCl, 250mM sucrose, 5mM MgCl2, 1mM EDTA, 0.5mM DTT, 10% glycerol) was used to gently 

resuspend cell pellets, before adding an additional 9mL of buffer P, inverting and centrifugation at 

1000xg for 5 min. 500uL of buffer F (50mM Tris-CL pH 8.0, 40% glycerol, 5mM MgCl2, 0.1 mM EDTA, 



0.5mM DTT) plus 0.5uL of RNase-inhibitor (SuperAse from Ambion) was used to resuspend the cell 

pellets, followed by another 500uL to wash the tubes; both were pooled together (1mL total), 

transferred to a 1.5mL tube, and centrifuged at 1000xg for 5 min. Finally, permeabilized cells were 

resuspended in 57µL of buffer F with 1µL of RNase-inhibitor added before snap-freezing in liquid 

nitrogen and storage at -80°C.  

Illumina Library Preparation for CHM13 (and RPE-1, see Note S4) 

PRO-seq libraries (from replicates) were prepared as previously described (22) with minor 

modifications. Approximately 2 x 106 permeabilized cells were mixed with permeabilized Drosophila 

S2 nuclei in all 4-biotin-NTP run-ons (5 x 104 Dm nuclei in each replicate), and run-on RNA was 

extracted with Norgen columns and eluted in 50uL H20. Base-hydrolysis included incubating in 25µL 

cold 1N NaOH for 10min on ice, followed by the addition of 125uL cold 1M TrisCl pH 6.8, a gentle 

vortex, and brief spin down before enrichment with streptavidin-beads. Following 3’-ligation and the 

second bead binding, both end-repair reactions and the 5’-ligation were all performed with nascent 

RNAs still bound to the beads (100). These on-bead reactions were performed in a total volume of 

20µL with constant rotation before elution from the beads and the subsequent reverse transcription 

and PCR steps. Test amplifications were performed on 5% of the library and samples were amplified 

to the ideal number of cycles for final preparation. Following final amplification, libraries were PAGE-

purified to remove adapter-dimers and select molecules between 140-650bp in size. Libraries were 

then sequenced on an Illumina NextSeq 550, producing single-end 75bp reads. 

Pre-processing and mapping of CHM13 (and RPE-1, see Note S4) PRO-seq data 

Raw fastq files were first quality trimmed (Phred score >=20) and adapter sequences removed using 

cutadapt (101). Reads below 20nt were removed and remaining reads were reverse complemented 

using the fastx-toolkit (102). Drosophila spike-in reads were removed by aligning to the Dm6 genome 

with bowtie2 (103) using “--very-sensitive” options. Remaining reads were then aligned to T2T-

CHM13 with bowtie2 (103) using “-k-100” and default (end-to-end alignment, “best match”) options. 

Sorted bam files were converted to bed files with BEDtools (v2.29.0) (89), which were subjected to 

one or more of the following: 1) single copy k-mer filtering, 2) normalization with non-mitochondrial 

alignments to obtain counts in Reads-per-million Mapped (RPMM) wherein the raw counts N were 

normalized using the following equation: RPMM=[N/million_non-mito_alignments]], 3) conversion into 

BigWig files (BEDtools (v2.29.0) (89), GenomeBrowser/20180626) for data visualization. 

Heatmaps and composite profiles 



Count matrices for heatmaps and composite profiles were generated using deepTools2 (106) using 

Bowtie2 default (end-to-end alignment) “best match” data (Fig. 2, 3 C-D, fig. S18, 21, 25 B, C). 

Repeat element groups with a large number of regions were randomly subset to a maximum of 5,000 

regions. Scaling and anchoring elements for heatmap and composite profiles is as follows. Scaling 

and anchoring elements for heatmap and composite profiles is as follows. SST1 elements and HERV-

Ks (all structural groups) were scaled. Scaled data in bigwig format was binned using 10bp windows 

and repeat elements were scaled to an equal size of 1Kbp with the flanking 100bp included in the 

matrices. All other repeat elements were anchored to the 3’ end (as the truncated elements are most 

likely to be 5’ truncated), sorted by region length, and shown a certain distance into (or towards the 5’ 

end of) the element based on the expected full-length of each respective element: Alu (0.5kb), L1 

(7kb), SVA (4kb). Bins summarized the underlying bigwig data by taking the maximum value and 

composite profiles were created by averaging each bin across all regions in the group. Standard error 

is calculated for each group of elements and is shown as grey shading around the composite profiles.  

For method comparison, Bowtie2 k-100, Bowtie2 k-100 filtered for single copy 21-mers by map 

location and Bowtie2 k-100 filtered for single copy 21-mers by map location and read content were 

implemented as below (fig S18, S21, S25 B, C). Highlighted within each comparison is the Bowtie2 

default “best match” data. Included for each comparison are heatmaps of single copy 21-mer k-mers 

for each element.  

For method comparison, Bowtie2 k-100, Bowtie2 k-100 filtered for single copy 21-mers by map 

location and Bowtie2 k-100 filtered for single copy 21-mers by map location and read content were 

implemented as below (fig S18, S21, S25 B, C). Highlighted within each comparison is the Bowtie2 

default “best match” data. Included for each comparison are heatmaps of single copy 21-mer k-mers 

for each element. The single copy 21-mer plots illustrate the regions of each TE that lack sequence 

specificity and are therefore, most prone to read loss through either k-mer filtering method (BT2 k-100 

with single copy k-mer filtering, BT2 k-100 dual k-mer filtering).  

 

Methylation heatmaps for HERV-K were generated in R ggplot2 by normalizing repeat size by start 

and end position and using geom_tile() to plot CpG methylation frequency at each position (21). For 

all other elements methylation heatmaps were made by aligning the repeat elements at the 3’ and 

using geom_tile() to plot CpG methylation frequency at each position (21) .  

 

Statistical analyses and data visualization - repeat models 



BEDtools (v2.29.0) (89) map was used to calculate average methylation (-o mean) and CpG density (-

o count) across all repeats in RepeatMaskerV2 (RMv2) and incorporated into the 3D graphs and parallel 

plots, made using JMP® (142). This method was also used to calculate average methylation for SST1. 

Genomic data was visualized for presentation using RIdeogram (v0.2.2) (104) and Circos (v0.69-6) 

(105). Circa (v1.2.2) was used to generate segmental duplication ribbon plots 

(https://omgenomics.com/circa/). JMP® (142) was used to make 3D graphs and parallel plots (note: Alu 

and L1 (except L1Hs) were subsampled to 2% for these plots due to high copy number). Genome 

browser tracks and CenSat annotations for T2T-CHM13 are as described in (11, 12, 21, 65). Microsoft 

Power BI Pro (version 2.98.683.0) was used to create ribbon plots. 

SST1 Phylogenetic Analyses 

T2T-CHM13 annotations for SST1 were combined with known repeat locations and extracted from the 

genome as sequences via bedtools (89). The resulting elements were annotated with chromosome, 

coordinates, full-length, intersection of centromere, telomere or interstitial chromosomal locations, and 

average methylation of the element (tables S14-17). Sequences (table S15) were aligned with MAFFT 

(107). The evolutionary history was inferred by using the RAxML-NG method (108) and the GTR+G 

(general time reversible model with a gamma distribution of rate variation among sites) model (109) 
as matched by jModelTest (110). The consensus tree shown in Fig. 3A was generated from the 

resulting 100 bootstrap replicates. 

SST1 PRO-seq data analyses  

SST1 PRO-seq overlap repeat grouping cutoffs (repeats !"#$%&%'()%were determined by plotting the 

distribution of read overlaps across all SST1 repeats (fig. S23, table S14 and table S16). An unpaired 

t test (table S17) was performed to quantify the statistical significance of differences among SST1 

repeats with high v. low read overlap by repeat length, percent divergence, percent insertions, and 

percent deletions as identified by RepeatMasker and average methylation as determined by (21) as 

described below (18).  

BEDtools (v2.29.0) (89) was used to intersect SST1 and L1Hs repeats with genomic locations 

(including centromere satellite annotations (12)), methylation (21), and transcriptional data (18); these 

data were used to generate repeat groupings (e.g., overlapping a specified satellite annotation; <0.5 

average methylation/ &0.5 average methylation, etc.). Percent divergence from the consensus for 



repeats was taken from the RepeatMasker output. Violin plots were generated via GraphPad Prism 

software (v9.1.1).  

4. Centromere Transcription (PRO-seq and RNA-seq) Analyses 

TE Embeds within cenSAT annotations 

As per the RMv2-alpha file generation above, the RepeatMasker AnnotationV2 was intersected 

(BEDtools v2.29.0) with all cenSAT annotations to identify and label those repeats overlapping any of 

the major satellite groups (e.g., alpha, beta, HSAT). A minimum of 1bp overlap was used to assess 

whether a TE was embedded and/or at the edge of one of these satellite regions. 

Mitotic Synchronization and Release for HeLa time course 

Given the low rate of cell division and synchronization challenges presented by CHM13 cells, HeLa-

S3 cells were used as a proxy, noting the caveat that this cell line carries high levels of karyotypic 

instability (111). HeLa-S3 cells at 25-30% confluency were treated with 2mM thymidine for 24 hours, 

released in fresh medium for 3 hours, then treated with 100ng/mL nocodazole for 12 hours (112). 

Mitotic cells were collected by shake-off, centrifuged and washed in 1x PBS, and then either grown on 

15cm dishes in fresh medium for the corresponding time or immediately permeabilized (mitotic 

sample). 

Cell Cycle Analysis for HeLa time course 

Prior to cellular permeabilization, 10% of each sample was removed and fixed in 75% cold (-20°C) 

ethanol. Cells were then stained with propidium iodide and DNA content was analyzed using a BD 

FACS Aria II. FCS files were read into R for downstream analyses using the flowCore package (Fig. 

4A, left). Separately, mitotic HeLa cells were also stained with DAPI and manually analyzed by 

microscopy in order to differentiate cells in G2 from those properly arrested in prometaphase by level 

of DNA condensation. 

Cell Permeabilization for HeLa time course 

For each replicate time point, both floating cells in the growth medium and cells removed by scraping 

in 1x PBS were collected, pooled, and centrifuged at 1000xg for 5 min. Cells were resuspended in 1x 

PBS and 10% was removed for FACS analysis before completing the wash. 1mL of buffer P (10mM 

Tris-Cl pH 8.0, 10mM KCl, 250mM sucrose, 5mM MgCl2, 1mM EDTA, 0.05% Tween-20, 0.5mM DTT, 



10% Glycerol) was used to gently resuspend cell pellets, before adding an additional 9mL of buffer P 

and incubating on a shaker for 5min. Permeabilization was assessed with trypan blue and samples 

not initially permeabilized were again incubated on a shaker with buffer P containing 0.05% NP-40 for 

5min. Permeabilized cells were then centrifuged at 1000xg for 5 min before resuspension in 1mL 

buffer F (50mM Tris-CL pH 8.0, 40% glycerol, 5mM MgCl2, 0.1 mM EDTA, 0.5mM DTT), transferred to 

a 1.5mL tube, and centrifuged at 1000xg for 5 min. Finally, permeabilized cells were resuspended in 

55µL of buffer F and 1µL of RNase-inhibitor was added before snap-freezing in liquid nitrogen and 

storage at -80°C. 

Library Preparation for HeLa time course  

PRO-seq libraries were prepared as previously described (22) with minor modifications. 0.9-4.5 x 106 

permeabilized cells were mixed with permeabilized Drosophila S2 nuclei in all 4-biotin-NTP run-ons (1 

x 106 Dm nuclei in each A replicate and 5 x 104 in each B replicate). The rest of the library preparation 

is the same as in CHM13/RPE PROseq above and libraries were also sequenced on an Illumina 

NextSeq 550, producing single-end 75bp reads. 

Pre-processing and mapping HeLa time course data 

All data was pre-processed, mapped and post-processed the same way as CHM13 and RPE-1 (see 

below) with the following few exceptions: 1) alignments to the D. melanogaster genome included the 

“-k 1” option, 2) alignments to CHM13v1.0 included the “--very-sensitive” option and were only done 

with “-k 100”, and 3) normalization was done using a combination of D. melanogaster spike-ins (to 

most accurately compare transcription levels across timepoints), and non-mitochondrial alignments (to 

uniformly rescale the counts across timepoints so as to obtain final values on a Read-Per-Million-

Mapped scale comparable to that of the CHM13 data). Starting from the raw number of reads 

overlapping a given repeat N, the following equation was used to obtain the normalized counts: 

[N/Dmel_norm factor]/(median_across_timepoints[million_non-mito_ alignments/Dmel_norm_factor])] 

H9 ChRO-seq data availability and pre-processing  

External ChRO-seq data (GSE142316) for four different developmental stages (ES, DE, duodenum, 

ileum) of H9 cells was used for comparison to the CHM13 cell expression data (GEO GSE142316) 

initially reported in (113). H9 ChRO-seq data was pre-processed using the proseq2.0 pipeline as laid 

out in (143).The script proseq2.0.bsh was used with parameters -SE -G --UMI1=6 --UMI2=6 --

Force_deduplicate=FALSE.This script generated adapter-trimmed and deduplicated fastq files which 

were used as input to Bowtie2 and CASK for repeat composition analysis.  



Pre-processing, mapping and post-processing of RNA-seq data (CHM13 and HG002) 

Data from CHM13 paired-end native RNA-seq using oligoDT (12) was processed with the same 

workflow as the CHM13 PRO-seq data, with the following modifications: reads below 100nt were 

removed, no reverse complement was required (as this is PRO-seq specific), Drosophila spike-ins 

were not included and therefore, did not need to be removed, and properly paired reads were filtered 

for with the SAM flag F1548. For the CASK analysis, only mate1 of each replicate was used. 

External paired-end RNA-seq data (ribodepleted) for HG002 (GM24385) was used for comparison to 

the CHM13 cell expression data on Chromosome X (SRA: SRR13086640). HG002 data was pre-

processed with the same workflow as the CHM13 RNA-seq, but then mapped to a combined 

assembly of T2T-CHM13 autosomes, HG002 chrX, and GRCh38 chrY with Bowtie2 using the default 

option and normalized with non-mitochondrial reads.  

Repeat transcript quantification approaches 

As a complement to the comprehensive TE (herein) and centromere satellite repeat annotations (12), 

we implemented a three-pronged approach to defining the transcriptional landscape of CHM13 

centromeres (fig. S27). In a mapping-dependent approach compared to Bowtie2 default “best match, 

we mapped PRO-seq and RNA-seq data using Bowtie2 k-100 and intersected reads with single copy 

k-mers based on the T2T-CHM13 assembly and whole genome shotgun (WGS) PCR-free reads (11, 

114). As a complement, we implemented an original approach, mapping-independent sequence 

classification (CASK, fig. S28), which utilized repeat annotations from CHM13 to form a database of k-

mers capable of discerning specific repeat types or a refined group of repeats (i.e., ambivalence 

group). Unmapped PRO-seq and RNA-seq reads were annotated using CASK and the CHM13-

dependent k-mer database. Finally, in a genome-independent approach, PRO-seq and RNA-seq 

reads were processed through RepeatMasker using the human Dfam 3.3 library (i.e., not specific to 

T2T-CHM13) (fig. S27). Simultaneously, RepeatMaskerV2 (RMv2) was intersected (BEDtools 

v2.29.0) with cenSAT annotations for alpha-satellite only to identify and label those repeats 

overlapping alpha satellite designated HOR, dHOR, MON, and “none of the above'' regions (requiring 

a minimum of 1bp overlap). This dataset was defined as the alpha-satellite specific RepeatMaskerV2 

annotations (RMv2-alpha). 

Mapping dependent PRO-seq analyses 

For each PRO-seq dataset, Bowtie2 default “best match” reports a single alignment for each read, 

thus providing locus level transcriptional profiles. Unfiltered Bowtie2 k-100 mapped PRO-seq (two 

independent libraries) and RNA-seq data (two independent libraries) reports up to 100 mapped loci for 



each read, thus providing over-fitted transcriptional profiles (fig. S27 and figs. S29-S31, S34, S36-

S37). The benefit of having a complete, high-quality long-read assembly such as T2T-CHM13, allows 

for the generation of genome-wide single copy k-mers spanning even the most repetitive regions of 

the genome. These single copy k-mers (generated through Meryl (144)) were based on the T2T-

CHM13 assembly itself and whole genome shotgun (WGS) PCR-free reads (11) for increased 

confidence as single copy. Multiple tiers of filtering were applied to the Bowtie2 k-100 mapped PRO-

seq (two independent libraries) and RNA-seq data (two independent libraries) using these single copy 

k-mers as follows (fig. S27 and figs. S29-S31).  

The first tier of filtering involved bed files of the mapped reads filtered through these single copy k-

mers using overlapSelect with the setting “-overlapBases=XXbp”, where XX is equal to the length of 

the single copy k-mer being overlapped (21bp or 51bp). This required that a minimum of the entire 

length of the single copy k-mer must overlap a given read in order for that read to be retained and 

provided a lower bound locus-level filtering. 

In parallel, each alignment was filtered with single copy k-mers to ensure only one alignment survives 

using the code from (114) and as performed for the long-read marker assisted applied therein, 

providing read-level filtering. In brief, 21-mers were collected from the Illumina PCR-free WGS reads 

to build a k-mer database with Meryl (144). We chose k=21 following (145) to allow a maximum k-mer 

collision rate of 0.005, which is close to the Illumina sequencing error rate, from the given 3.2Gb 

genome size. Subsequently, the k-mer database was filtered by frequency greater than 42 and less 

than 133 to obtain globally single-copy k-mers in the genome. These k-mers were intersected with 

single copy k-mers in the assembly to build the marker set, to ensure the markers are globally unique 

in the genome and found only once in the assembly. The markers are looked up in the aligned read 

sequences, and only one alignment with the most markers gets chosen. If the number of markers ties 

among multiple alignments, only one with the best alignment score gets chosen.  

In a third tier of filtering, both read-level and locus-level filtering are applied. Following read filtering, 

the filtered bam is converted to a bed file and filtered through the single copy k-mers using 

overlapSelect using the single copy 21-mers to avoid overfiltering. This dual filtering represents the 

strictest filter and results in the removal of any read that was retained due to a bp difference in the 

read itself, thus providing read- and locus-level lower-bounds for mapped reads (fig. S27). 

The resulting bed files from each of the mapping methods (k-100, default, and k-mer filtered) were 

used for counting reads overlapping repeats or alpha-satellites and for bigwig generation for 

visualization, as described above. 



Mapping independent analyses: CASK (Classification of Ambivalent Sequences using k-mers)  

We used CASK (Classification of Ambivalent Sequences using K-mers), a mapping-independent 

method to identify reads originating from repeat elements using their k-mer composition (fig. S28A). 

Briefly, the genomic location of all repeats and their type annotation (e.g., L1H, L1P, AluY, etc.) were 

extracted from the T2T-CHM13 RepeatMaskerv2 annotations (RMv2, fig. S1). For each repeat type, 

the genomic sequences of all the instances of that repeat were extracted into a type-specific fasta file. 

These fasta files were input into KMC (146) to generate for each repeat type a type-specific k-mer 

database, consisting of all the k-mers (k=25) found across all instances of that repeat. Each type-

specific k-mer database was then filtered to remove k-mers also present in parts of the genome that 

did not overlap with any repeat elements (these k-mers have limited usefulness for the purpose of 

identifying reads originating from repeats and could lead to false identification of repeats). Note that 

while each k-mer is represented only once in any given type-specific database, many k-mers are not 

single copy genome-wide and may be found multiple times within the same or different instances of 

the repeat. Additionally, many k-mers are not exclusive to a given repeat type and may be shared 

across different repeat types and the corresponding type-specific k-mer databases (e.g., a k-mer 

found in L1Hs may also be found in L1P, etc.). For each k-mer, we defined its ambivalence group as 

the set of all repeat types within which this k-mer was found. Using a custom pipeline, the type-

specific k-mer databases were combined into a single “annotated k-mer database” listing all the k-

mers found across repeats and their corresponding ambivalence group.   

Starting from the trimmed and deduplicated fastqs (PRO-seq, RNA-seq, ChRO-seq), sequencing 

reads containing one or more k-mers matching a k-mer in the annotated k-mer database were 

extracted using BBduk. For each read, we then computed the intersection of the ambivalence groups 

of all the matching k-mers within the read. This intersection can be interpreted as a consensus repeat 

assignment from all of the k-mers in the read. If the intersection contained a single repeat-type (e.g., 

L1P), the read was assigned to that repeat. If the intersection contained multiple repeat types, the 

read was annotated as ambivalent, and the possible set of repeat types for this read was recorded 

(e.g., an ambivalent read could receive an assignment {L1H or L1P}). Such ambivalent reads were 

used to compute upper bounds on the number of reads originating from a given repeat type (e.g., fig. 

S28). CASK data shown without error bars ignore reads with ambivalent assignments and thus 

represent lower bound estimates of the repeat expression. Finally, although this scenario was rare 

(fig. S28), if the intersection was empty (e.g., if one k-mer in the read was specific to L1P and another 

k-mer was specific to L1Hs), the read was annotated as containing “conflicting k-mers” and discarded 

from further analysis.  



Mapping independent analyses: RepeatMasking of PROseq and RNAseq reads 

RepeatMasker (v4.1.2-p1) was run on the trimmed reads of the individual replicates of the CHM13 

PRO-seq and RNA-seq datasets (fig. S30), as well as all other PROseq datasets included in this 

study (RPE, H9, and HeLa, fig. S32) using a library consisting of the Dfam 3.3 database plus the 

additional entries discovered as part of the TE analysis of the T2T-CHM13 genome assembly (RMv2, 

fig. S1). The resulting RepeatMasker output files were then summarized using RM_summarizer.pl 

(43)(perl v5.30.1) to obtain the number of reads containing each repeat type. For the paired-end 

RNAseq datasets, mate1 and mate2 were run individually and the counts were summed. For both 

RNA-seq and PRO-seq, the relative abundance of each repeat was similar across replicates, and thus 

counts from both replicates were summed (figs. S30B and S32). A small percentage of reads that 

were retained had >1 repeat designation across the length of the read (ranging from 0.21-1.19% of all 

PRO-seq reads, 1.32% of all RNA-seq reads) (and see note below: Approaches to avoid mappability 

artifacts and Interpretation of transcription level estimates).   

Detecting Repeat Transcription - Method Comparisons 

BEDtools (89) coverage was used to obtain counts of reads overlapping repeats defined in RMv2 

across all mapping methods (see above), requiring at least 50% of the read (using “-counts -F 0.5”) to 

overlap the repeat element. This method was also used to determine how many repeats had reads 

overlapping (fig. S29-S31, table S18). Alpha-satellite specific RepeatMaskerV2 annotations (RMv2-

alpha) were used to obtain counts of reads that overlap repeats in the same manner as above 

(BEDtools coverage -counts -F 0.5). Since 50% of the length of a pre-processed PRO-seq read is 

~25-30bp, and the CASK k-mer length is 25bp, these parameters are roughly equivalent for this 

comparative analysis. The relative abundance of each repeat was similar across replicates, and thus 

counts from both replicates were summed. 

To compare all approaches, we first used different Bowtie2 mapping parameters (default “best 

match”, k-100 and k-100 filtered for single copy k-mers in T2T-CHM13 using locus-level, read-level 

and dual locus- and read-level filtering) on PRO-seq and RNA-seq datasets (fig. S29). For PRO-seq 

datasets, default parameters that report only the best mapped location (“Bowtie2 default”) and 

mapping parameters that support multi-mappers combined with intersecting those reads to only report 

those that overlap with a single copy 51mer (“Bowtie2 k-100 locus-filt 51mer”), show largely 

concordant repeat calls. In contrast, RNA-seq datasets show largely concordant repeat calls for the 

“Bowtie2 k-100”,  “Bowtie2 k-100 locus-filt 51mer”, and” Bowtie2 k-100 locus-filt 21mer” with a larger 

difference in calls compared to the Bowtie2 default parameters. Thus, different mapping approaches 

impact data interpretation for different types of transcription datasets. Applying a stricter level of 



filtering (read-level filtering) to either PRO-seq or RNA-seq dataset results in a reduction of the overall 

repeats transcribed (fig. S29) and in the raw read counts (fig. S31). Overall, Bowtie2 default 

parameters report fewer repeat calls than Bowtie2 k-100 locus-filt (51mer or 21mer), but still more 

than Bowtie2 read-level filtered or even read- and locus-level dual filtered (a combination of the two 

filtration methods, and thus the most stringent of all mapping methods).  

When comparing across all repeat transcript annotation methods for T2T-CHM13 (fig. S27), we find 

that CASK, RM, Bowtie2 default, and Bowtie2 k-100 21-mer filtration annotations for PRO-seq data 

were largely concordant in the relative abundance of each repeats class, while repeat annotations for 

RNA-seq data from T2T-CHM13 were more variable across methods (fig. S30).  

Given that PRO-seq captures nascent transcription while RNA-seq cannot distinguish newly 

synthesized transcripts from stable and accumulating transcripts, combined with variable repeat calls 

across methods, indicates that PRO-seq provides a more robust representation of active transcription. 

Of note, while SINEs were the predominantly transcribed repeat across all datasets irrespective of the 

method employed (Bowtie2, CASK, RM), allowing multi-mappers Bowtie2 k-100 or Bowtie2 k-100 

single copy k-mer locus-filtered, resulted in SINE read counts increasing, likely due to their high 

abundance in the human genome. Likewise, removal of multi-mappers and reads without single copy 

k-mers reduced the SINE read counts even more, further supporting this rationale. In contrast to 

SINEs, satellites were among the lowest transcribed repeats regardless of method employed 

(Bowtie2, CASK, RM), even when over-fitted with Bowtie2 k-100 (figs. S34 and S36). 

Approaches to avoid mappability artifacts and interpretation of transcription level estimates 
across centromeres 

Transcription over genes and other non-repetitive elements of the genome is typically analyzed 

through sequence alignment, followed by removal of multimappers, and then quantified with 

estimators such as FPM (Fragment per Million) or TPM (Transcript per Million).  

This approach of excluding multi-mappers altogether is highly inaccurate when examining signals 

over repeat elements as it results in an underrepresentation of the repeats with high copy number and 

low sequence divergence. Alternatively, one may allow multi-mapping reads, and then choose to 

either keep all alignment candidates or pick one at random, but this results in, respectively, 

overreporting or inaccurately reporting the transcription levels. 

 

To acknowledge these challenges and quantify transcription from repeat elements in a way that does 

not suffer from these biases, we combined different quantification approaches guided by the following 

two principles: 



1) While it may be impossible to exactly map a read coming from highly repetitive regions, one 

might still be able to determine which repeat family the read originates from. By quantifying 

transcription at the class-level (aggregating all loci from the same repeat class), rather than at 

the level of individual loci, one loses spatial resolution but gains specificity and accuracy in the 

call. 

2) While it may be impossible to obtain an accurate expression level for a specific instance of 

a repeat element, one can obtain lower and upper bounds for the expression level at that 

element. Upper-bounds can then be used to demonstrate that the lack of signal over a 

particular element is real, and not an artifact from low mappability. Likewise lower-bounds can 

be used to demonstrate that the signal at a particular repeat is real, and not an artifact from 

misalignment. 

 

This section provides information on each of the methods we used, including how their quantitative 

output should be interpreted and their possible caveats. 

1) CASK 
● What quantitative output does it provide? Lower and upper bounds of transcription, 

coarse-grained at the level of repeat classes or repeat types. 
● How does it work? We developed CASK specifically to circumvent mappability-related 

issues by detecting reads from specific repeat classes using their k-mers signature, 

rather than through alignment to the genome (see algorithm details in fig S28). CASK 

is a mapping-independent method. Intuitively, CASK scans each read for the presence 

of k-mers matching those present in the various repeat classes. Importantly, CASK 

searches for k-mers in the full genome assembly rather than in consensus sequences 

for each repeat class. Thus, because we have a complete telomere-to-telomere 

assembly, this guarantees CASK cannot miss reads (aside from rare edge cases 

discussed below). Importantly, CASK does not rely only on single copy k-mers (those 

appearing a single time in the genome), but rather uses all the k-mers found across all 

instances of each repeat class across the genome (including those with high copy 

number in the genome). Thus, even reads originating from regions with low mappability 

will be assessed. 

● Potential reads missed or misannotated by CASK? Let’s consider a read coming from 

a repeat with very high genome representation at exact or near exact match. To 

simplify this discussion, let’s imagine the true repeat of origin is a HOR, but the same 

reasoning can be made with other repeats. One can be concerned with the following 

scenario: 



○ Scenario 1) the read contains a sequencing error within a HOR k-mer which 

pushes it outside of the HOR k-mers database. While this can occur, the error 

rate with short-reads sequencing is low (1/1000 bp for an average Q30). 

Additionally because the PRO-seq reads are ~75bp in length, a single bp 

substitution error will affect ~1/3 of the k-mers in the read (we use k-mers of 

length 25). Thus in order for a HOR read to be missed due to sequencing 

errors, it would need at least 3 sequencing errors, the probability of which is 

vanishingly small.  

○ Scenario 2) None of the k-mers in the read are specific to HORs. For example, 

consider a hypothetical situation where all the k-mers in the reads are present 

in the HOR k-mer database, but also in the L1 k-mer database. As shown in the 

example Read #3 of fig. S28C, CASK can still annotate these reads as “HOR or 

L1”, to indicate that we are not sure whether this is a HOR or L1 read. We call 

this situation an “ambivalent assignment”. One can then choose to either 

discard those ambivalent assignments, or include them in the final tally for both 

HOR and L1 counts. By choosing the latter, we can obtain an upper bound on 

the number of reads from each repeat family. These upper bounds are 

displayed in fig. S31. Note that the upper bound is typically very close to the 

base count (which excludes ambivalent assignments), so this scenario turns out 

to be relatively rare. 

○ Scenario 3) The read spans across 2 repeat classes or contains 2 or more k-

mers that are never found in the same repeat family (which would happen when 

the read spans across 2 repeat classes or contains specific errors). This occurs 

only in a small percentage of reads (ranging between 1.7% and 2% of all reads 

containing k-mers from repeat families in our RPE-1 PRO-seq dataset, or 

between 0.6 and 0.8% of all sequenced reads, and is thus unlikely to affect the 

overall composition of the transcribed repeats 

○ Scenario 4) The read comes from a HOR which is missing in the genome 

assembly (in which case some k-mers might be missing in the HOR k-mer 

database). We cannot rule out this scenario for the HeLa, RPE-1, and H9 

datasets and for the embryonic cells development time course, but we are 

guaranteed that it does not occur in CHM13 for which we have a T2T-level, 

gap-free assembly.  

2) Repeatmasker 
● What quantitative output does it provide? Estimates of transcription, coarse-grained 

at the level of repeat classes, families, or subfamilies.  



● How does it work? Repeatmasker uses consensus sequences for each repeat 

subfamily, rather than the whole genome sequence. We thus used Repeat Masker as 

an orthogonal, assembly independent alternative to CASK. Both methods concord in 

their estimates of transcription at the level of repeat classes. In particular, both CASK 

and Repeatmasker reveal low levels of transcription from satellites. 

● Potential reads missed or misannotated by Repeatmasker? Since Repeatmasker 

compares the consensus sequences of specific repeat subfamilies to each read and 

identifies matches, there is the possibility that a single read could be masked as >1 

repeat subfamily. This is rare (stated in the supp. methods as <1.4% of reads), but 

does occur and therefore, this could result in a slight overestimation of repeat counts.  

3) Bowtie2 with near-exhaustive search 
● What quantitative output does it provide? locus-level, upper-bounds of 

transcription.  

● How does it work? Reads are aligned to the T2T-CHM13 assembly with Bowtie2 

allowing up to 100 alignments per read (-k-100). All valid alignments are kept, yielding 

a list of candidate loci for each transcript. This method is not meant to estimate true 

transcription levels at individual loci, because it inflates read counts for loci with high 

copy number and low sequence divergence. However, for most repeat classes, the 

number of valid Bowtie2 alignments is less than 100. Thus for these repeat classes, 

the levels reported by this method are, by definition, upper-bounds of the true 

transcription levels at specific loci. Indeed, if a read comes from locus L, one out of all 

the valid alignments must map to L. 

● Potential reads missed or misannotated? Reads from highly abundant repeats, such as 

Alus, may have over 100 valid alignments, yet only up to 100 alignments are retained 

due to computational complexity limits.  

4) Bowtie2 with near-exhaustive search and single copy k-mer locus filtering. 
● What quantitative output does it provide? locus-level, lower-bounds of transcription.  

● How does it work? K-mers that are single copy in PCR-free WGS reads and single 

copy in the T2T-CHM13 assembly are used to filter reads following the mapping 

method in 3). This filtering is based on location and requires a given read alignment to 

overlap an entire single copy k-mer in the assembly in order to be retained. With this 

method, a larger single copy k-mer is ideal (e.g. 51bp) since they are more abundant in 

the genome than a smaller k-mer (e.g. 21bp) so more reads are retained.  

● Potential reads missed or misannotated? There is a possibility that a given read with 

>1 alignment is retained at both loci as long as both loci are considered distinct. For 

example: this can occur if a given read comes from a paralog with a SNP, it can still 



align and be retained at both loci since this method does not require the read to have a 

single copy k-mer itself. Therefore, while this method is considered to be a low-bounds 

of transcription, it still runs the risk of having inflated transcription levels.  

5) Bowtie2 with near-exhaustive search and single copy k-mer read filtering. 
● What quantitative output does it provide? read-level, lower-bounds of transcription.  

● How does it work? The same k-mers that are used in 4) are used here, except the 

application is different. This filtering method is based on the presence of single copy k-

mers in the reads themselves. When a near-exhaustive search of alignments is used 

and a given read has >1 alignment, the alignment with the most single copy k-mers is 

retained. In the case of a tie, the first alignment is selected. This ensures that there is 

only 1 alignment per read. With this method, a smaller single copy k-mer is ideal (e.g. 

21bp) as a larger single copy k-mer (e.g. 51bp) would not tolerate any SNP or error 

base and would result in over-filtering the reads.  

● Potential reads missed or misannotated? While this method is stringent and is 

considered to represent a lower-bounds of transcription compared to 4), there is still 

the possibility that some reads passed through this filtering step when they shouldn’t 

have. This could occur if a read has a basepair difference (one explanation being 

transcriptional slippage) compared to the original sequence it was transcribed from. As 

a result of this difference, this read could now contain an single copy k-mer during this 

filtering process and be retained, when it should have been discarded. 

6) Bowtie2 with near-exhaustive search and single copy k-mer read filtering followed by 
single copy k-mer locus filtering. 

● What quantitative output does it provide? Read and locus-level, lower-bounds of 
transcription.  

● How does it work? This method takes the filtered reads from 5) and applies the locus-

based filtering method from 4) to provide the most stringent filtering method in this 

study, and therefore, the lowest-bounds of transcription.  

● Potential reads missed or misannotated? While the filtering method in 5) is highly 

effective, this combination of single copy k-mer filtering methods, read and locus-

based, results in the removal of any reads that passed through 5) due to a basepair 

difference when they shouldn’t have because of an actual lack of single copy k-mers. 

This is because when these reads are then required to overlap a single copy k-mer 

locus in the assembly, it won’t match the original sequence it was transcribed from and 

will not be retained. 

7) Bowtie2 with default, “Best match” parameters.  



● What quantitative output does it provide? Locus level wherein each read is mapped 
to only a single, best match location.  

● How does it work? This method (no flag) reports a single, “best match” end-to-end 

alignment for each read, but if a read could map with 100% accuracy to two locations, 

it assigns a single location randomly.  

● Potential reads missed or misannotated? By selecting only a single match location, the 

likelihood of diluting signal among sequences of high identity (i.e. repeats, particularly 

young repeats) by random assignment (i.e. promoters of different elements within the 

same class) increases.  

 

5. WaluSat Phylogenetic Analyses 

WaluSat+AluSx  

WaluSat: The evolutionary history was inferred by using the Maximum Likelihood method and General 

Time Reversible model (109). The tree with the highest log likelihood (-2227.42) is shown in Fig. 5A. 

Initial tree(s) for the heuristic search were obtained automatically by applying the Maximum 

Parsimony method. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites (5 categories (+G, parameter = 2.0168)). The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. This analysis involved 1057 nucleotide sequences. 

There were a total of 73 positions in the final dataset. Evolutionary analyses were conducted in MEGA 

X (137).  

AluSx (with WaluSat): The evolutionary history of AluSx-like elements was inferred by using the 

Maximum Likelihood method and T93 model. The tree with the highest log likelihood (-2155.25) is 

shown. The percentage of trees in which the associated taxa clustered together is shown next to the 

branches. Initial trees for the heuristic search were obtained automatically by applying Neighbor-Join 

and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites (+G, 

parameter = 0.8559). This analysis involved 71 nucleotide sequences. (partial deletion option). There 

were a total of 289 positions in the final dataset. Evolutionary analyses were conducted in MEGA X 

(137). 



Dotplots were generated by comparison of 1.5 kb sequences flanking both 5’end and 3’ end regions 

of WaluSat insertions with FlexiDot (147) with the following parameters: -i tgut_sat_dim.fasta -p 2 -D y 

-f 0 -t y -k 10 -w y -r y -x y -y 0 -o PREFIX. 

TSDs were identified using self-alignments implemented in Geneious and manual curation. 

G-quadraplex (G4) analysis 

G-quadruplex analysis was done with the GUI version of G4Hunter (115). In silico tandem array of the 

64 nt WaluSat sequence was constructed in fasta. Coordinates for the Chromosome 14 WaluSat 

array are indicated in Fig. 5A.  

6. TE transduction Analyses 

Validating and categorizing putative TE transductions 

DNA transduction events were analyzed using the modified TSDfinder tool (67) and full-length 

elements for L1 and SVA. In order to identify 3’ transductions mediated by L1 elements, we ran the 

TSDfinder with the default parameters (FIVE_PR_FLANK = 100, THREE_PR_FLANK = 3000) and 

the LINE/L1 families present in the RepeatMaskerv2 output developed in this study. To identify SVA-

driven 5’ and 3’ transductions, TSDfinder was run using SVA elements with the following parameters: 

FIVE_PR_FLANK = 3000, THREE_PR_FLANK = 3000. Since TSDfinder originally was designed to 

find only 3’ transductions, we used the following commands to identify 5’ transductions based on the 

assumption there must be a 20 nucleotide distance between the 5' TSD and the start of the SVA: 

paste <(awk -F "\t" '{OFS="\t"; print $1,$2,$3,$5,$8,$10,$11}' PRE_INSERTION_LOCUSChr* | sort -V 
-k1,1) <(grep -w -f <(awk -F "\t" '{OFS="\t"; print $1,$2,$3,$5,$8,$10,$11}' 
PRE_INSERTION_LOCUSChr* | sort -V -k1,1 | cut -f1) <(cat MERGEChr* | sort -V -k1,1)) | cut -
f1,2,4,5,6,7,10,16 | awk '{if ($3 ~ /\[/) print length($3)-4 "\t" $0; else print length($3) "\t" $0}' | awk '{if 
($8 ~ /\(/ ) print "-" "\t" $0; else print "+" "\t" $0}'  > SVAsWithTSD.tsv 

awk '{if ($3 == "-") print ($5-$6)-2 "\t" $0; else print $4+$6 "\t" $0}' SVAsWithTSD.tsv | awk '{if ($4 ~ /+/ 
&& ($8-$1) > 20) print $0; else if ($4 ~ /-/ && ($1-$9) > 20) print $0}' > SVA_5pr_transductions.tsv 

Those events labeled as “3prTS” (3prTS stands for 3’ transduction) were subtracted and subjected to 

the validation process as described below. To validate and categorize each putative transduction 

discovered by TSDfinder, we defined a set of certain thresholds and four different confidence levels 

as follows (summarized in fig. S47).  

Level 0: The lowest confidence level contains putative transductions discovered by running 

TSDfinder. In this step, only those putative transductions whose both TSD and a poly(A) tail that 



consisted of homopolymer stretches of A’s were removed as they likely are artifacts. This level 

consisted of 23,602 events. 

Level 1: Here, we filtered out those transductions that were located in the segmental duplication 

regions of CHM13 as per (65). The first tier of filtering reduced the transduction events to 21,996. 

Level 2: In this step, the progenitor of each transduction event is identified. Initially, we extracted 3 

kbp downstream from full-length LINE/L1 (minimum length 5900 bp) and Retroposon/SVA elements 

(as defined in RepeatMasker annotation). If any of these 3 kbp segments were overlapping, we kept 

the closest one to the 3’ end of the corresponding chromosome. Next, we removed those putative 

transduction progenitors in the segmental duplication loci and made a “blastable" database using the 

following command from BLAST suite (v2.11.0+) (148):  

makeblastdb -in input.fa -dbtype nucl -parse_seqids 

In the case of SVA 5’ transductions, 3Kbp upstream from the 5’ end of all Retroposon/SVA elements 

were extracted to create a cognate database (if any of these 3Kbp segments were overlapping, the 

closest one to the 5’ end of the corresponding chromosome was kept). In this step, we also removed 

those 3Kbp segments overlapping with segmental duplicates. Subsequently, the sequences of 

putative transductions were collected and masked with RepeatMasker (v4.1.0) (88) (-q -species 

human -xsmall), and aligned to their related databases using BLASTN (v2.11.0+) (148) (-evalue 0.05 -

max_target_seqs 5 -perc_identity 90). The results of each BLAST search were analyzed to find the 

progenitor of each transduction event. A progenitor was considered to be the source of a transduced 

sequence only if all of the following criteria were met: 1) the identity between two sequences (i.e., a 

query and a subject) was equal or greater than 90%, 2) hit and subject had the same orientation, 3) at 

least 30% of the length of putative transduction was included in the alignment, 4) the start coordinates 

for a pair of corresponding query and subject were within 20 nucleotides of each other. Additionally, 

we checked whether or not the remaining transduced segments carried another non-LTR (complete or 

partial) in their sequences. In many cases, the entire transduced DNA or its terminal fraction 

overlapped with another non-LTR element, rendering it difficult to confidently attribute a poly-A tail 

followed immediately by 3' TSD (one of the transduction signatures) to a real transduction event 

because they may occur coincidentally with the inserted sequence. Hence, we kept only those 

transduction events whose entire sequence was either depleted of non-LTR elements or had another 

non-LTR in its middle section flanked by a unique DNA sequence. For this, we used bedtools intersect 

command (89) as follows: 

bedtools intersect -wao -a transduced_segments_passed_blast_criteria.bed -b non-LTRs.chm13.bed 
-f 1.0 -s | awk '$NF == 0 {print $0}' | cut -f1-6 > TEMP.bed 



awk '{if ($6 == "-") print $1 "\t" $2 "\t" $2+50 "\t" $4 "\t" $5 "\t" $6; else print $1 "\t" $3-50 "\t" $3 "\t" $4 
"\t" $5 "\t" $6}’ TEMP.bed > TEMP_50bp.bed 

cat <(bedtools intersect -wao -a TEMP_50bp.bed -b non-LTRs.chm13.bed -s | awk '$NF == 0 {print 
$0}' | cut -f1-6)  <(bedtools intersect -wao -a passed_blast_criteria.bed -b non-LTRs.chm13.bed -s | 
awk '$NF == 0 {print $0}' | cut -f1-6) > transductions.level2.bed 

The transductions that met all criteria were classified as level 2 confidence DNA transduction events. 

The second tier of filtering reduced the transduction events identified in CHM13 to 129 events. 

Level 3: As a final validation, we checked whether or not pairs of identified offspring-progenitor were 

annotated as the same family type. Accordingly, we classified a transduction event as level 3 only if it 

was transduced from a source retroelement of the same family type. The last tier of filtering dropped 

the transduction events identified in CHM13 to 81. 

In total, 60 L1s were sources of transduced DNA, among which L1PA2 with the size of 6,029 bp 

located on chromosome 2 (coordinates: 83769403-83775432) seemed to be the most prolific with 

three offspring, while the remaining progenitors each generated one or two offspring. In the case of 

SVA 3’ transductions, four elements were verified as the sources of transductions among which 

SVA_F with the size of 2,036 bp (chr2:47437574-47439610) was the most productive with two 

offspring. We found that nine SVAs appeared to be sources of 5’ transductions. One SVA locus with 

two offspring transduced genetic material via 5’ transduction: chr1:37640437-37642497 (SVA_F).  

Functional annotation of TE transduction events 

To assess the potential impact of TE transduction events on protein-coding gene evolution via exon 

shuffling, we compared each transduced sequence with the human proteome. To investigate whether 

Level 3 transductions carry protein-coding sequences, we conducted a BLASTX (148) analysis. First, 

we downloaded the human proteome 

(https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/human.1.protein.faa.gz, on 15.05.2021) 

and created a BLAST database using the following command:  

makeblastdb -in human_proteome.fa -dbtype prot -parse_seqids.  

The sequences of Level 3 transductions were aligned to the human proteome database using blastx:  

blastx -query <input.fa> -db human_proteome.fa —task blastx-fast -evalue 0.00001 -outfmt '6 qseqid 

qlen sseqid slen length pident nident mismatch gaps qstart qend sstart send qseq sseq sstrand qcovs 

qcovhsp qcovus evalue score’ -max_target_seqs 5 -soft_masking true 



BLASTX analysis showed that none of the transductions in the level 3 dataset were similar to a CDS 

sequence, possibly due to our stringent filtering which reduced the overall transduction calls, thus 

reducing the likelihood of finding rare CDS overlap. 

Comparative analysis of TE transductions between T2T-CHM13 and GRCh38 

To identify whether any of the level 3 transductions are specific to T2T-CHM13 or are shared with 

GRCh38, we first extracted the sequence of each transduction plus 1Kb downstream (for 5’ SVA, 1Kb 

upstream was extracted). Next, we mapped these sequences to the GRCh38 genome using BLAST 

using following commands: 

makeblastdb -in primary_chrs_GRCh38.fa -dbtype nucl -parse_seqids 

blastn -query <input>.fa -db primary_chrs_GRCh38.fa -evalue 0.05 -task megablast  -outfmt  '6 qseqid 

qlen sseqid slen length pident nident mismatch gaps qstart qend sstart send qseq sseq sstrand qcovs 

qcovhsp qcovus evalue score'  -max_target_seqs 5 -num_threads 10 -perc_identity 90 

We found two L1 transductions ( chr21:13527247-13527278, and chrX:75628554-75628643) and one 

5’ SVA transduction (chr5:151705366-151705511) specific to T2T-CHM13 (tables S22-S23) while all 

3’ SVA transductions were present in both genome builds. However, in one case (L1Hs) we find the 

offspring TE in both GRCh38 and T2T-CHM13, yet the transduced sequence is missing in GRCh38. 

The transduced segment consists of five copies of a hexamer (TTTTTG) which was collapsed to a 

single copy in GRCh38. 

When comparing transduction events between T2T-CHM13 and GRCh38 (table S23), we find slightly 

more events in T2T-CHM13 due to gap-filled regions and high confidence annotations (11, 12). 

Interestingly, the number of 5’ transduced segments mediated by SVAs exceeds the number of SVA 

3' transductions, suggesting that 5’ transductions by SVAs are more common in the human genome. 

In summary, our results indicate TE facilitated transduction is a dynamic phenomenon that has 

affected 0.000175% of the CHM13 genome (0.026 events per 1 Mbp). It is worth noting that our 

transduction annotation is likely an underestimation of the total number of events given the high 

stringency thresholds employed. Nevertheless, the CHM13 assembly has afforded a multi-tier 

analysis that can be further applied to identify bona fide transduction events in lower confidence 

categories (fig. S47 and table S23). 

Comparison of the identified TE transductions with previous studies 

To identify overlap with previously reported transductions, we extracted the sequence of transduction 

events reported in (67, 69–71, 149) and aligned them against the T2T-CHM13 (blastn -task megablast 



-evalue 1e-10) followed by comparing the blast hits with the coordinates of transductions from our 

results. We were able only to corroborate three of the previously reported transductions with our level 

3 dataset (table S24), likely due to different methodologies and filtering schemes applied therein.  

Relative age of the identified transductions 

To assess the relative age of each transduction, we calculated the genetic distance between all pairs of 

transduction progenitors and offspring using the Kimura 2-parameter (150) model. For this purpose, first, 

we used blastn with default parameters except “-task blastn” to align the sequence of each transduction 

against its offspring. The alignments were analyzed using the ape package (151) with the function 

“dist.dna” and the parameter “model=k80”.  Next, we compared these individual distances with the 

distribution of the genetic distances of all the retroelements of the same subfamily present in the 

genome (fig. S49). Consequently, we demonstrated that virtually all retroelements with transductions 

fall within the range of expected divergence, strongly suggesting that the transductions were caused 

by retrotransposition of active TEs rather than segmental duplications. 

 

7. Repeat comparisons between CHM13v1.0 and HG002 and among non-
human primate genomes 

Methylation clustering  

Methylation clustering was done by selecting all reads spanning a specific locus and using the mclust 

(v5.4.7) R package with the “VII” model to cluster methylation calls across the locus (92). Within 

mclust we specified G as being between 1 and 9 clusters. Positions with methylation calls that did not 

pass the threshold to be called methylated or unmethylated were assigned a value of 0.5. CpG 

density heatmaps were calculated by counting the total number of CpG sites per position relative to 

the repeat start and end and dividing by the total number of repeats in each group. Methylation single-

read plots were generated in the ggplot2 R package using geom_rect() to plot individual reads with 

methylated CpGs as red and unmethylated CpGs as blue.  

chrX liftOver analysis and repeat fasta comparison 

Similar to the fasta sequence comparison of the set aside T2T-CHM13 loci, the lifted chrX to HG002 

coordinates were compared. A similarity score was assigned to each repeat based on crossmatch 

output as a percentage of the maximum score. Sequences with a score of greater than 90% and/or 

shorter than 50 bp were the threshold for concordant similarity or insufficient information for 



comparison, respectively. All other sequences were considered as potential polymorphic loci. These 

remaining 778 sequences of interest were filtered for length differences between the T2T-CHM13 and 

HG002 chrX liftOver coordinates. Simple repeats were not considered as part of this analysis. 

Differences that were further analyzed were loci 20 bp or greater if the T2T-CHM13 RM annotation 

was Alu, and 50 bp or greater for all other repeat types. 64 loci remained. For these 64 loci, the fasta 

sequence was extracted and subjected to RepeatMasker analysis. 

Copy Number Comparison across primates 

Copy number comparisons across primate genomes were generated with the most recent, available 

primate genomes for each species: Pan trogolodytes (accession: GCA_002880755.3) (84), Gorilla 

gorilla (accession: GCA_900006655.3)(116), Pongo abelii (accession: GCA_002880775.3) (84), 

Hylobates moloch (accession: GCA_009828535.2), Macaca mulatta (accession: 

GCA_008058575.1)(117), Rhinopithecus roxellana (accession: GCF_007565055.1)(118), Callithrix 

jacchus (accession: GCF_009663435)(119), and Microcebus murinus (accession: 

GCF_000165445.2) (120). Custom BLAST databases were generated from each genome and 

searched for individual instances of the corresponding repeat or composite element. Due to the 

varying quality and completeness of these genomes, and in order to avoid returning individual 

composite subunits, the search was done by requiring at least an 85% length match to the query 

repeat / composite monomer. Standard BLASTN parameters were used for query match divergence, 

except in the case of highly similar gap tandem array sequences, which were rerun with a 100% 

match requirement across the 85% length to assure correct counts. All results were quantified 

manually, and coordinates were checked within each set of results to ensure that only individual 

instances were counted. 
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Fig. S2. Summary of repeat annotation discovery for T2T-CHM13. Compiled annotations resulted 
in a final RM track for T2T-CHM13 that included the annotation of previously unknown repeats and 
satellite arrays outside of centromeric regions (12), the identification of extensions or variants to 
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Plot of 49 previously unknown human repeats identified through RepeatModeler and 35 through 
manual curation.
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Fig. S3. Repeat density across T2T-CHM13 by family classification. Counts of all repeats identified by our 
repeat annotation pipeline were binned into 1Mbp windows across all chromosomes (color coded and numbered, 
outer ring) in CHM13v1.1 and are shown as Circos heatmaps corresponding to (A) retrotransposon classes, (B) 
RNAs, and (C) all other repeat classes. Centromere blocks (including centromere transition regions) are denoted 
by grey bars that span all tracks. Tracks are numbered (1, 2, …) starting from the outer ring as indicated. Each 
repeat class track is scaled independently with the scales located in the middle of each respective Circos. 



Fig. S4. T2T-CHM13-based repeat annotations reveal previously unknown repeat classifica-
tions on the GRCh38 Y chromosome assembly. Ideogram of GRCh38 Chromosome Y indicat-
ing the locations of annotated composite elements (red), satellite variants and unclassified 
repeats (aqua), and previously unannotated/unknown arrays or monomers of sequences found 
within those arrays (purple). Gaps in the Chromosome Y assembly are shown in black boxes to 
the left of the chromosome. Notably, ajax and teucer are found together at two loci without 
TELO_comp as part of an inversion in the Azoospermia Factor c region of the Y chromosome, a 
region with recurrent de novo microdeletions linked to male infertility (152). 
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Fig. S5. Lifted TE pair annotations are discordant between T2T-CHM13 and GRCh38. (A) TEs 
in T2T-CHM13v1.1 with a full match with GRCh38 represent TEs with no change in annotation. The 
remaining 118,787 without a full match were further classified by discordance category. (B) “Not full 
match” classifications were further broken down into discordance categories as follows: 1) TEs 
lacking a class match (dark blue), 2) TEs with a class match but changed family (yellow), 3) TEs 
with a family match with a subfamily change (light blue), 4) TEs with nucleotide differences (purple) 
and highly diverged sequences/short loci (light purple), both of which are low confidence changes 
that may be the result of batch effects with RepeatMasker. (C) Of TE annotations in 
T2T-CHM13v1.1, percent unlifted to GRCh38, shown by chromosome (X axis) and repeat class 
normalized to bp of each chromosome in CHM13. TE family indicated by color in key inset; n= 
number of bp on each chromosome in CHM13v1.1 represented by unlifted TEs.
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Fig. S6. Annotations for composite elements in T2T-CHM13 lacking exonic material. Repeat 
annotations for composite elements found without protein coding sequences: (A) VNTR, (B) 
LMtRNA, (C) MER33, (D) ZAV, (E) TRGV, (F) Charlie 5, (G) GUSP. Each subunit repeat type and 
orientation, including all TEs, simple and low complexity repeats, subunits and other features such 
as pseudogenes, color coded as per KEY (inset at top), is indicated. For each composite, the size of 
the composite core unit is indicated, as is the number of repeat units in the array and chromosomal 
location. The order of core units within the array are shown in two zoom images of RepeatMaskerv2 
browser tracks for repeats found in large arrays (A-C). For composites found arrayed in more than 
one location (C, G), chromosome ideogram indicates the locations of the composite arrays in 
T2T-CHM13. Centromere blocks (including centromere transition regions) are indicated in orange.
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Fig. S7. Updated annotations for composite elements containing gene predictions found in 
T2T-CHM13. Repeat annotations for composite elements found without protein coding sequences: (A) 
FAM90, (B) AluSx-TAF, (C) GAGE, (D) AMY, (E) PRR20_LA, (F) CT45, (G) CT47, (H) ANKRD30A. Each 
subunit repeat type and orientation, including all TEs, simple and low complexity repeats, subunits and 
other features such as exons, color coded as per KEY (inset at top), is indicated. For each composite, 
the size of the composite core unit is indicated, as is the number of repeat units in the array and chromo-
somal location. The order of core units within the array are shown in two zoom images of RepeatMask-
erv2 browser tracks for repeats found in large arrays (A-B). For composites found arrayed in more than 
one location (A, H), chromosome ideogram indicates the locations of the composite arrays in 
T2T-CHM13. Centromere blocks (including centromere transition regions) are indicated in orange.
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Fig. S9. A composite containing part of the 5SRNA is found at multiple loci in T2T-CHM13 and 
arrayed at a single locus. (A) The 5SRNA composite contains an AluY insertion, three previously 
known repeats (GA-rich low complexity repeat, CA simple repeat, 5S) and two other composite subunits 
(13719, 13720). The composite is found in an array on Chromosome 1. The order of core units within the 
array are shown in two zoom images of Repeat Maskerv2 browser tracks. (B) A self-alignment dot plot of 
5SRNA composite subunits across the array. Histogram denotes the color scale and distribution of 
alignments for the plot showing high intra-array sequence similarity (with a peak ~100%). The array is 
visible in the dot plot as the brighter red triangle shape, in which connecting diagonals (the arms of the 
triangle) represent shared sequence identity A 5% size (bp) increase was added flanking the array, which 
is visible as the area with lower shared sequence identity (blue) on the left and right of the dot plot. (C) 
Ideogram of CHM13 indicates the 49 locations of the 5SRNA composites as singletons (purple) and the 
only array found in T2T-CHM13 (red). Arrow indicates the location of the array illustrated in (A), which is 
also the only location containing the AluY insertion. Centromere blocks (including centromere transition 
regions) are indicated in orange. (D) The 5SRNA composite is found as two different structures: with an 
AluY insertion (left) in array form and with a LTR2 insertion (right) at all monomeric locations. Both 
contain three previously known repeats (GA-rich low complexity repeat, CA simple repeat, 5S) and two 
other annotated composite subunits (13719, 13720). 
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Fig. S10. ACRO_Composites are found in arrays on multiple chromosomes in CHM13. (A) Structure 
of the ~7Kbp ACRO composite includes four previously known repeats (ACRO, L1MB8, L1PA10, MER21B) 
and four composite subunits (37, 38, 1624, 1625). Ideogram of CHM13 indicates the 30 locations of the 
ACRO composites as both singletons (purple) and arrays (red). Centromere blocks (including centromere 
transition regions) are indicated in orange. Arrow indicates the location of the array illustrated on the left. 
(B) Self-alignment dot plots for the largest ACRO composite arrays on each acrocentric chromosome 
(chromosomes 13, 14, 15, 21, and 22) and one non-acrocentric chromosome (Chromosome 3) are shown 
displaying alignment similarity with histograms denoting the color scale and distribution of alignments for 
each independently colored plot. High sequence identity is seen within each array (>95%, excluding extra 
flanking region) and strong structural similarities between each array (with Chromosome 21 being a slight 
outlier, although the array still has the triangular structure typical of a highly repetitive sequence). A 5% size 
(bp) increase was added flanking each array. Note that these plots differ in structure from Fig. S9 due to the 
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Fig. S11.  LSAU-BETA_Composites are found in two forms and arrayed on multiple chromosomes in 
T2T-CHM13. (A) The LSAU-BETA composite is found as two different structures: without the  5403 compos-
ite subunit (Top; 15 loci) and with the repeat-5403 (Bottom; 57 loci). Both contain three other composite 
subunits (1, 4, 10), as well as the LSAU satellite. Ideograms of CHM13 for each of the two different structures 
indicate the locations of the LSAU-BETA composites as singletons (purple) and arrays (red), as well as the 
presence (square) or absence (triangle) of the BETA satellite. BETA is not shown in the structure containing 
5403 since it is not part of the composite itself, but rather found at one edge of each of the two arrays. These 
two arrays (chromosomes 4 and 10) are subtelomeric and associated with the DUX4 genes (11). Only one 
locus (Chromosome 8) lacks the LSAU satellite (arrow). Centromere blocks (including centromere transition 
regions) are indicated in orange. Arrows indicate the location of the arrays illustrated on the left. (B) 
Self-alignment dot plots for three example arrays (two centromeric and one non-centromeric) are shown 
displaying alignment similarity with histograms denoting the color scale and distribution of alignments for 
each independently colored plot. The spectral color scheme represents a scale of 0 (purple) to 100% (red) 
sequence similarity. The Chromosome 1 and Chromosome 10 loci both contain the 5403 subunit, while the 
Chromosome 14 locus does not. The two centromeric arrays have a lower intra-array sequence similarity 
(with a normal distribution suggesting a lack of non-random sequence similarity) compared to the non-centro-
meric array (with a single peak at ~100%). This suggests a much more complex structure in centromeric 
arrays, regardless of the presence of the additional 5403 subunit. The complexity of this array is also appar-
ent in the Chromosome 10 non-centromeric array, given that the array pattern is broken approximately ⅔ of 
the way through (blue pattern). A 5% size (bp) increase was added flanking each array and each plot is 
colored independently.  
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Fig. S12. TELO_comp element distribution and relationships across T2T-CHM13. (A) The location of 
TELO-composite elements across T2T-CHM13 is indicated by red bars on chromosomes. Tan blocks 
demarcate centromeres and centromere transition regions. Chromosome regions containing TELO-com-
posites across the karyotype (21) are color coded [interstitial – purple, sub-telomeric, within 200Kbp of 
chromosome end– aqua, centromeric – red] with orientation indicated by arrow direction. (B) Each 
T2T-CHM13 TELO-composite element consists of a duplication of a teucer repeat (blue) separated by a 
variable 49bp (ajax) repeat array (red arrowheads) and three different composite subunits (TELO-A, -B, 
-C). Repeat and TE annotations are shown. Some copies of TELO-composite contain the repeat “10479” 
between the TELO-A and TELO-C subunits, and/or following the TELO-C subunit. (C) Schematic alignment 
of all complete CHM13 TELO-composite elements (location indicated to the right, centromeric and intersti-
tial locations indicated with starting bp). Locations of “10479” (black box) repeat are arrowed (top). Relative 
number of each TELO subunit as pictured in (B) with deletions represented by grey bars. Additional TE 
insertions are indicated for TELO-C. Relative array size of ajax repeats shown to scale among all 
TELO-composite elements. Orientation of the element indicated with respect to the centromere (purple 
arrow) telomere (blue arrow) and interstitial (no arrow) regions. Left, RaxML phylogeny of TELO-composite 
elements with bootstrap values at each node and distance indicated by length of branch.
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Fig. S13. Derivation of TELO_comp loci on Chromosome 7.  (A) Segmental duplication synteny 
map connecting TELO_Comp loci found in the centromere of Chromosome 7 with other TELO_Comp 
loci (fig. S12, Table S9) (B) Organization of the Chromosome 7 locations of the ajax repeat (each red 
arrowhead denotes a single monomer of the repeat) and teucer (blue). “#X” indicates a subunit is 
arrayed at # copy number. (C) A self-alignment dot plot of the 49bp array (ajax) on Chromosome 7 and 
histogram denoting the color scale and distribution of alignments for the plot showing high intra-array 
sequence similarity (with a peak ~100%). The array is visible in the dot plot as the brighter red triangle 
shape, in which connecting diagonals (the arms of the triangle) represent shared sequence identity. A 
5% size (bp) increase was added flanking the array, which is visible as the area with lower shared 
sequence identity (blue) on the left and right of the dot plot.  
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subtelomeric vs pericentromeric arrays. (A) A Neighbor Joining unrooted phylogenetic tree using 
763 full-length repeats (table S10) reveals ajax repeats in subtelomeric regions (black and open 
shapes) do not cluster together in array-specific or chromosome-specific subtrees. In contrast the ajax 
pericentromeric repeats from each of the three expanded loci tend to cluster in array-specific clades, 
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suggesting a higher order repeat, or super-repeat, structure across the array. (B) Schematic represen-
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Chr7:56525533 Internal teucer element (n=61)

Chr7:57035474 Internal teucer element (n=13)

Chr7:64949015   Internal teucer element (n=11)

3’ edge teucer elements (n=17)

5’ edge teucer elements (n=17)

Chr7:45970710 Internal teucer element (n=1)

Chr7:55901411 Internal teucer element (n=1)

Chr1:227159306 Internal teucer element (n=1)
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Figure S15. Sequence relatedness between teucer arrays suggests location specific patterns of 
evolution and expansion.  (A) Schematic representation of ajax+teucer composite organization indicat-
ing 5’ edge teucer elements (pink), ajax repeats (grey), internal teucer elements (blue), and 3’ edge teucer 
elements (green) described at two loci as indicated. Three separate consensi have been derived for the 
teucer element based on the internal sequence and the edge sequences. The different areas in which the 
element occurs appear to be under different evolutionary pressure and change at different rates. (B) A 
maximum likelihood phylogenetic tree using 122 teucer elements (table S11) reveals that teucer derived 
from either the 5’ edge (pink) or 3’ edge (green) form distinct clusters, suggesting independent evolution 
by array position. Internal teucer elements from expanded arrays show array-specific clusters that corre-
spond with the ajax phylogenetic analyses (fig. S14). Chr7:56525533 internal teucer elements (light blue) 
show higher similarities with 5’ end teucer elements, suggesting the 5’ end contributed to the array expan-
sion. The Chr7: 57035474 and Chr7: 64949015 arrays (purple and grey, respectively) cluster with 3’ end 
teucer elements, suggesting the 3’ end contributed to the array expansion. The relatedness of teucer 
elements from the three expanded arrays to the subtelomeric teucer elements suggest that independent 
events are responsible for the origin of Chr7:56525533 and Chr7: 57035474/Chr7: 64949015 arrays. All 
teucer elements were positioned in the same orientation and form the same junction with the ajax arrays. 
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Fig. S16. Methylation metaplot for HG002 reveals a distinct epigenetic signature specific to 
TELO-Comp elements. Metaplot of aggregated methylation frequency (average methylation of each 
bin across the region, 100 bins total) centered on the TELO-A subunit (top), ±20Kbp, grouped by 
chromosomal location (orange – centromeric, blue – subtelomeric, green – interstitial). CpG density 
for each group is indicated at the bottom (white - no CpG, dark blue - low CpG, bright blue - high 
CpG). The location of the ajax repeat array and the MER1A element within the TELO-C subunit are 
indicated (top).
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Fig. S17. Ideogram of density per 1Mbp bins of full-length retroelements in T2T-CHM13. (A) AluY, (B) L1Hs, (C) HERV-K, 
(D) SVA-E, (E) SVA-F. Centromere regions as per (12)) are shown in red. Density scale from low (blue, zero) to high (red, 
relative to total copy number).
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Fig. S18. Stranded PRO-seq profiles for (A-B) AluY, (C) HERV-K, (D) SVA-E, (E) SVA-F, (F) L1Hs and 
(G) L1P subfamilies. All elements are subdivided into full-length and truncated elements, with the follow-
ing exceptions. (C) HERV-K is subdivided further into >7500 bp with both LTRs (GT/LTR+), <7500 bp 
with both LTRs (LT/LTR+), and elements in each category lacking one or both LTRs (LTR-). (A-B) AluY is 
subdivided based on divergence from the AluY (> or <2% diverged from RepeatMasker consensus (A) 
and full length vs. truncated (B)). CHM13 PRO-seq density for antisense (blue) and sense (red)), and 
average profiles (top line graphs, separated into sense and antisense read density, grey shaded portions 
are standard error) for TE subfamilies are shown. HERV-K elements are scaled to a fixed size, while all 
others are anchored to the 3’ end, with a specified distance (bottom left) into the element; standard error 
shading (grey), TSS (transcription start site), TES (transcription end site), and ±0.1Kbp (bottom) are 
shown. A dotted line is included on the heatmap denoting the static -0.1Kbp from the end of the annotat-
ed element. Relative location of the VNTR in SVA elements is indicated. Mapping methods from left: 
Bowtie2 k-100; Bowtie2 k-100 filtered for single copy 21-mer k-mers based on locations; Bowtie2 default 
end-to-end, “best match”; Bowtie2 k100 dual filtered for single copy 21-mers in locations and reads. Far right, 
single copy 21-mer density. Boxed is the Bowtie2 “best match” panel used in Figure 2. 
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Fig. S19. Methylation and CpG density boxplot comparisons of full-length and truncated (A) 
AluY, (C) SVA-E, (D) SVA-F, (E) L1Hs elements in T2T-CHM13. (B) HERV-K is shown as a compari-
son between one of four structural groups. Methylation frequency was calculated as average methyla-
tion per repeat element and CpG density was calculated as number of CpGs normalized to total 
repeat length. Statistically significant differences were calculated with Kruskal-wallis one-way analysis 
of variance.  
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Fig. S20. 3D plots for (A) AluY, AluJ, AluS, (B) HERV-K (divided into LTR and internal regions across all four 
structural groups), (C) SVA-A-C, (D) SVA-D-F, and (E) L1Hs, L1P (young and old), L1M. Axes represent 
scaled values for average methylation, # of CpG sites, and divergence from RepeatMasker consensus 
sequences for each instance of the element. Coloration by the number of overlapping PRO-seq reads 
(mapped with BT2 default parameters (”best match”), where purple represents the highest read overlap and 
blue the lowest, on the scale matching each plot. These data are the same for Figure 2A-E.
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Fig. S21. PRO-seq profiles for (A) Alu, (B) L1, and (C) SVA subfamilies. T2T-CHM13 PRO-seq density 
(purple scale, reads per million both sense and antisense aggregated) and average profiles (top line 
graphs, separated into sense and antisense read density) for TE subfamilies. All elements are anchored to 
the 3’ end, with a specified distance from the anchor (bottom left) into the element; standard error shading 
(70% opacity of respective line color), TSS (transcription start site), TES (transcription end site), and ±Kbp  
are shown. A dotted line is included on the heatmap denoting the starting nt of each annotated element. 
Relative location of the VNTR in SVA elements is indicated. Number of SVA elements in each subfamily 
shown to the right of each panel. Mapping methods (from left) are Bowtie2 (BT2) k-100; BT2 k-100 21nt 
k-mer filtered (locus level); BT2 default only (“best match” single locus); BT2 k-100 dual 21nt k-mer filtered 
(read and locus filtered). BT2 default only are within a dotted box. Far right is the density of single copy 
21nt k-mers across each element (grey scale, number of k-mers in sense and antisense aggregated) and 
average profiles (top line graphs) for each TE subfamily.
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Fig. S22. Methylation and CpG density boxplots for (A) Alu subfamilies, (B) SVA subfamilies, (C) 
L1 subfamilies. Methylation frequency was calculated as average methylation per repeat element and 
CpG density was calculated as number of CpGs normalized to total repeat length. Statistically signifi-
cant differences were calculated with Kruskal-wallis one-way analysis of variance.  



Distribution of PRO-seq Read Overlap Across SST1s

Fig S23. Distribution of PRO-seq read overlap counts over all annotated SST1 repeats. (A) 
SST1s with more than 15 overlapping PRO-seq reads were grouped (dotted line) and represent 
purple and yellow points in Fig. 3C and fig. S24. (B) Zoom of (A); 15 overlapping PRO-seq reads 
(dotted line) was used as a cutoff for statistical comparisons
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Fig. S24. Statistical tests for SST1. Violin plots of SST1 elements show differences in length, diver-
gence, deletions, insertions, and methylation of repeats found in the centromere (A), on Chromosome 
19 (B), with varying PRO-seq expression levels (C) and with varying methylation patterns (D). Dot 
colors represent interstitial arrays on Chromosome 19 (purple), and Chromosome 4 (yellow); all other 
SST1 repeats are colored black. Non-centromeric SST1s, particularly those on Chromosome 19, are 
longer, less diverged, and possess higher average methylation than those situated in the centromeres. 
Similarly, SST1s with > 0.5 methylation and > 15 PRO-seq reads are longer and less diverged than 
those with lower transcription and lower methylation. All differences are statistically significant 
(p<0.0001). 
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Fig. S25. T2T-CHM13 methylation and stranded PROseq profiles for SST1. (A) Methylation profiles for 
SST1 grouped by average methylation levels (>50% top, <50% bottom). Each element is scaled to a fixed 
size; TSS (transcription start site), TES (transcript end site), and ±0.1Kbp are shown. Clusters of specific 
SST1 loci are indicated to the right. Methylation frequency scale is on the left. (B,C) Heatmaps of PRO-seq 
density (heatmaps, reads per million) and average profile read density (top line graphs) grouped by aver-
age methylation levels (< and > 50%). Each element is scaled to a fixed size; standard error shading (70% 
opacity of respective line color), TSS (transcription start site), TES (transcription end site), and ±0.1Kbp are 
shown. (B) Heatmaps of PRO-seq density for BT2 default only (purple scale, reads per million both sense 
and antisense aggregated). (C) Heatmaps of PRO-seq density for all mapping methods, from left: Bowtie2 
(BT2) k-100; BT2 k-100 21nt k-mer filtered (locus level); BT2 default only (“best match” single locus); BT2 
k-100 dual 21nt k-mer filtered (read and locus filtered). BT2 default only corresponding to Fig. 3 are within 
a dotted box. Far right is the density of single copy 21nt k-mers across each element (grey scale, number 
of k-mers in sense and antisense aggregated) and average profiles (top line graphs).
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Fig. S26. SST1 CpG density. Box plots of SST1 repeats showing CG density distribution in (A) CpG 
density for SST1 repeats 500bp-2Kbp in length delineated by location and repeat density (centromer-
ic (CEN) vs non-centromeric (NONCEN), monomeric vs arrayed). (B) CpG density for SST1 repeats 
500bp-2Kbp in length, normalized by element length, delineated by location and density (monomeric 
vs arrayed, centromeric (CEN) vs non-centromeric (NONCEN).
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Fig. S27 (A). Overview of three-pronged repeat transcription pipeline. Two pipelines were 
developed to assess repeat transcription levels across the T2T-CHM13 genome, including 1) a map-
ping-dependent method relying on Bowtie2 and single copy  k-mers (11) (purple) and 2) a 
mapping independent method (teal, CASK; see below for details and fig. S28). Both methods are 
reliant upon having a genome assembly. Repeatmasker (orange) was simultaneously used to deter-
mine repeat content in the reads as a genome and mapping-independent method as per (43).  (B) 
Overview of methods used in this study to quantify expression of specific repeat elements. In this 
representation, 2 reads originating from the same locus L1 within a HOR region, and 1 read from 
another locus L2 within a HOR region are considered. Locus-level methods quantify expression 
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an upper bound (“over fit”) expression estimate at each locus. Bowtie2 k-mer-assisted or Bowtie2 default 
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Fig. S29. Mapping of repeats assayed by PRO-seq and RNA-seq. Profile of transcriptionally 
active repeats across Bowtie2 mapping methods for PRO-seq (Left) and RNA-seq (right) data 
shown as (A) percent of repeats transcribed, (B) number of repeats transcribed, and (C) Log 
transformed number of repeats transcribed.
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Fig. S30. Transcription of repeats assayed by PRO-seq and RNA-seq. (A) Percentage of reads 
assigned to repeat elements or rRNA by Bowtie2, CASK, and RepeatMasker (RM) in theT2T-CHM13 
PRO-seq and RNA-seq datasets (replicates combined). (B) Relative abundance of the 14 repeat 
classes defined in RMv2 (excluding rRNA), as quantified by Bowtie2, CASK, and RM. Six settings 
were used for Bowtie2 differing in the handling of multi-mappers: default (default Bowtie2 options, 
resulting in single alignment randomly chosen for multi-mappers); k-100 (-k-100 option, up to 100 
alignments chosen for multi-mappers); k-100 51mer (-k 100 option, but reads were post-filtered to 
overlap a genome-wide single copy 51-mer); k-100 locus-filt (-k-100 option, but reads were post-fil-
tered to overlap a genome-wide single copy 21-mer); k-100 read-filt (-k-100 option, but reads were 
post-filtered to contain a genome-wide single copy 21-mer); k-100 read + locus-filt (-k-100 option, but 
reads were post-filtered to contain and overlap a genome-wide single copy 21-mer).
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Fig. S31. Repeat transcription pipeline captures a range of upper and lower bounds. Raw read 
counts per repeat class (excluding rRNA and Rolling Circle (RC)) as quantified by Bowtie2 and CASK in the 
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Fig. S32. RepeatMasked PRO-seq reads across (A) cell types and a (B) HeLa time-course. Relative 
abundance of the 14 repeat classes defined in RMv2 (excluding rRNA) as quantified by RepeatMasker. 
While (A) reveals changes in relative repeat abundance between cell types, (B) reveals that within an 
individual cell line (HeLa) relative repeat abundance is highly consistent across time points with slight 
differences during Mitosis and 1hr post-Mitosis.
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Fig. S33. Repeat expression normalized to genome content. (A) Linear scaling between the 
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Repeat enrichment in the CHM13 transcriptome vs. T2T-CHM13 genome defined as the log2 ratio of 
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Fig. S35. Repeat enrichment by repeat family in cell specific transcriptomes (as per key, lower 
right) vs. T2T-CHM13 genome for (A) SINE, (B) LINE, (C) LTR, (D) DNA elements, and (E) Satellite 
repeat classes. Within each class, repeats are displayed by decreasing abundance (average expression 
across cell lines) from left to right, with the top 10 repeat families in each category shown. The repeat 
enrichment is defined as in fig. S33D. 
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Fig S38. Transcription and methylation profiles of embedded elements. (A) L1Hs and (B) AluY.  
Top Panel: PRO-seq density (purple scale, reads per million both sense and antisense aggregated) 
and average profiles (top line graphs, separated into sense and antisense read density) for TE 
subfamilies. All elements are anchored to the 3’ end, with a specified distance from the anchor (bottom 
left) into the element; standard error shading (70% opacity of respective line color), TSS (transcription 
start site), TES (transcription end site), and ±Kbp  are shown. A dotted line is included on the heatmap 
denoting the starting nt of each annotated element. HOR, dHOR and monomeric embeds are separat-
ed from all non-embedded elements (subsampled for AluY). Mapping methods (from left) are Bowtie2 
(BT2) k-100; BT2 k-100 21nt k-mer filtered (locus level); BT2 default only (“best match” single locus); 
BT2 k-100 dual 21nt k-mer filtered (read and locus filtered). BT2 default only are within a dotted box. 
Far right is the density of single copy 21nt k-mers across each element (grey scale, number of single 
copy k-mers in sense and antisense aggregated) and average profiles (top line graphs) for each TE 
subfamily.

Bottom panel: Violin plots of methylated CpGs for TEs grouped by their potential for mobility and 
compared across embedded categories (dHOR, HOR, monomeric) vs not embedded. 
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Fig. S43. WaluSat arrays flanking regions in the T2T-CHM13 genome. (A) Schematic representation of 
WaluSat arrays and TE insertions and 1.5 kb flanking regions annotated in T2T-CHM13. All flanking 
regions are organized in the same orientation for sake of analysis and schematic representations are 
scaled while WaluSat array representations are not to scale. Asterisks indicate sequences in inverted 
orientation for sake of analysis. Red dots indicate the presence of variable expanded WaluSat arrays. 
Sequence of Chromosome 3 AluSx-WaluSat is shown with putative TSDs. (B) Dotplot comparisons of 1.5 
kb of sequence from both and 3’ flanking regions show an absence of sequence identity in the most 
ancient WaluSat insertions on Chromosome 10 and Chromosome 3 positions. Darker shading indicates 
higher similarity shared along subsequences. Phylogenetic reconstruction used is based on Figure 5A.
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Fig S44. Phylogenetic analysis of the WaluSat monomer across primate lineages. ML analyses 
show the WaluSat sequences transduced by AluSx cluster together (main circle), as do the WaluSat 
monomers (Chromosomes 2, 3, 10, 13, 18, 21) monomers (boxed), which are found in Catarrhini and 
Hominoidea primates. Only the WaluSat monomer on T2T-CHM13 Chromosome 10 clusters with 
Hominoidea, Catarrhini, Platyrrhini, and Prosimians (zoom), indicating this locus is the progenitor of the 
satellite repeat. 
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Fig. S45. Phylogenetic analyses identify the transduction of WaluSat by an AluSx element 
in the last shared common ancestor with Hominoidea and Catarrhini. Phylogenetic tree 
showing relationships among primates (Hominoidea, Catarrhini, Platyrrhini, and Prosimians). All 
primates shown carry the WaluSat novel satellite sequence as a solo locus. Catarrhini and Homi-
noidea (orange branches) show evidence of transduction of WaluSat by an AluSx3 element. Copy 
numbers of the WaluSat are indicated by a proportional blue circle to the right of the branch (n = 
number of WaluSats in a tandem array). This provides evidence for a human specific amplification 
through the evolution of hominids.
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Fig. S46. Maximum-Likelihood tree derived from 71 AluSx elements associated with WaluSat monomeric 
or expanded arrays in Catarrhini.  Evolutionary origin and phylogenetic relationship of AluSx elements associ-
ated with WaluSat sequences are depicted as present in the Catarrhini common ancestor and having arisen at 
different times within Catarrhini lineage. The phylogenetic distribution of AluSx elements corroborates the 
hypothesis of an ancestral transduction event and recent expansion in human acrocentric chromosomes. The 
evolutionary history of AluSx elements was inferred by using the Maximum Likelihood method and T93 model. 
The tree with the highest log likelihood (-2155.25) is shown. All branches are labeled with the bootstrap values 
with n = 1000 replicates.
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Fig. S49. Kimura 2-parameter distance for (A) L1 and (B) SVA from T2T-CHM13 (histogram) and 
between source and offspring TE (red dots).
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Fig. S50. Frequency of transduction events (offspring only) across each chromosome in 
T2T-CHM13. Element is indicated by color as per key at top. 
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T2T-CHM13 for each repeat class (LINE, 5’ and 3’ SVA transduction events) as indicated.
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Fig. 4D-E.
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Fig. S53. ChrX density of L1 and Alu subfamilies across CHM13 and HG002. Subfamilies of L1s 
(LINE) and Alus (SINE) were grouped into general evolutionary age groups from youngest, including 
potentially mobile ones (L1HS, AluY), to oldest (L1M, AluJ). Counts of these grouped subfamilies were 
binned into Kbp windows across chrX in (A) T2T-CHM13 and (B) HG002 and are shown as Circos heat-
maps. Centromere blocks (including centromere transition regions) are denoted by grey bars, HORs are 
denoted by orange bars, and the portion of the PAR1 that remains unassembled in HG002 discordantis 
denoted in purple, all of which span all tracks. Tracks are numbered (1, 2, …) starting from the outer ring 
as indicated. In order to accurately compare density between the X’s, each L1 or Alu subfamily track is 
shown on the same scale (i.e. T2T-CHM13 L1Hs and HG002 L1Hs) with the scales for each subfamily 
group located below each set. At this resolution, Alus are depleted in centromeric regions, possibly due to 
their enrichment in genic regions (153), but are found enriched in the PAR1 region with increased AluY 
density closer to the telomere. In contrast, L1s have some of the highest density peaks at and around the 
centromere. 
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