Support Information

Strong Metal-Support Interactions Ni-CeO2 Effectively Improves the Performance of Molten Hydroxide

Direct Carbon Fuel Cell

Xiaofeng Li^{a,1}, Xiaohui Liu^{a,1}, Jiamao Hao^b, Lijun Li^a, Yanfang Gao^{a,*}, Yousong Gu^{b,*}, Zhenzhu Cao^a and Jinrong Liu^{a,**}

^a College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, P.R.

China

^b School of Materials Science and Engineering, University of Science and Technology Beijing, BeiJing, 100083, P.R. China

E-mail addresses: yf_gao@imut.edu.cn

Figure S1. The xrd patterns and photographs of sample Ni-CeO₂ under different Ni/Ce ratios.

Table S1 The mass contents of Ni in different samples were measured	l by	ICP	
---	------	-----	--

Sample	Sample contents (mg mL ⁻¹)	Ni (10 ⁻³ mg mL ⁻¹)	Ni (%)
0.5/Ni-CeO ₂	0.4	0.87	0.22
0.7/Ni-CeO ₂	0.4	1.23	0.31
$1.0/Ni-CeO_2$	0.4	4.27	1.07
1.5/Ni-CeO ₂	0.4	13.11	3.28
2.0/Ni-CeO ₂	0.4	16.79	4.20
$1.5/Ni@CeO_2$	0.4	21.03	5.26

Figure S2. Raman spectra of samples Ni-CeO₂ with different Ni/Ce ratios(a); Relative strength ratio (ID/IF2g, INi-Ce-O/IF2g) (b).

Figure S3. The TEM-EDS image of Ni-CeO₂; (a) EDS layered image; (b) Ce; (c) O; (d) Ni.

Figure S4. TEM and HRTEM images of Ni@CeO₂; (a) TEM and particle size distribution; (b), (c)

HRTEM.

Figure S5. SEM and EDS spectrum diagram (a) Ni@CeO₂; (b) Ni-CeO₂.

Figure S6. The chronopotentiometry curves of with and without Ni-CeO₂, respectively.

Figure S7. The electrochemical performance of MHDCFC at electrolyte NaOH-KOH (mole ratio of 1:1). (a) The *V-I-P* curves of different molar ratio of Ni-Ce. (b) .The *V-I-P* curves of different contents of Ni-CeO₂.

Figure S8. XPS survey spectra of different materials.