

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Early risk assessment in pediatric and adult household contacts of confirmed tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a prospective, non-interventional, longitudinal, multi-country cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060985
Article Type:	Protocol
Date Submitted by the Author:	11-Jan-2022
Complete List of Authors:	Marambire, Edson; Biomedical Research and Training Institute, Banze, Denise; Instituto Nacional de Saúde Mfinanga, Alfred; Mbeya Medical Research Centre Mutsvangwa, Junior; Biomedical Research Centre Mutsvangwa, Junior; Biomedical Research and Training Institute Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme Ntinginya, Nyanda; 6. National Institute of Medical Research-Mbeya Medical Research Centre Celso, Khosa; Instituto Nacional de Saúde Kallenius, Gunilla; Karolinska Institutet Calderwood, Claire J.; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases Geldmacher, Christof; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich ; German Center for Infection Research, Partner site Munich Held, Kathrin; University Hospital, Division of Infectious and Tropical Medicine, LMU Munich ; German Center for Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Held, Kathrin; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Rieß, Friedrich; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Panzner, Ursula; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Kranzer, Katharina; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases; Biomedical Research and Training Institute
Keywords:	Tuberculosis < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES, RESPIRATORY MEDICINE (see Thoracic Medicine)

1	
2	
3 4	
5	SCHOLAR ONE [™]
6	Manuacrinta
7	Manuscripts
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55	
56 57	
57	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Early risk assessment in pediatric and adult household contacts of confirmed
5 6 7	2	tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a
7 8 9	3	prospective, non-interventional, longitudinal, multi-country cohort study
10	4	
11 12 13	5	Edson Tawanda Marambire ^{1*} , Denise Banze ^{2\$} , Alfred Mfinanga ^{3\$} , Junior Mutsvangwa ¹ , Theodora
14	6	Mbunda ³ , Elias N. Nyanda ³ , Khosa Celso ² , Gunilla Kallenius ⁴ , Claire J. Calderwood ⁵ , Christof
15 16 17 18	7	Geldmacher ^{6,7} , Kathrin Held ^{6,7} , Tejaswi Appalarowthu ^{6,7} , Friedrich Rieß ^{6,7} , Ursula Panzner ^{6,7} , Norbert
18	8	Heinrich ^{6,7#} , Katharina Kranzer ^{1,5,6#} , on behalf of the ERASE-TB Consortium
19 20	9	
21 22	10	¹ Biomedical Research and Training Institute, Harare, Zimbabwe
23 24	11	² Instituto Nacional de Saúde, Marracuene, Mozambique
25 26	12	³ National Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
27 28	13	^₄ Karolinska Institute, Stockholm, Sweden
29 30	14	⁵ Faculty of Infectious and Tropical Diseases and Tuberculosis Centre, London School of Hygiene &
31	15	Tropical Medicine, London, UK
32 33 34	16	⁶ Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich,
35 36	17	Germany
37	18	7 German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
38 39	19	
40 41	20	*Corresponding author: Edson Tawanda Marambire; 8 Rose Avenue, Belgravia, Harare, Zimbabwe; e-
42 43	21	mail: edsonmarambire@gmail.com; phone: +263772286311
44 45	22	
46 47	23	\$ Contributed equally
48 49	24	# Contributed equally
50 51	25	
52 53	26	Word count: 3,254
54 55	27	
56 57	28	Keywords: Mycobacterium tuberculosis, diagnostics, cohort study, household contacts, WHO
58 59 60	29	END TB strategy, ERASE-TB

3	
4	
5 6 7	
7	
8	
9 10	
11	
12 13	
14	
13 14 15	
16	
16 17 18	
18 19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34 35	
35	
36 37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53 54	
55	
56	
57	
58 50	
59 60	
50	

30 ABSTRACT

31 Introduction

The World Health Organization (WHO) End-TB Strategy calls for the development of novel diagnostics to detect tuberculosis earlier and more accurately. Better diagnostics, together with tools to predict disease progression are critical for achieving WHO END-TB targets. The Early Risk Assessment in TB contactS by new diagnostic tEsts (ERASE-TB) study aims to evaluate novel diagnostics and testing algorithms for early tuberculosis diagnosis and accurate prediction of disease progression among household contacts exposed to confirmed index cases in Mozambigue, Tanzania and Zimbabwe.

39

40 Methods and analysis

A total of 2,100 household contacts (HHCs) (aged ≥10 years) of adults with microbiologically-41 42 confirmed pulmonary tuberculosis will be recruited and followed up at 6-month intervals for 18 to 24 months. At each time-point a WHO symptom screen and digital chest-radiograph (dCXR) 43 will be performed, and blood and urine samples collected. Individuals screening positive (WHO 44 45 symptom screen or dCXR) will be requested to provide sputum for Xpert MTB/Rif Ultra. At baseline, HHCs will also be screened for HIV, diabetes (HbA1c), chronic lung disease 46 (spirometry), hypertension and anaemia. Study outcomes will be co-prevalent tuberculosis 47 (diagnosed at enrollment), incident tuberculosis (diagnosed during follow-up) or no 48 49 tuberculosis at completion of follow up. Novel diagnostics will be validated using fresh and 50 biobanked samples with a nested case control design. Cases are defined as HHCs diagnosed with tuberculosis (for early diagnosis) or with incident tuberculosis (for prediction of 51 progression) and will be matched by age, sex and country to HHCs who remain healthy 52 53 (controls). Statistical analyses will include assessment of diagnostic accuracy by constructing 54 receiver operating curves and calculation of sensitivity and specificity.

56 Ethics and dissemination

ERASE-TB has been approved by regulatory and ethical committees in each African country and by each partner organisation. Consent, with additional assent for participants <18 years, is voluntary. Attestation by impartial witnesses is sought in case of illiteracy. Confidentiality of participants is being maintained throughout. Study findings will be presented at scientific conferences and published in peer-reviewed international journals.

Trial registration number

NCT04781257

1				
2 3 4	65	Strengths and limitations of this study		
5 6	66	Strengths		
7 8 9 10	67	• Recruitment of highly infectious index cases aimed at maximising the number of		
	68	tuberculosis (TB) diagnoses in the household contact (HHCs) cohort.		
11 12	69	• Sequencing of <i>Mycobacterium tuberculosis</i> isolates from both index cases and HHCs		
13 14 15	70	allows confirmation of household transmission and thus determination of timing of the		
15 16 17	71	transmission event; resulting in more precise estimates of new test sensitivity		
18 19	72	compared to population-based cohorts with unknown timing of infection.		
20 21	73	• Large sample size across three southern African countries with high HIV prevalence;		
22 23	74	including adolescents will ensure study findings are generalisable to the clinically		
24 25	75	relevant population at high risk of TB compared to studies focused on adults only.		
26 27	76			
28 29	77	Limitations		
30 31	78	• Despite the large cohort of HHCs, the number of diagnosed TB cases will be small,		
32 33 34	79	limiting the power of the study and sub-group analyses such as by age and HIV status.		
35	80	• Geographically limited to sub-Saharan Africa, therefore results may not be		
37	81	generalisable to other populations, including those with lower HIV prevalence such as		
39 40	82	in South-East Asia or the Americas.		
41 42				
43 44				
46				
48				
50				
52				
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	81	generalisable to other populations, including those with lower HIV prevalence such a		

83 INTRODUCTION

Tuberculosis (TB) remains a leading global public health problem, with an estimated 10 million new cases and 1.5 million deaths globally in 2020 [1]. In 2014, the World Health Assembly approved the World Health Organization (WHO) End-TB Strategy, aiming for a 90% reduction in TB incidence and 95% reduction in TB deaths by 2035 [2]. However, in 2019, three million TB cases ('the missing millions') remained undiagnosed and untreated globally, resulting in potentially avoidable morbidity, mortality and onward transmission. The Covid-19 pandemic has resulted in a large decrease in the number of people newly diagnosed with TB and reported. This has increased the diagnostic gap by a further 1.3 million, resulting in an estimated 4.2 million undiagnosed TB cases in 2020 [3]. Also, for the first time in a decade TB deaths have risen, from an estimated 1.4 million in 2019 to 1.5 million in 2020, as a result of reduced access to and provision of essential TB services including diagnostics during the Covid-19 pandemic.

97 Without an efficacious and safe vaccine, early detection and containment are the main tools 98 to interrupt transmission and successfully control TB. Similar to SARS-CoV2, asymptomatic 99 spreading of *M.tuberculosis* and subclinical but infectious disease states are a major concern 100 in the control of airborne infectious diseases [4]. Early and accurate identification of persons 101 with TB, combined with identification of those at risk of progression to TB and provision of 102 targeted preventive treatment are critical to reducing TB-associated morbidity and mortality, 103 and preventing onward transmission.

105 Currently available diagnostics such as sputum microscopy, mycobacterial culture and nucleic 106 acid amplification tests are based on direct pathogen detection, thus requiring a high 107 mycobacterial load; they therefore predominately target advanced TB when onward 108 transmission and significant lung damage has occurred [5,6]. Further, for many patients with 109 minimal or no symptoms, expectoration of high-quality sputum specimens remains

BMJ Open

challenging, limiting the accuracy of sputum-based tests. The same holds true for youngchildren and people living with HIV.

The Early **R**isk **A**ssessment in TB Contacts by new diagno**S**tic tEsts (ERASE-TB) study aims to fill this diagnostic gap by evaluating new sputum and non-sputum-based TB diagnostics for early TB detection (before onward transmission occurs), as well as tools for more accurate prediction of TB progression to allow for targeted preventive therapy.

- 3 117
- 118 METHODS AND ANALYSES

119 Study objectives

ERASE-TB's primary objectives are (I) to determine the sensitivity and specificity of novel diagnostics to detect TB, in particular asymptomatic or minimally symptomatic TB; (II) to evaluate novel diagnostics for detection of likely TB progression; and (III) to enhance the performance of novel diagnostics by simulating testing algorithms coupled with individual risk estimates from a mathematical model. The secondary objectives are (I) to determine the TB prevalence among household contacts (HHCs) of infectious TB index cases (ICs) at baseline and during a 18-24 months follow-up; (II) to establish a biorepository of cryopreserved specimens from HHCs for future development and validation of diagnostic tests; and (III) to assess the association of selected chronic disease conditions and TB among HHCs.

⁺³ 129

130 Study endpoints

The study's primary endpoints are the presence or development of TB among HHCs with the
 following possible scenarios of (I) prevalent symptomatic TB at baseline, (II) incident TB during
 follow-up, and (III) remained healthy until study completion. An endpoint review committee will
 review the data and case classification before finalization.

56 135

Through the sequencing of *Mycobacterium tuberculosis* (*Mtb*) isolates, cases of co-prevalent
 or incident TB will be classified either as secondary, infected by the source case – the timepoint

of infection will be known; or as infected by another, unknown source of infection, with anunknown timepoint of infection.

Recruitment sites

Recruitment of ICs and HHCs at selected primary healthcare facilities and communities has commenced in Harare, Zimbabwe in March 2021, Maputo, Mozambigue in August 2021, and Mbeya, Tanzania in September 2021. Partners of the ERASE-TB consortium are illustrated in Figure 1. All three countries have a high TB incidence ranging from 100 to 499/100,000 population [1] and HIV prevalence among adults aged 15 years and older of 5% to 20% [7]. The African research institutions have established collaborations with their respective National Tuberculosis Programs ensuring referral and approproate follow-up of TB patients. Figure 2 illustrates the geographic location of research institutions, healthcare facilities where recruitment is taking place, demographic characteristics of study populations, and estimates on TB incidence and HIV prevalence [8–15].

153 Study design

ERASE-TB is a non-interventional, longitudinal, prospective cohort study among HHCs aged ≥10 years exposed to highly infectious pulmonary TB ICs aged ≥18 years. Eligibility criteria are detailed in Figure 3 and the study design is shown in Figure 4. TB ICs are eligible if the bacterial load in their sputum is at least at the "medium" level according to Xpert MTB/RIF or Xpert MTB/RIF Ultra, and they have received less than seven daily doses of anti-TB treatment before enrollment. This maximises the likelihood of culturing and storing *Mtb* isolates. The total study duration will be 36 months. This includes 12-months enrollment of ICs and HHCs, and 18- to 24-months follow-ups of HHCs. Follow-up ends when a HHCs withdraws from the study, is lost to follow-up, dies, or is diagnosed with TB and referred for treatment. Scheduled or unscheduled unwell visits can be conducted physically and/or telephonically in case of abnormal finding e.g. by abnormal dCXR, or when a participant feels unwell inbetween scheduled follow-up visits.

2		
3 4	166	
5 6	167	Procedures
7 8	168	TB index cases
9 10	169	Following informed consent obtained, a questionnaire is administered to collect socio-
11 12	170	demographic information, TB risk factors, and the medical history of TB, HIV and other
13 14	171	diseases. Two spontaneous sputum samples are obtained, of which one is for mycobacterial
15 16	172	culturing and one for storage for performing retrospectively Molecular Bacterial Load Assay
17 18	173	(MBLA) to quantify viable Mtb by 16S rRNA [6]; an alternative means to quantify expectorated
19 20 21	174	bacterial load for an estimate of infectiousness. Both liquid and solid mycobacterial cultures
21 22 23	175	are performed on decontaminated sputum samples, with all Mtb isolates stored at -80 degrees
24 25	176	for future DNA extraction and whole genome sequencing. A questionnaire on symptom
26 27	177	duration and TB risk factors is also administered.
28 29	178	
30 31	179	Household key informant
32 33	180	At baseline, a household key informant (either the TB index case or one of the household
34 35	181	contacts) is identified and asked to answer questions of a household questionnaire that collects
36 37 38	182	socio-economic elements like structure of the house or flat, income and household assets, and
39 40	183	covariates possibly associated with risk of TB infection, e.g., windows/air exchange, presence
40 41 42	184	of comorbid conditions, and risk factors like the source of cooking energy, and properties of
43 44	185	the household kitchen.
45 46	186	
47 48	187	Household contacts
49 50	188	Informed consent is obtained from all eligible adult HHCs. For HHC <18 years of age, the
51 52	189	guardian is asked to provide informed consent, with assent also sought from children
53 54	190	dependent on local guidance. At baseline a questionnaire is administered collecting
55 56	191	information on socioeconomic and demographic characteristics, past medical history of TB,
57 58 59	192	HIV and other diseases, exposure risk factors, smoking and alcohol history. The physical
60	193	examination includes height, weight, mid-upper arm circumference and blood pressure

measurement. In addition, all HHCs are offered free HIV testing according to the National
Guidelines. All people with confirmed HIV infection will have CD4 counts performed and be
referred for TB preventive therapy. Those not yet on antiretroviral therapy (ART) and those
who interrupted ART are referred for ART at local services.

Point of care HbA1c (A1cCare, SD Biosensor, Gyeonggi-do, Republic of Korea) and haemoglobin (Hemocue 301+, Hemocue, Angelholm, Sweden) tests and spirometry (including pre- and post-bronchodilation with inhaled salbutamol) are performed at baseline or the sixmonth visit. HHCs who did not take up HIV testing or other screening at baseline are offered these tests at each study visit. Any HHCs with test results requiring treatment or further investigations are referred for respective services.

27 205

HHCs are screened for TB using the WHO symptom questionnaire and a digital chestradiograph (dCXR), reviewed by a clinical officer. dCXRs are not performed in pregnant HHCs.
HHCs with a positive WHO symptom screening and abnormal dCXR are asked to provide
sputum samples for TB investigations i.e., for GeneXpert and mycobacterial culture. Those
with negative symptom screen and normal dCXR are asked to provide a spontaneous sputum
sample for storage (with sputum induction performed if required).

41 212

At baseline, urine, serum, plasma, whole blood (native, and with RNA preservation in PAXgene[®] tubes [BD Biosciences, NJ, USA]) are stored. A finger-prick sample is taken and investigated using the Xpert TB Host Response RUO Prototype cartridge (Cepheid, Sunnyvale, CA, USA). T-cell Activation Marker Tuberculosis (TAM-TB) assay and Interferon Gamma Release Assay (IGRA; STANDARDTM F TB-Feron FIA (IFN-gamma; SD Biosensor, Republic of Korea), are performed on fresh venous blood. In Tanzania and Mozambigue, storage of peripheral blood mononuclear cells for later characterization of the TB-specific immune response is also performed.

Procedures for follow-up and unwell visits are similar to those at baseline. Measurement of HIV status, haemoglobin, HbA1c, spirometry, CD4 count and IGRA testing are not performed at follow-up visits, unless not done previously. At the last scheduled visit all HHCs not known to have HIV are re-offered HIV testing and a spontaneous or induced sputum sample is stored for all participants.

, 1 227

228 Household contacts screening positive for TB symptoms and/or with a DCXR 229 suggestive of TB

HHCs screening positive for symptoms and/or those with DCXRs suggestive of TB are asked for a sputum sample, which is investigated using Xpert MTB/RIF Ultra (Cepheid). If this sample is positive for *Mtb* (including a trace result), a minimum of two additional sputum samples are investigated, following decontamination, with Xpert MTB/RIF Ultra, solid and liquid culture. Isolates stored from these cultures will be sequenced for matching with the IC isolates in order to verify intra-household transmission. Sputum induction is performed for those unable to provide a spontaneous sputum sample. HHCs with microbiologically confirmed TB are referred for TB treatment to the National TB Programme.

7 238

239 Patient and public involvement

The ERASE-TB study sites have established Community Advisory Boards, which are voices of communities, people affected, and study participants, providing a strategic link between the communities and the study team. Community Advisory Boards meet regularly and provide feedback on design, procedures and conduct of the study. They will also be closely involved in the dissemination of study results. In addition to the Community Advisory Boards, each study site conducts community engagement activities focused on young people with the aim to foster interst in science and research, specififcally in the field of respiratory diseases/illness. This includes close partnership with schools and universities. Furthermore, planned qualitative research will specifically aim to understand the perceptions of HHCs with regards to TB diagnostics and screening.

1 2		
- 3 4	250	
5 6	251	Sample size
7 8	252	An estimated 800 to 900 TB-confirmed ICs are required for the subsequent enrollment of an
9 10	253	anticipated 2,100 HHCs, i.e., 700 HHCs per country. Loss to follow-up of HHCs is estimated
11 12	254	to be 10%. A total of 64 HHCs (3%) are estimated to be diagnosed with TB during the study
13 14	255	period, based on previous active case finding studies among HHCs [16].
15 16	256	
17 18	257	Novel test candidates
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	258	A range of novel test candidates targeted at pathogen detection or identification of host
	259	responses to Mtb are being applied, either in real-time (for all participants) or retrospectively
	260	(in a case-control design). Whilst a number of novel test candidates have been pre-specified,
	261	the ERASE-TB biobanking processes allow for addition of further candidate tests to be
	262	evaluated on stored samples as they become available.
	263	
	264	DCXRs offer good sensitivity for diagnosis of pulmonary TB. However, high inter- and intra-
	265	investigator variability, and lack of trained interpreters present a barrier to implementation in
36 37	266	many high-TB burden settings. Computer-aided interpretation systems, such as CAD4TB
38 39	267	(Delft Imaging, Hertogenbosch, Netherlands) and qXR (Qure.ai, India) may increase image-
40 41 42	268	reading capacity, with good performance, and serve, therefore, as a systematic screening tool
43 44	269	to identify individuals in need of confirmatory TB tests [17,18].
45 46	270	
47 48	271	Xpert MTB/RIF Ultra is a nucleic acid amplification test for <i>Mtb</i> with a lower limit of detection
49 50	272	compared to the previous Xpert MTB/RIF generation, and, therefore, conferring higher
51 52	273	sensitivity in paucibacillary specimens. This, however, comes at the expense of specificity,
53 54	274	particularly in high TB incidence settings, resulting in 'false positives' [19]. WHO guidelines
55 56	275	recommend Xpert MTB/RIF Ultra for TB diagnosis among adults and children acknowledging
57 58	276	that further evaluation, particularly of the role of Xpert MTB/RIF Ultra for TB screening, is
59 60	277	needed [20,21].

BMJ Open

FLOW-TB is an advanced enzyme-linked immunosorbent assay for the detection of Mtb lipoarabinomannan (a mycobacterial cell wall component) in urinary specimens with results available within 65 minutes [22].

The T-cell activation marker-TB assay (TAM-TB) detects Mtb-specific CD4 T-cells through in-vitro antigen stimulation with Mtb-derived peptides, i.e., from ESAT-6 and CFP-10, followed by flow cytometry. TAM-TB discriminated latent Mtb infection from TB in freshly collected blood with 83% sensitivity and 96-98% specificity in previous studies. Further, TAM-TB may detect early TB disease progression up to 9 months prior to the identification of *Mtb* in sputum [23– 25].

Multiple transcriptomic signatures, capturing the host response to TB, have been described as promising candidate tests for earlier TB diagnosis (up to two years before microbiological diagnosis). An individual patient data meta-analysis suggested equivalent performance of eight signatures, with 25-40% sensitivity and 92-95% specificity 0-24 months before TB diagnosis. Diagnostic accuracy of each signature improved as the interval between testing and microbiological TB diagnosis shortened [26]. Several signatures have been developed into polymerase chain reaction (PCR)-based assays to facilitate real-time implementation: the recent CORTIS trial reported sensitivity of 48% and specificity of 75% for incipient TB for the RISK-11 signature [27]. Cepheid have developed a 3-transcript TB score into a fully automated in-cartridge PCR assay performed on finger-prick blood using the Xpert platform (Xpert TB Host Response RUO Prototype cartridge). This cartridge will be evaluated using freshly collected specimens in ERASE-TB; storage of RNA-stabilised blood samples also allows for retrospective evaluation of additional transcriptomic signatures in our cohort [28,29]

An alternative approach to capture the host response to TB is through protein-based biomarker signatures. Candidate tests in this category include a serum- or plasma-based multiplex assay assessing 13 protein biomarkers (CRP, procalcitonin[30], sTREM-1[31,32], angiopoietin2[33,34], interleukin-6[35], TRAIL[36] and IP-10[37]) that is being developed by the London
School of Hygiene and Tropical Medicine; in additon, a seven biomarker signauture is under
development as a point-of-care test for TB diagnosis, with 94% sensitivity and 73% specificity
detected in previous work [38].

14 311

312 Statistical analyses

Baseline characteristics and analytical data will be summarized using descriptive statistics inclusive of mean, median, range, standard deviation, and absolute as well as relative frequencies depending on the nature of data. A logistic regression model will be used to identify characteristics of TB among ICs, households and HHCs that are predictive of incident TB. From the study database, we will simulate algorithms of different tests to obtain the testing combination with the best accuracy. We will couple tests with a mathematical model that guantifies the risk of infection and/or disease to enhance predictive performance. The reporting of the development of the prediction model will follow the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative [39].

The validation of novel diagnostic tests for detecting TB will be analysed as a 1:4 matched nested case-control study with HHCs diagnosed with TB at baseline and during follow-up serving as cases, and HHCs who do not develop TB during follow-up as controls; controls will be matched for site, age, sex, HIV status and other risk factors for developing TB. Sensitivity and specificity of novel tests will be determined using pre-existing positive/negative cut-offs where these exist; and receiver operating curves (ROC) constructed with area under the ROC curve calculated. For tests aiming to identify individuals at high risk of TB in the future, only HHCs who are diagnosed with TB during follow-up will serve as cases (i.e. those diagnosed with TB at baseline will be excluded). Stored samples from all timepoints will be retrieved and diagnostic accuracy (i.e. sensitivity and specificity) of the novel test determined at different

BMJ Open

3 4 5 6 7 8 9 10 11 23 4 5 9 10 11 23 24 25 26 27 28 9 30 12 23 24 5 26 27 28 9 31 23 34 5 37 8 9 40 41 22 23 24 5 26 27 28 9 30 12 33 34 5 37 8 9 40 11 20 21 22 23 24 5 26 27 28 9 30 21 22 23 24 5 26 27 28 9 30 21 22 23 24 5 26 27 28 29 30 21 22 23 24 5 26 27 28 29 30 20 20 20 20 20 20 20 20 20 20 20 20 20	333	time-points before TB diagnosis. The decision of assigning the "active TB" endpoints to
	334	participants will be blinded from the new test results to avoid inclusion bias.
	335	
	336	Data management
	337	All source data will be kept confidential in secured locations with restricted access by
	338	authorized personnel only inclusive of monitors, auditors and reviewers of ethical and
	339	regulatory committees in line with applicable data privacy regulations. Each participant is
	340	asked to consent to this handling of the data, and is assigned a pseudonymous identification
	341	number that is used throughout the study on all source data.
	342	
	343	Accurate documentation of paper-based and electronic source data, e.g., original records and
	344	certified copies of original records, progress notes, screening logs, and recorded data from
	345	automated instruments, will be maintained. The pseudonymized clinical data captured on
	346	paper-based Case Report Forms will be entered at the sites into a database using the web-
	347	based Clinical Data Management System of OpenClinica (OpenClinica LLC, Waltham, MA,
	348	USA). The study specific database has been built, maintained and hosted by the LMU Klinikum
	349	on a centralized secure server. Data modifications and necessary corrections performed in the
	350	database also within the context of double data entry will be documented and tracked in audit
	351	trails. Data quality and plausibility are assured by a series of pre-programmed edit and range
43 44	352	checks in OpenClinica. Further validation checks are programmed in Stata (Statacorp, College
45 46 47 48 49 50 51 52 53 54 55 56	353	Station, TX, USA) with extracts of the database and electronically received data, e.g.,
	354	spirometry, dCXR and laboratory, will be integrated into analyses of datasets.
	355	
	356	Monitoring
	357	Assigned study monitors will visit the sites at regular intervals physically and/or virtually in
	358	addition to frequent day-to-day communication. Close follow-up on all study-related aspects
57 58 59	359	will be performed to ascertain compliance with standards of Good Clinical Practice, the
60	360	Declaration of Helsinki, and other local and national regulatory guidelines inclusive of

guidelines for infection prevention and control of airborne-transmitted diseases, e.g., social distancing in well-ventilated spaces, and wearing of personal protective equipment. In particular, monitors that support designated study personnel are responsible to verify (I) adequacy of the study personnels' qualifications and facilities, (II) accuracy of informed consent procedures and patient eligibility, (III) adherence to the study protocol, (IV) protection of rights and well-being of participants, (V) adherence to infection prevention and control measures (VI) accuracy and completeness of study documents and other study-related records, and (VII) maintenance of source documents.

370 Ethics and dissemination

The study protocol and informed consent/assent documents have been approved by regulatory and ethical committees of the participating institutions. This includes the Medical Research Council in Zimbabwe, the National Health Research Ethics Committee in Tanzania, the National Bioethics for Health Committee in Mozambique, and the ethical committees of London School of Hygiene & Tropical Medicine, United Kingdom, and the medical faculty of the Ludwig-Maximilians-Universität München, Germany.

37 377

 Adult ICs and HHCs are asked for written informed consent prior to their participation. Underage HHCs are asked for assent in addition to obtaining the consent of their legal guardians/parents; with ages for assent depending on local guidance. In case of illiteracy, the participant is asked to give its consent by fingerprint while an adult impartial, literate witness present during the entire consent procedure signs the consent on behalf. All participants have the right to withdraw from the study at any time. Findings derived from ERASE-TB will be presented at scientific conferences, and published in peer-reviewed international journals.

54 385

386 Current study status

The recruitment of ICs and HHCs is in progress in Zimbabwe, Mozambique and Tanzania
 since March, August and September 2021, respectively. The follow-up of HHCs is anticipated

BMJ Open

3 4 5 6	389	to be completed in March, August and September 2023 in Zimbabwe, Mozambique and
	390	Tanzania, respectively; laboratory analyses are estimated to be performed by December 2024.
7 8	391	
9 10	392	Author contributions
11 12 13 14 15 16 17	393	The study proposal and protocol were written by NH, KK with scientific input from CK, TM, CG,
	394	JM. ETM, UP, DB, AM wrote the initial manuscript with scientific input on the database and
	395	data management section from FR, TA. NH, KK critically reviewed the initial draft of the
17 18 19	396	manuscript. KH, GK, CJC, ENN, TA, provided critical feedback on the manuscript. All authors
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	397	have read and approved the final version of the manuscript.
	398	
	399	Funding statement
	400	ERASE-TB is part of the EDCTP2 programme supported by the European Union (grant
	401	number RIA2018D-2508-ERASE-TB), the German Center for Infection Research (DZIF) grant
	402	number: 02.710 and the Swedish Research Council (220-23602). CJC is funded by the
	403	Wellcome Trust (203905/Z/16/Z). Cepheid, Inc., and SD Biosensor provided test kits and
	404	analyzers at no cost to the Consortium.
	405	
	406	Acknowledgments
	407	We are grateful to the study personnel from the Biomedical Research and Training Institute
	408	and the Zvitambo Research Institute, Zimbabwe, the Instituto Nacional de Saúde,
45 46	409	Mozambique, and the National Institute for Medical Research - Mbeya Medical Research
47 48 49 50 51 52 53 54	410	Centre, Tanzania for their exceptional efforts and contributions, which made this research
	411	possible.
	412	
	413	Consortium authorship
55 56	414	The following are members of the ERASE-TB consortium: Anna Shepherd ^a , Hazel M Dockrell ^a ,
57 58 59	415	Judith Bruchfeld ^b , Christopher Sundling ^b , Charles Sandy ^c , Mishelle Mugava ^c , Tsitsi
59 60	416	Bandason ^c , Martha Chipinduro ^c , Kuda Mutasa ^d , Sandra Rukobo ^d , Lwitiho Sudi ^e , Antelmo

2		
- 3 4	417	Haulee, Emmanuel Sichonee, Paschal Qwaraye, Bariki Mtafyae, Harrieth Mwambolae, Lilian
5 6 7 8 9 10 11 12 13 14	418	Minjae, Issa Sabie, Peter Edwine, Dogo Ngalisone, Stella Luswemae, Willyhelmina Olomie,
	419	Doreen Pamba ^e , Simeon Mwanyonga ^e , Celina Nhamuave ^f , António Machiana ^f , Carla Madeira ^f ,
	420	Emelva Manhiça ^f , Nádia Sitoe ^f , Jorge Ribeiro ^f , Christof Geldmacher ^g , Andrea Rachow ^g , Olena
	421	Ivanova ⁹ , Laura Olbrich ⁹ , Elmar Saathoff ⁹ , Michael Hoelscher ⁹ .
	422	
15 16	423	^a Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School
17 18 10	424	of Hygiene & Tropical Medicine, London, UK
19 20	425	^b Karolinska Institute, Stockholm, Sweden
21 22 23	426	°Biomedical Research and Training Institute, Harare, Zimbabwe
24 25 26 27 28 29 30 31 32 33 34 35	427	^d Zvitambo Research Institute, Harare, Zimbabwe
	428	^e National Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
	429	fInstituto Nacional de Saúde, Marracuene, Mozambique
	430	^g Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich,
	431	Munich, Germany
	432	Munich, Germany Competing interests statement
36 37	433	Competing interests statement
38 39 40	434	None declaired.
41 42	435	Disclaimer Not applicable.
43 44	436	Disclaimer
45 46	437	Not applicable.
47		
48 49		
50		
51		
52		
53		
54		
55		
56		
57		
58 59		
59 60		

2			
3	438	Refe	erences
4	439		
5	440	1	Global tuberculosis report 2021.
6	441		https://www.who.int/publications/i/item/9789240037021 (accessed 28 Oct 2021).
7	442	2	The end TB STraTegy global strategy and targets for tuberculosis prevention, care
8	443		and control after 2015 a. Published Online First:
9 10	444		2014.https://www.who.int/tb/strategy/End_TB_Strategy.pdf (accessed 28 Oct 2021).
10	445	3	WHO. Global Tuberculosis Report.
12	446		2020.https://www.who.int/publications/i/item/9789240013131 (accessed 31 Jul 2021).
13	447	4	Snider B, Patel B, McBean E. Asymptomatic Cases, the Hidden Challenge in
14	448		Predicting COVID-19 Caseload Increases. Infect Dis Reports 2021, Vol 13, Pages
15	449		340-347 2021; 13 :340–7. doi:10.3390/IDR13020033
16	450	5	TB Disease - Symptoms, treatment & prevention - TBFacts. https://tbfacts.org/tb-
17	451		disease/ (accessed 28 Aug 2021).
18	452	6	Honeyborne I, McHugh TD, Phillips PPJ, <i>et al.</i> Molecular Bacterial Load Assay, a
19	453		Culture-Free Biomarker for Rapid and Accurate Quantification of Sputum
20	454		Mycobacterium tuberculosis Bacillary Load during Treatment. J Clin Microbiol
21	455	_	2011; 49 :3905. doi:10.1128/JCM.00547-11
22	456	7	UNIAIDS. UNAIDS Global AIDS Update. 2021.
23 24	457		https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf
24	458	•	(accessed 28 Oct 2021).
26	459	8	ZIMBABWE POPULATION CENSUS 2012 WOMEN AND MEN PROFILE SUMMARY
27	460		REPORT. Published Online First: 2016.https://www.zimstat.co.zw/wp-
28	461		content/uploads/publications/Social/Gender/Women-and-Men-Report-2012.pdf
29	462	0	(accessed 15 Oct 2021).
30	463	9	Tanzania Census 2012 - Dashboard. http://dataforall.org/dashboard/tanzania/
31	464 465	10	(accessed 15 Oct 2021). ZIMBABWE POPULATION-BASED HIV IMPACT ASSESSMENT ZIMPHIA 2020 KEY
32	465	10	
33	466 467		FINDINGS. https://phia.icap.columbia.edu/wp-content/uploads/2020/11/ZIMPHIA- 2020-Summary-Sheet Web.pdf (accessed 3 Sep 2021).
34	468	11	Xadregue H, Maunze A, Dade M, <i>et al.</i> IV RECENSEAMENTO GERAL DA
35 36	469		POPULAÇÃO E HABITAÇÃO. 2017.http://www.ine.gov.mz/iv-rgph-
37	470		2017/mocambique/censo-2017-brochura-dos-resultados-definitivos-do-iv-rgph-
38	471		nacional.pdf (accessed 31 Jul 2021).
39	472	12	Population of Cities in Zimbabwe (2021).
40	473	. –	https://worldpopulationreview.com/countries/cities/zimbabwe (accessed 3 Aug 2021).
41	474	13	World atlas. https://knoema.com/atlas/United-Republic-of-Tanzania. (accessed 26 Jul
42	475		2021).
43	476	14	Prevalence of HIV, total (% of population ages 15-49) Data.
44	477		https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS?locations=ZW (accessed 3 Aug
45	478		2021).
46	479	15	Incidence of tuberculosis (per 100,000 people) - Zimbabwe Data.
47	480		https://data.worldbank.org/indicator/SH.TBS.INCD?locations (accessed 3 Aug 2021).
48 49	481	16	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of
49 50	482		Tuberculosis in Vietnam. N Engl J Med 2018;378:221–9.
51	483		doi:10.1056/NEJMOA1700209
52	484	17	Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for
53	485		triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence
54	486		algorithms. Lancet Digit Heal 2021;3:e543–54. doi:10.1016/S2589-7500(21)00116-3
55	487	18	MacPherson P, Webb EL, Kamchedzera W, et al. Computer-aided X-ray screening for
56	488		tuberculosis and HIV testing among adults with cough in Malawi (the PROSPECT
57	489		study): A randomised trial and cost-effectiveness analysis. <i>PLoS Med</i> 2021; 18 :1–17.
58	490		doi:10.1371/journal.pmed.1003752
59	491	19	Dorman S, Schumacher S, Alland D, et al. Xpert MTB/RIF Ultra for detection of
60	492		Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre
	493		diagnostic accuracy study. Lancet Infect Dis 2018; 18 :76–84. doi:10.1016/S1473-
1			

2			
3	494		3099(17)30691-6
4	495	20	WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of
5	496	20	Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Published Online First:
6	497		2017.http://apps.who.int/bookorders. (accessed 19 Oct 2021).
7	498	21	World Health Organization. WHO consolidated guidelines on tuberculosis: Module 2:
8	499	21	Screening. 2021.https://www.who.int/publications/i/item/9789240022676 (accessed 9
9	500		Dec 2021).
10	500	22	Hamasur B, Bruchfeld J, van Helden P, <i>et al.</i> A sensitive urinary lipoarabinomannan
11	502	22	test for tuberculosis. <i>PLoS One</i> 2015; 10 . doi:10.1371/JOURNAL.PONE.0123457
12	502	23	Portevin D, Moukambi F, Clowes P, <i>et al.</i> Assessment of the novel T-cell activation
13	503 504	20	marker-tuberculosis assay for diagnosis of active tuberculosis in children: a
14	505		prospective proof-of-concept study. Lancet Infect Dis 2014; 14 :931–8.
15	506		doi:10.1016/S1473-3099(14)70884-9
16 17	507	24	Schuetz A, Haule A, Reither K, <i>et al.</i> Monitoring CD27 expression to evaluate
17	508	27	Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo. <i>PLoS One</i>
19	509		2011; 6 . doi:10.1371/JOURNAL.PONE.0027284
20	510	25	Ahmed MIM, Ntinginya NE, Kibiki G, <i>et al.</i> Phenotypic Changes on Mycobacterium
21	511	20	Tuberculosis-Specific CD4 T Cells as Surrogate Markers for Tuberculosis Treatment
22	512		Efficacy. Front Immunol 2018;9:2247. doi:10.3389/FIMMU.2018.02247/BIBTEX
23	513	26	Gupta RK, Turner CT, Venturini C, <i>et al.</i> Concise whole blood transcriptional
24	514	20	signatures for incipient tuberculosis: a systematic review and patient-level pooled
25	515		meta-analysis. Lancet Respir Med 2020;8:395–406.
26	516		doi:http://dx.doi.org/10.1016/S2213-2600%2819%2930282-6
27	517	27	Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, <i>et al.</i> Biomarker-guided tuberculosis
28	518	21	preventive therapy (CORTIS): a randomised controlled trial. <i>Lancet Infect Dis</i>
29	519		2021; 21 :354–65. doi:10.1016/S1473-3099(20)30914-2/ATTACHMENT/EB270186-
30	520		669A-4F82-8A80-FB38FA1FB796/MMC1.PDF
31	521	28	Warsinske H, Rao A, Moreira F, <i>et al.</i> Assessment of Validity of a Blood-Based 3-
32	522	20	Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease
33 34	523		Severity, and Treatment Response. <i>JAMA Netw open</i> 2018; 1 :e183779.
34 35	524		doi:10.1001/JAMANETWORKOPEN.2018.3779
36	525	29	Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of
37	526		pulmonary tuberculosis: a multicohort analysis. <i>Lancet Respir Med</i> 2016; 4 :213–24.
38	527		doi:10.1016/S2213-2600(16)00048-5
39	528	30	Mendelson F, Griesel R, Tiffin N, et al. C-reactive protein and procalcitonin to
40	529	•••	discriminate between tuberculosis, Pneumocystis jirovecii pneumonia, and bacterial
41	530		pneumonia in HIV-infected inpatients meeting WHO criteria for seriously ill: a
42	531		prospective cohort study. BMC Infect Dis 2018;18. doi:10.1186/S12879-018-3303-6
43	532	31	Huang C, Lee L, Ho C, et al. High serum levels of procalcitonin and soluble TREM-1
44	533		correlated with poor prognosis in pulmonary tuberculosis. J Infect 2014;68:440-7.
45	534		doi:10.1016/J.JINF.2013.12.012
46	535	32	Feng J, Su W, Pan S, et al. Role of TREM-1 in pulmonary tuberculosis patients-
47	536		analysis of serum soluble TREM-1 levels. Sci Rep 2018;8. doi:10.1038/S41598-018-
48	537		26478-2
49 50	538	33	Kumar NP, Velayutham B, Nair D, et al. Angiopoietins as biomarkers of disease
50 51	539		severity and bacterial burden in pulmonary tuberculosis. Int J Tuberc Lung Dis
52	540		2017; 21 :93. doi:10.5588/IJTLD.16.0565
53	541	34	Kathamuthu G, Moideen K, Baskaran D, et al. Tuberculous lymphadenitis is
54	542		associated with altered levels of circulating angiogenic factors. Int J Tuberc Lung Dis
55	543		2018; 22 :557–66. doi:10.5588/IJTLD.17.0609
56	544	35	Sivro A, McKinnon L, Yende-Zuma N, et al. Plasma Cytokine Predictors of
57	545		Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
58	546		infected Individuals from Durban, South Africa. Clin Infect Dis 2017;65:819-26.
59	547		doi:10.1093/CID/CIX357
60	548	36	La Manna M, Orlando V, Li Donni P, et al. Identification of plasma biomarkers for
	549		discrimination between tuberculosis infection/disease and pulmonary non tuberculosis

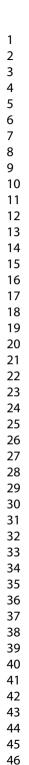
1			
2 3			disease RISCOM 2010-12 dei:10.1271/IOUDNAL DONE 0102664
4	550 551	37	disease. <i>PLoS One</i> 2018; 13 . doi:10.1371/JOURNAL.PONE.0192664 Sivro A, McKinnon L, Yende-Zuma N, <i>et al.</i> Plasma Cytokine Predictors of
5	552	01	Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
6	553		infected Individuals from Durban, South Africa. <i>Clin Infect Dis</i> 2017; 65 :819–26.
7	554		doi:10.1093/CID/CIX357
8 9	555	38	Chegou NN, Sutherland JS, Malherbe S, et al. Diagnostic performance of a seven-
10	556		marker serum protein biosignature for the diagnosis of active TB disease in African
11	557 559		primary healthcare clinic attendees with signs and symptoms suggestive of TB. <i>Thorax</i> 2016; 71 :785–94. doi:10.1136/thoraxjnl-2015-207999
12	558 559	39	Collins GS, Reitsma JB, Altman DG, <i>et al.</i> Transparent reporting of a multivariable
13 14	560	00	prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
14	561		Statement. BMC Med 2015;13:1–10. doi:10.1186/S12916-014-0241-Z/TABLES/1
16	562	40	Agency ZS. QUALITY CONTROL MANUAL Provincial Report Harare Central Census
17	563		Office. https://www.zimstat.co.zw/wp-
18 19	564 565		content/uploads/publications/Population/population/Harare.pdf (accessed 3 Aug 2021).
20	565 566	41	Mozambique Population 2021 (Demographics, Maps, Graphs).
21	567		https://worldpopulationreview.com/countries/mozambique-population (accessed 27 Jul
22	568		2021).
23	569	42	ZIMBABWE NATIONAL HIV/AIDS AND TUBERCULOSIS CONTROL
24 25	570		PROGRAMMES. Republic of Zimbabwe NATIONAL HIV/AIDS AND TUBERCULOSIS
26	571 572		CONTROL PROGRAMMES. https://www.who.int/hiv/pub/guidelines/zimbabwe.pdf (accessed 1 Sep 2021).
27	572		(accessed 1 Sep 2021).
28	574		
29 30			
31			
32			
33			
34 35			
36			
37			
38 39			
40			
41			
42			
43 44			
44			
46			
47			
48 49			
49 50			
51			
52			
53 54			
54 55			
56			
57			
58 59			
59 60			
00			

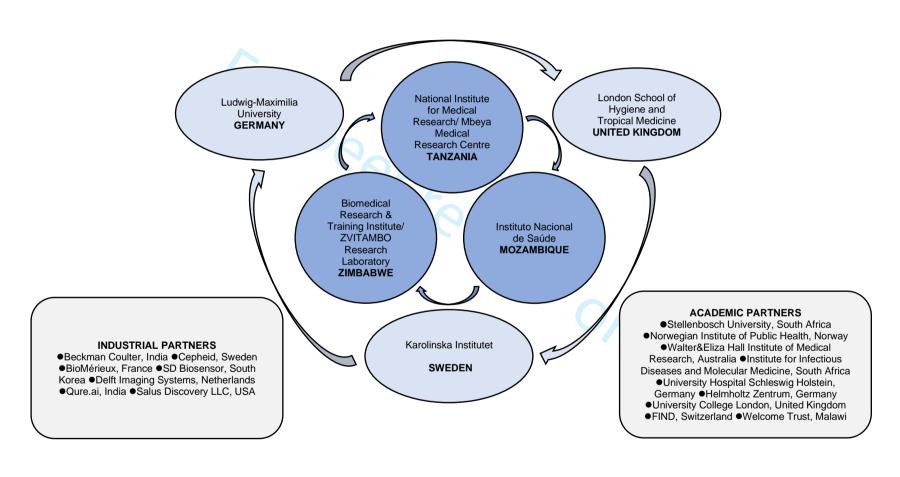
1 2		
2 3 4	575	Figure legend
5	576	Figure 1. The ERASE-TB consortium
7 8	577	Abbreviations: ERASE-TB=Early Risk Assessment in TB contactS by new diagnostic tEsts
9 10	578	
11 12	579	Figure 2. Location and characteristics of ERASE-TB study sites
13 14 15 16	580	Notes: The location of each study site is indicated by a red asterix. Source data used within
	581	this figure are taken from the references [7,8,41,42,9–15,40].
17 18	582	Abbreviations: ERASE=Early Risk Assessment in TB contactS by new diagnostic tEsts;
19 20 21	583	TB=tuberculosis; HIV=human immunodeficiency virus
21 22 23	584	
24 25	585	Figure 3. Eligibility criteria and schedules of events for index cases and household contacts
26 27	586	Notes: A=depending on the time point of study enrollment and consequently on the duration
28 29	587	available for follow-up, i.e. 18 or 24 months, the follow-up visit at 24 months ± 30 days may be
30 31	588	conditional; B =the follow-up visit by phone may be conducted after the last scheduled follow-
32 33	589	up visit at 18 months ± 30 days or 24 months ± 30 days to assess whether symptoms suggestive
34 35	590	of TB have occurred, TB diagnosis has been made or anti-TB treatment has been initiated;
36 37	591	C=unwell visits by phone or on-site may be conducted between scheduled follow-up visits if a
38 39 40	592	participant presents at a recruitment healthcare facility with signs and symptoms suggestive of
40 41 42	593	TB; D =coached spontaneous or induced sputum collection for storage at scheduled follow-up
43 44	594	visit at 18 months \pm 30 days or 24 months \pm 30 days, and for repetition of HIV testing if tested
45 46	595	negative at baseline; E=coached spontaneous or induced sputum collection upon the decision
47 48	596	of the investigating team for testing by Xpert MTB/RIF Ultra if participant presents with signs
49 50	597	and symptoms suggestive of TB; F=coached spontaneous or induced sputum collection in
51 52	598	case of Xpert MTB/RIF Ultra positivity or strong clinical suspicion of TB for repetition of the
53 54	599	Xpert MTB/RIF Ultra; $G=$ in case of HIV positivity to be followed by the assessment of CD4
55 56 57	600	counts; H=CXR to be conducted at an unscheduled on-site unwell visit upon the decision of
57 58 59	601	the investigating team depending on the nature of symptoms reported, and the time elapsed
60	602	since the last CXR including its findings; I=not to be conducted among pregnant women;

Page 23 of 27

BMJ Open

J=stored venous blood includes 6mL EDTA blood for whole blood and plasma, 4mL serum and 2.5mL PAXgene blood, all samples will be deep frozen for retrospective testing using new diagnostics as described in text; **K**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required an unscheduled on-site or home visit will be arranged by phone, the resolution of symptoms can alternatively be addressed by phone; L=collection of PBMC at baseline and follow-up visit at 6 months ±30 days is optional, thus will not be performed at each participating site and for each participant; **M**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required or doubtful if required an unscheduled unwell visit by phone will be arranged, the resolution of symptoms can alternatively be addressed by phone; N=spirometry and/or diabetes (HbA1c) will be performed at scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if required or not performed at baseline, anaemia (Hb) will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if possible; **O**=blood pressure measurement will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days; P=WGS to be performed once Mtb infection is confirmed and an isolate could be recovered.

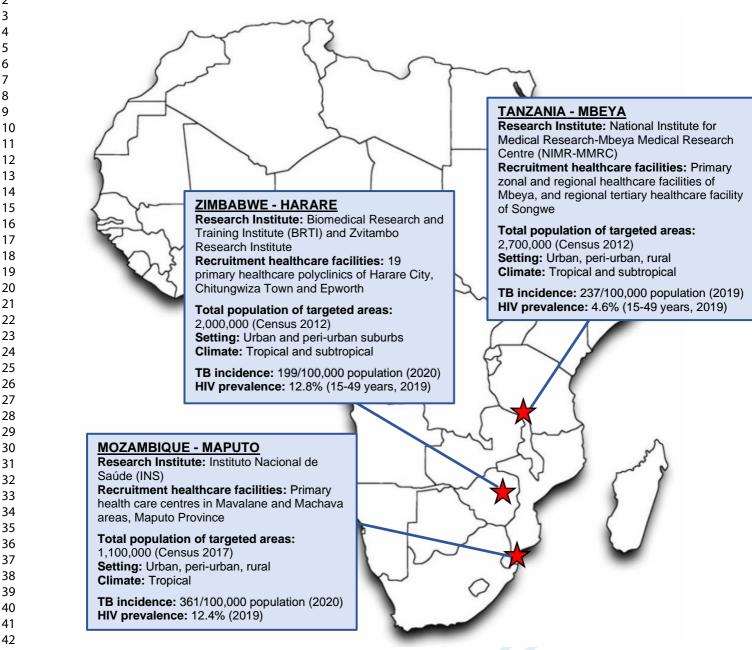
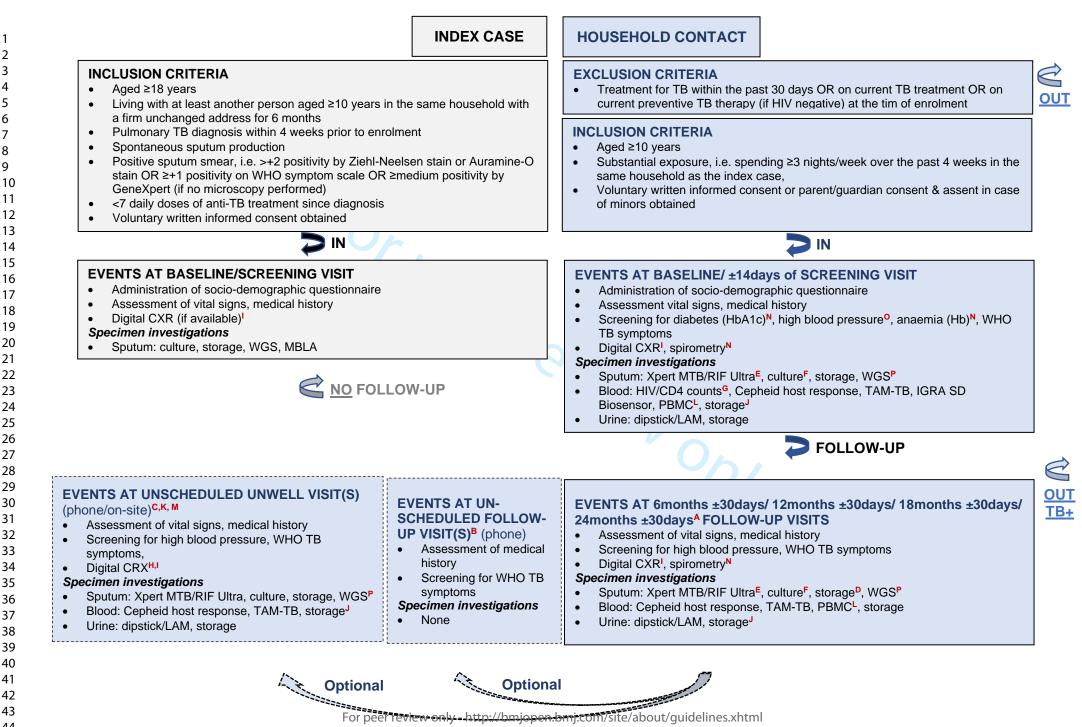

Abbreviations: TB=tuberculosis; WHO=World Health Organization; HIV=human immunodeficiency virus; WGS=whole genome sequencing; MBLA=molecular bacterial load assay; CXR=chest radiograph; IGRA=interferon gamma release assay; PBMC=peripheral blood mononuclear cell; TAM-TB=T- cell activation marker tuberculosis; MTB=Mycobacterium tuberculosis; RIF=rifampicin, Hb=haemoglobin; HbA1c=glycated hemoglobin; LAM=lioparabinomannan; CD4=cluster of differentiation 4

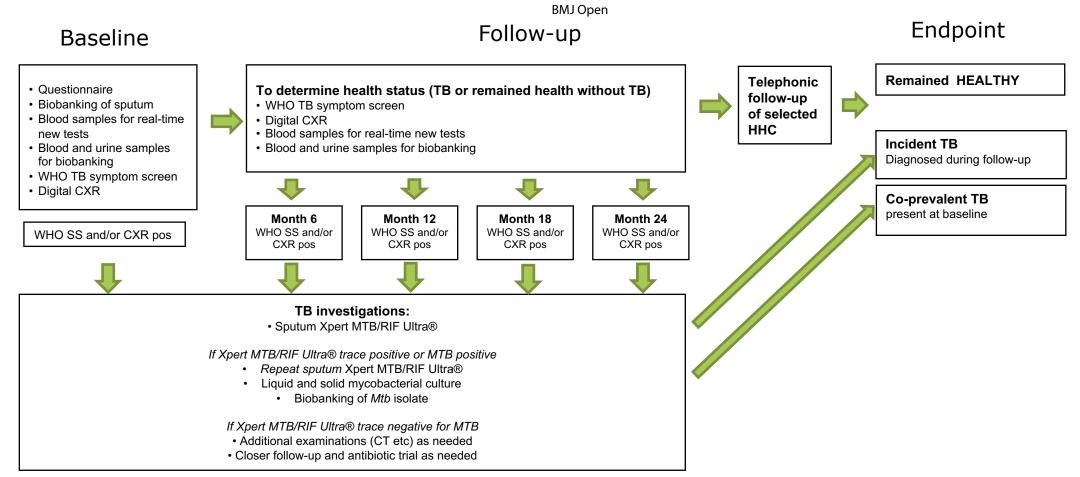

Figure 4. Study design

Abbreviations: HHC=household contact; TB=tuberculosis; IC=index case; WHO=World

Health Organization; CXR= chest radiograph; SS=symptom score; MTB=Mycobacterium

tuberculosis; RIF=rifampicin; pos=positive; CT=cpmputer tomography; FU=follow-up


Figure 2. Location and characteristics of ERASE-TB study sites

 BMJ Open

Figure 3. Eligibility criteria and schedules of events for index cases and household contacts

LOSSE AN

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Early risk assessment in pediatric and adult household contacts of confirmed tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a prospective, non-interventional, longitudinal, multi-country cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060985.R1
Article Type:	Protocol
Date Submitted by the Author:	31-May-2022
Complete List of Authors:	Marambire, Edson; Biomedical Research and Training Institute, Banze, Denise; Instituto Nacional de Saúde Mfinanga, Alfred; Mbeya Medical Research Centre Mutsvangwa, Junior; Biomedical Research and Training Institute Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme Ntinginya, Nyanda; 6. National Institute of Medical Research-Mbeya Medical Research Centre Celso, Khosa; Instituto Nacional de Saúde Kallenius, Gunilla; Karolinska Institutet Calderwood, Claire J.; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases Geldmacher, Christof; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich ; German Center for Infection Research, Partner site Munich Held, Kathrin; University Hospital, Division of Infectious and Tropical Medicine, LMU Munich ; German Center for Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Appalarowthu, Tejaswi; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Rieß, Friedrich; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Rieß, Friedrich; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Kranzer, Katharina; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases; Biomedical Research and Training Institute
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Diagnostics, Infectious diseases

Keywords: Tuberculosis < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES, RESPIRATORY MEDICINE (see Thoracic Medicine)
SCHOLARONE [™]
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Early risk assessment in pediatric and adult household contacts of confirmed
5 6 7	2	tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a
7 8 9	3	prospective, non-interventional, longitudinal, multi-country cohort study
10	4	
11 12 13	5	Edson Tawanda Marambire1*, Denise Banze2\$, Alfred Mfinanga3\$, Junior Mutsvangwa1, Theodora
14	6	Mbunda ³ , Elias N. Nyanda ³ , Khosa Celso ² , Gunilla Kallenius ⁴ , Claire J. Calderwood ⁵ , Christof
15 16 17	7	Geldmacher ^{6,7} , Kathrin Held ^{6,7} , Tejaswi Appalarowthu ^{6,7} , Friedrich Rieß ^{6,7} , Ursula Panzner ^{6,7} , Norbert
18	8	Heinrich ^{6,7#} , Katharina Kranzer ^{1,5,6#} , on behalf of the ERASE-TB Consortium
19 20	9	
21 22	10	¹ Biomedical Research and Training Institute, Harare, Zimbabwe
23 24	11	² Instituto Nacional de Saúde, Marracuene, Mozambique
25 26	12	³ National Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
27 28	13	^₄ Karolinska Institute, Stockholm, Sweden
28 29 30	14	⁵ Faculty of Infectious and Tropical Diseases and Tuberculosis Centre, London School of Hygiene &
31	15	Tropical Medicine, London, UK
32 33 34	16	⁶ Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich,
35 36	17	Germany
37	18	⁷ German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
38 39 40	19	
40 41	20	*Corresponding author: Edson Tawanda Marambire; 8 Rose Avenue, Belgravia, Harare, Zimbabwe; e-
42 43	21	mail: edsonmarambire@gmail.com; phone: +263772286311
44 45	22	
46 47	23	\$ Contributed equally
48 49	24	# Contributed equally
50 51	25	
52 53	26	Word count: 3,668
54 55	27	
56 57	28	Keywords: Mycobacterium tuberculosis, diagnostics, cohort study, household contacts, WHO
58 59 60	29	END TB strategy, ERASE-TB

3	
4	
5	
6 7	
/ ጸ	
9	
5 6 7 8 9 10 11 12 13 14 15	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
34 35	
36	
36 37 38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

30 ABSTRACT

31 Introduction

The World Health Organization (WHO) End-TB Strategy calls for the development of novel diagnostics to detect tuberculosis earlier and more accurately. Better diagnostics, together with tools to predict disease progression are critical for achieving WHO END-TB targets. The Early Risk Assessment in TB contactS by new diagnostic tEsts (ERASE-TB) study aims to evaluate novel diagnostics and testing algorithms for early tuberculosis diagnosis and accurate prediction of disease progression among household contacts exposed to confirmed index cases in Mozambigue, Tanzania and Zimbabwe.

39

40 Methods and analysis

A total of 2,100 household contacts (HHCs) (aged ≥10 years) of adults with microbiologically-41 42 confirmed pulmonary tuberculosis will be recruited and followed up at 6-month intervals for 18 to 24 months. At each time-point a WHO symptom screen and digital chest-radiograph (dCXR) 43 will be performed, and blood and urine samples collected. Individuals screening positive (WHO 44 45 symptom screen or dCXR) will be requested to provide sputum for Xpert MTB/Rif Ultra. At baseline, HHCs will also be screened for HIV, diabetes (HbA1c), chronic lung disease 46 (spirometry), hypertension and anaemia. Study outcomes will be co-prevalent tuberculosis 47 (diagnosed at enrollment), incident tuberculosis (diagnosed during follow-up) or no 48 49 tuberculosis at completion of follow up. Novel diagnostics will be validated using fresh and 50 biobanked samples with a nested case control design. Cases are defined as HHCs diagnosed with tuberculosis (for early diagnosis) or with incident tuberculosis (for prediction of 51 progression) and will be matched by age, sex and country to HHCs who remain healthy 52 53 (controls). Statistical analyses will include assessment of diagnostic accuracy by constructing 54 receiver operating curves and calculation of sensitivity and specificity.

56 Ethics and dissemination

ERASE-TB has been approved by regulatory and ethical committees in each African country and by each partner organisation. Consent, with additional assent for participants <18 years, is voluntary. Attestation by impartial witnesses is sought in case of illiteracy. Confidentiality of <text> participants is being maintained throughout. Study findings will be presented at scientific conferences and published in peer-reviewed international journals.

Study registration number

NCT04781257

1		
2 3 4	65	Strengths
5 6	66	• Recruitment of highly infectious index cases aimed at maximising the number of
7 8	67	tuberculosis (TB) diagnoses in the household contact (HHCs) cohort.
9 10	68	• Sequencing of Mycobacterium tuberculosis isolates from both index cases and HHCs
11 12	69	allows confirmation of household transmission and thus determination of timing of the
13 14	70	transmission event; resulting in more precise estimates of new test sensitivity
15 16 17	71	compared to population-based cohorts with unknown timing of infection.
17 18 19	72	• Large sample size across three southern African countries with high HIV prevalence;
20 21	73	including adolescents will ensure study findings are generalisable to the clinically
22 23	74	relevant population at high risk of TB compared to studies focused on adults only.
24 25	75	
26 27	76	Limitations
28 29	77	• Despite the large cohort of HHCs, the number of diagnosed TB cases will be small,
30 31	78	limiting the power of the study and sub-group analyses such as by age and HIV status.
32 33 34	79	• Geographically limited to sub-Saharan Africa, therefore results may not be
35 36	80	generalisable to other populations, including those with lower HIV prevalence such as
37 38	81	in South-East Asia or the Americas.
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52 53		
53 54		

82 INTRODUCTION

Tuberculosis (TB) remains a leading global public health problem, with an estimated 10 million new cases and 1.5 million deaths globally in 2020 [1]. In 2014, the World Health Assembly approved the World Health Organization (WHO) End-TB Strategy, aiming for a 90% reduction in TB incidence and 95% reduction in TB deaths by 2035 [2]. However, in 2019, three million TB cases ('the missing millions') remained undiagnosed and untreated globally, resulting in potentially avoidable morbidity, mortality and onward transmission. The Covid-19 pandemic has resulted in a large decrease in the number of people newly diagnosed with TB and reported. This has increased the diagnostic gap by a further 1.3 million, resulting in an estimated 4.2 million undiagnosed TB cases in 2020 [3]. Also, for the first time in a decade TB deaths have risen, from an estimated 1.4 million in 2019 to 1.5 million in 2020, as a result of reduced access to and provision of essential TB services including diagnostics during the Covid-19 pandemic.

Without an efficacious and safe vaccine, early detection and containment are the main tools to interrupt transmission and successfully control TB. Similar to SARS-CoV2, asymptomatic spreading of *M.tuberculosis* and subclinical but infectious disease states are a major concern in the control of airborne infectious diseases [4]. Early and accurate identification of persons with TB, combined with identification of those at risk of progression to TB and provision of targeted preventive treatment are critical to reducing TB-associated morbidity and mortality, and preventing onward transmission.

104 Currently available diagnostics such as sputum microscopy, mycobacterial culture and nucleic 105 acid amplification tests are based on direct pathogen detection, thus requiring a high 106 mycobacterial load; they therefore predominately target advanced TB when onward 107 transmission and significant lung damage has occurred [5,6]. Further, for many patients with 108 minimal or no symptoms, expectoration of high-quality sputum specimens remains

BMJ Open

challenging, limiting the accuracy of sputum-based tests. The same holds true for young children and people living with HIV.

The Early Risk Assessment in TB Contacts by new diagnoStic tEsts (ERASE-TB) study aims to fill this diagnostic gap by evaluating new sputum and non-sputum-based TB diagnostics for early TB detection (before onward transmission occurs), as well as tools for more accurate prediction of TB progression to allow for targeted preventive therapy.

- METHODS AND ANALYSES

Study objectives

ERASE-TB's primary objectives are (I) to determine the sensitivity and specificity of novel diagnostics to detect TB, in particular asymptomatic or minimally symptomatic TB; (II) to evaluate novel diagnostics for detection of likely TB progression; and (III) to enhance the performance of novel diagnostics by simulating testing algorithms coupled with individual risk estimates from a mathematical model. The secondary objectives are (I) to determine the TB prevalence among household contacts (HHCs) of infectious TB index cases (ICs) at baseline and during a 18-24 months follow-up; (II) to establish a biorepository of cryopreserved specimens from HHCs for future development and validation of diagnostic tests; and (III) to assess the association of selected chronic disease conditions and TB among HHCs.

Study endpoints

The study's primary endpoints are the presence or development of TB among HHCs with the following possible scenarios of (I) prevalent symptomatic TB at baseline, (II) incident TB during follow-up, and (III) remained healthy until study completion. An endpoint review committee will review the data and case classification before finalization.

Through the sequencing of Mycobacterium tuberculosis (Mtb) isolates, cases of co-prevalent or incident TB will be classified either as secondary, infected by the source case - the timepoint

of infection will be known; or as infected by another, unknown source of infection, with anunknown timepoint of infection.

Recruitment sites

Recruitment of ICs and HHCs at selected primary healthcare facilities and communities has commenced in Harare, Zimbabwe in March 2021, Maputo, Mozambigue in August 2021, and Mbeya, Tanzania in September 2021. Partners of the ERASE-TB consortium are illustrated in Figure 1. All three countries have a high TB incidence ranging from 100 to 499/100,000 population [1] and HIV prevalence among adults aged 15 years and older of 5% to 20% [7]. The African research institutions have established collaborations with their respective National Tuberculosis Programs ensuring referral and approproate follow-up of TB patients. Figure 2 illustrates the geographic location of research institutions, healthcare facilities where recruitment is taking place, demographic characteristics of study populations, and estimates on TB incidence and HIV prevalence [8–15].

152 Study design

ERASE-TB is a non-interventional, longitudinal, prospective cohort study among HHCs aged ≥10 years exposed to highly infectious pulmonary TB ICs aged ≥18 years. Eligibility criteria are detailed in Figure 3 and the study design is shown in Figure 4. TB ICs are eligible if the bacterial load in their sputum is at least at the "medium" level according to Xpert MTB/RIF or Xpert MTB/RIF Ultra, and they have received less than seven daily doses of anti-TB treatment before enrollment. This maximises the likelihood of culturing and storing *Mtb* isolates. The total study duration will be 36 months. This includes 12-months enrollment of ICs and HHCs, and 18- to 24-months follow-ups of HHCs. Follow-up ends when a HHCs withdraws from the study, is lost to follow-up, dies, or is diagnosed with TB and referred for treatment. Scheduled or unscheduled unwell visits can be conducted physically and/or telephonically in case of abnormal finding e.g. by abnormal dCXR, or when a participant feels unwell inbetween scheduled follow-up visits.

2 3		
3 4 5	165	
6 7	166	Procedures
8 9	167	TB index cases
10 11	168	Following informed consent obtained, a questionnaire is administered to collect socio-
12 13 14	169	demographic information, TB risk factors, and the medical history of TB, HIV and other
	170	diseases. Two spontaneous sputum samples are obtained, of which one is for mycobacterial
15 16	171	culturing and one for storage for performing retrospectively Molecular Bacterial Load Assay
17 18	172	(MBLA) to quantify viable Mtb by 16S rRNA [6]; an alternative means to quantify expectorated
19 20	173	bacterial load for an estimate of infectiousness. Both liquid and solid mycobacterial cultures
21 22	174	are performed on decontaminated sputum samples, with all Mtb isolates stored at -80 degrees
23 24 25	175	for future DNA extraction and whole genome sequencing. A questionnaire on symptom
26 27	176	duration and TB risk factors is also administered.
28 29	177	
30 31	178	Household key informant
32 33	179	At baseline, a household key informant (either the TB index case or one of the household
34 35 36 37 38	180	contacts) is identified and asked to answer questions of a household questionnaire that collects
	181	socio-economic elements like structure of the house or flat, income and household assets, and
39 40	182	covariates possibly associated with risk of TB infection, e.g., windows/air exchange, presence
41 42	183	of comorbid conditions, and risk factors like the source of cooking energy, and properties of
43 44	184	the household kitchen.
45 46	185	
47 48	186	Household contacts
49 50	187	Informed consent is obtained from all eligible adult HHCs. For HHC <18 years of age, the
51 52	188	guardian is asked to provide informed consent, with assent also sought from children
53 54	189	dependent on local guidance. At baseline a questionnaire is administered collecting
55 56 57	190	information on socioeconomic and demographic characteristics, past medical history of TB,
57 58 59	191	HIV and other diseases, exposure risk factors, smoking and alcohol history. The physical
60	192	examination includes height, weight, mid-upper arm circumference and blood pressure

measurement. In addition, all HHCs are offered free HIV testing according to the National
Guidelines. All people with confirmed HIV infection will have CD4 counts performed and be
referred for TB preventive therapy. Those not yet on antiretroviral therapy (ART) and those
who interrupted ART are referred for ART at local services.

Point of care HbA1c (A1cCare, SD Biosensor, Gyeonggi-do, Republic of Korea) and haemoglobin (Hemocue 301+, Hemocue, Angelholm, Sweden) tests and spirometry (including pre- and post-bronchodilation with inhaled salbutamol) are performed at baseline or the sixmonth visit. HHCs who did not take up HIV testing or other screening at baseline are offered these tests at each study visit. Any HHCs with test results requiring treatment or further investigations are referred for respective services.

26 204

HHCs are screened for TB using the WHO symptom questionnaire and a digital chestradiograph (dCXR), reviewed by a clinical officer. dCXRs are not performed in pregnant HHCs.
HHCs with a positive WHO symptom screening and abnormal dCXR are asked to provide
sputum samples for TB investigations i.e., for GeneXpert and mycobacterial culture. Those
with negative symptom screen and normal dCXR are asked to provide a spontaneous sputum
sample for storage (with sputum induction performed if required).

41 211

At baseline, urine, serum, plasma, whole blood (native, and with RNA preservation in PAXgene[®] tubes [BD Biosciences, NJ, USA]) are stored. A finger-prick sample is taken and investigated using the Xpert TB Host Response RUO Prototype cartridge (Cepheid, Sunnyvale, CA, USA). T-cell Activation Marker Tuberculosis (TAM-TB) assay and Interferon Gamma Release Assay (IGRA; STANDARDTM F TB-Feron FIA (IFN-gamma; SD Biosensor, Republic of Korea), are performed on fresh venous blood. In Tanzania and Mozambigue, storage of peripheral blood mononuclear cells for later characterization of the TB-specific immune response is also performed.

Procedures for follow-up and unwell visits are similar to those at baseline. Measurement of HIV status, haemoglobin, HbA1c, spirometry, CD4 count and IGRA testing are not performed at follow-up visits, unless not done previously. At the last scheduled visit all HHCs not known to have HIV are re-offered HIV testing and a spontaneous or induced sputum sample is stored for all participants.

Household contacts screening positive for TB symptoms and/or with a DCXR suggestive of TB

HHCs screening positive for symptoms and/or those with DCXRs suggestive of TB are asked for a sputum sample, which is investigated using Xpert MTB/RIF Ultra (Cepheid). If this sample is positive for *Mtb* (including a trace result), a minimum of two additional sputum samples are investigated, following decontamination, with Xpert MTB/RIF Ultra, solid and liquid culture. Isolates stored from these cultures will be sequenced for matching with the IC isolates in order to verify intra-household transmission. Sputum induction is performed for those unable to provide a spontaneous sputum sample. HHCs with microbiologically confirmed TB are referred for TB treatment to the National TB Programme.

Patient and public involvement

The ERASE-TB study sites have established Community Advisory Boards, which are voices of communities, people affected, and study participants, providing a strategic link between the communities and the study team. Community Advisory Boards meet regularly and provide feedback on design, procedures and conduct of the study. They will also be closely involved in the dissemination of study results. In addition to the Community Advisory Boards, each study site conducts community engagement activities focused on young people with the aim to foster interst in science and research, specififcally in the field of respiratory diseases/illness. This includes close partnership with schools and universities. Furthermore, planned qualitative research will specifically aim to understand the perceptions of HHCs with regards to TB diagnostics and screening.

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 0 21 22 23 24 25 26 27 28 29 30 31 32 33 43 5 36 37 38 9 40 41 42	249	
	250	Sample size
	251	An estimated 800 to 900 TB-confirmed ICs are required for the subsequent enrollment of an
	252	anticipated 2,100 HHCs, i.e., 700 HHCs per country. Loss to follow-up of HHCs is estimated
	253	to be 10%. A total of 64 HHCs (3%) are estimated to be diagnosed with TB during the study
	254	period, based on previous active case finding studies among HHCs [16]. Validation for
	255	subclinical and early TB will include incident (n=49) and co-prevalent TB cases (n=15).
	256	Validation for detection of incipient <i>M.tb</i> infection will include samples of participants with
	257	incident TB (n=49) matched 1:4 to samples of participants without TB (n=196). For tests
	258	diagnosing incipient <i>M.tb</i> infection sensitivities of 73% and 82% would be detected with a
	259	precision of 59-85% and 68-91% respectively. For specifcities of 92% and 94% the confidence
	260	intervals would be 87-95% and 90-97%.
	261	
	262	Novel test candidates
	263	A range of novel test candidates targeted at pathogen detection or identification of host
	264	responses to Mtb are being applied, either in real-time (for all participants) or retrospectively
	265	(in a case-control design). Whilst a number of novel test candidates have been pre-specified,
	266	the ERASE-TB biobanking processes allow for addition of further candidate tests to be
	267	evaluated on stored samples as they become available.
43 44	268	
45 46	269	DCXRs offer good sensitivity for diagnosis of pulmonary TB. However, high inter- and intra-
47 48	270	investigator variability, and lack of trained interpreters present a barrier to implementation in
49 50	271	many high-TB burden settings. Computer-aided interpretation systems, such as CAD4TB
51 52	272	(Delft Imaging, Hertogenbosch, Netherlands) and qXR (Qure.ai, India) may increase image-
53 54	273	reading capacity, with good performance, and serve, therefore, as a systematic screening tool
55 56 57	274	to identify individuals in need of confirmatory TB tests [17,18].
57 58 59 60	275	

Page 13 of 29

BMJ Open

276 Xpert MTB/RIF Ultra is a nucleic acid amplification test for *Mtb* with a lower limit of detection 277 compared to the previous Xpert MTB/RIF generation, and, therefore, conferring higher 278 sensitivity in paucibacillary specimens. This, however, comes at the expense of specificity, 279 particularly in high TB incidence settings, resulting in 'false positives' [19]. WHO guidelines 280 recommend Xpert MTB/RIF Ultra for TB diagnosis among adults and children acknowledging 281 that further evaluation, particularly of the role of Xpert MTB/RIF Ultra for TB screening, is 282 needed [20,21].

FLOW-TB is an advanced enzyme-linked immunosorbent assay for the detection of *Mtb* lipoarabinomannan (a mycobacterial cell wall component) in urinary specimens with results available within 65 minutes [22].

The T-cell activation marker-TB assay (TAM-TB) detects Mtb-specific CD4 T-cells through *invitro* antigen stimulation with *Mtb*-derived peptides, i.e., from ESAT-6 and CFP-10, followed by flow cytometry. TAM-TB discriminated latent *Mtb* infection from TB in freshly collected blood with 83% sensitivity and 96-98% specificity in previous studies. Further, TAM-TB may detect early TB disease progression up to 9 months prior to the identification of *Mtb* in sputum [23– 25].

l 294

Multiple transcriptomic signatures, capturing the host response to TB, have been described as promising candidate tests for earlier TB diagnosis (up to two years before microbiological diagnosis). An individual patient data meta-analysis suggested equivalent performance of eight signatures, with 25-40% sensitivity and 92-95% specificity 0-24 months before TB diagnosis. Diagnostic accuracy of each signature improved as the interval between testing and microbiological TB diagnosis shortened [26]. Several signatures have been developed into polymerase chain reaction (PCR)-based assays to facilitate real-time implementation: the recent CORTIS trial reported sensitivity of 48% and specificity of 75% for incipient TB for the RISK-11 signature [27]. Cepheid have developed a 3-transcript TB score into a fully automated

in-cartridge PCR assay performed on finger-prick blood using the Xpert platform (Xpert TB
 Host Response RUO Prototype cartridge). This cartridge will be evaluated using freshly
 collected specimens in ERASE-TB; storage of RNA-stabilised blood samples also allows for
 retrospective evaluation of additional transcriptomic signatures in our cohort [28,29]

An alternative approach to capture the host response to TB is through protein-based biomarker signatures. Candidate tests in this category include a serum- or plasma-based multiplex assay assessing 13 protein biomarkers (CRP, procalcitonin[30], sTREM-1[31,32], angiopoietin-2[33,34], interleukin-6[35], TRAIL[36] and IP-10[37]) that is being developed by the London School of Hygiene and Tropical Medicine; in additon, a seven biomarker signauture is under development as a point-of-care test for TB diagnosis, with 94% sensitivity and 73% specificity detected in previous work [38].

^o 316

317 Statistical analyses

Baseline characteristics and analytical data will be summarized using descriptive statistics inclusive of mean, median, range, standard deviation, and absolute as well as relative frequencies depending on the nature of data. A logistic regression model will be used to identify characteristics of TB among ICs, households and HHCs that are predictive of incident TB. From the study database, we will simulate algorithms of different tests to obtain the testing combination with the best accuracy. We will couple tests with a mathematical model that quantifies the risk of infection and/or disease to enhance predictive performance. The reporting of the development of the prediction model will follow the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative [39].

The validation of novel diagnostic tests for detecting TB will be analysed as a 1:4 matched nested case-control study with HHCs diagnosed with TB at baseline and during follow-up serving as cases, and HHCs who do not develop TB during follow-up as controls; controls will be matched for site, age, sex, HIV status and other risk factors for developing TB. Sensitivity Page 15 of 29

BMJ Open

and specificity of novel tests will be determined using pre-existing positive/negative cut-offs where these exist [40]; and receiver operating curves (ROC) constructed with area under the ROC curve calculated. For tests aiming to identify individuals at high risk of TB in the future, only HHCs who are diagnosed with TB during follow-up will serve as cases (i.e. those diagnosed with TB at baseline will be excluded). Stored samples from all timepoints will be retrieved and diagnostic accuracy (i.e. sensitivity and specificity) of the novel test determined at different time-points before TB diagnosis. The decision of assigning the "active TB" endpoints to participants will be blinded from the new test results to avoid inclusion bias.

Data management

All source data will be kept confidential in secured locations with restricted access by authorized personnel only inclusive of monitors, auditors and reviewers of ethical and regulatory committees in line with applicable data privacy regulations. Each participant is asked to consent to this handling of the data, and is assigned a pseudonymous identification number that is used throughout the study on all source data.

Accurate documentation of paper-based and electronic source data, e.g., original records and certified copies of original records, progress notes, screening logs, and recorded data from automated instruments, will be maintained. The pseudonymized clinical data captured on paper-based Case Report Forms will be entered at the sites into a database using the web-based Clinical Data Management System of OpenClinica (OpenClinica LLC, Waltham, MA, USA). The study specific database has been built, maintained and hosted by the LMU Klinikum on a centralized secure server. Data modifications and necessary corrections performed in the database also within the context of double data entry will be documented and tracked in audit trails. Data quality and plausibility are assured by a series of pre-programmed edit and range checks in OpenClinica. Further validation checks are programmed in Stata (Statacorp, College Station, TX, USA) with extracts of the database and electronically received data, e.g., spirometry, dCXR and laboratory, will be integrated into analyses of datasets.

1		
2 3 4	360	
5 6	361	Monitoring
7 8	362	Assigned study monitors will visit the sites at regular intervals physically and/or virtually in
9 10	363	addition to frequent day-to-day communication. Close follow-up on all study-related aspects
11 12	364	will be performed to ascertain compliance with standards of Good Clinical Practice, the
13 14	365	Declaration of Helsinki, and other local and national regulatory guidelines inclusive of
15 16	366	guidelines for infection prevention and control of airborne-transmitted diseases, e.g., social
17 18	367	distancing in well-ventilated spaces, and wearing of personal protective equipment. In
19 20	368	particular, monitors that support designated study personnel are responsible to verify (I)
21 22	369	adequacy of the study personnels' qualifications and facilities, (II) accuracy of informed
23 24 25	370	consent procedures and patient eligibility, (III) adherence to the study protocol, (IV) protection
26 27	371	of rights and well-being of participants, (V) adherence to infection prevention and control
28 29	372	measures (VI) accuracy and completeness of study documents and other study-related
30 31	373	records, and (VII) maintenance of source documents.
32 33	374	
34 35	375	Ethics and dissemination
36 37	376	The study protocol and informed consent/assent documents have been approved by regulatory
38 39	377	and ethical committees of the participating institutions [Medical Research Council in Zimbabwe
40 41	378	(MRCZ/A/2618), the National Health Research Ethics Committee in Tanzania (TMDA-
42 43	379	WEB0021/CTR/0004/03), the National Bioethics Committee for Health in Mozambique
44 45 46	380	(541/CNBS/21), and the ethical committees of London School of Hygiene & Tropical Medicine,
40 47 48	381	United Kingdom (22522-2), and the medical faculty of the Ludwig-Maximilians-Universität
48 49 50	382	München, Germany (20-0771)].
51	383	

53 Adult ICs and HHCs are asked for written informed consent prior to their participation. 384 54 55 Underage HHCs are asked for assent in addition to obtaining the consent of their legal 385 56 57 386 guardians/parents; with ages for assent depending on local guidance. In case of illiteracy, the 58 59 60 participant is asked to give its consent by fingerprint while an adult impartial, literate witness 387

BMJ Open

present during the entire consent procedure signs the consent on behalf. All participants have the right to withdraw from the study at any time. Findings derived from ERASE-TB will be presented at scientific conferences, and published in peer-reviewed international journals.

Current study status

The recruitment of ICs and HHCs is in progress in Zimbabwe, Mozambique and Tanzania since March, August and September 2021, respectively. The follow-up of HHCs is anticipated to be completed in March, August and September 2023 in Zimbabwe, Mozambigue and Tanzania, respectively; laboratory analyses are estimated to be performed by December 2024.

Author contributions

The study proposal and protocol were written by NH, KK with scientific input from CK, TM, CG, JM. ETM, UP, DB, AM wrote the initial manuscript with scientific input on the database and data management section from FR, TA. NH, KK critically reviewed the initial draft of the manuscript. KH, GK, CJC, ENN, TA, provided critical feedback on the manuscript. All authors have read and approved the final version of the manuscript.

Funding statement

ERASE-TB is part of the EDCTP2 programme supported by the European Union (grant number RIA2018D-2508-ERASE-TB), the German Center for Infection Research (DZIF) grant number: 02.710 and the Swedish Research Council (220-23602). CJC is funded by the Wellcome Trust (203905/Z/16/Z). Cepheid, Inc., and SD Biosensor provided test kits and analyzers at no cost to the Consortium.

Acknowledgments

We are grateful to the study personnel from the Biomedical Research and Training Institute and the Zvitambo Research Institute, Zimbabwe, the Instituto Nacional de Saúde, Mozambique, and the National Institute for Medical Research - Mbeya Medical Research

- 3 4	416	Centre, Tanzania for their exceptional efforts and contributions, which made this research
5 6 7 8 9 10 11 12	417	possible.
	418	
	419	Consortium authorship
	420	The following are members of the ERASE-TB consortium: Anna Shepherd ^a , Hazel M Dockrell ^a ,
13 14	421	Judith Bruchfeld ^b , Christopher Sundling ^b , Charles Sandy ^c , Mishelle Mugava ^c , Tsitsi
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	422	Bandason ^c , Martha Chipinduro ^c , Kuda Mutasa ^d , Sandra Rukobo ^d , Lwitiho Sudi ^e , Antelmo
	423	Haule ^e , Emmanuel Sichone ^e , Paschal Qwaray ^e , Bariki Mtafya ^e , Harrieth Mwambola ^e , Lilian
	424	Minja ^e , Issa Sabi ^e , Peter Edwin ^e , Dogo Ngalison ^e , Stella Luswema ^e , Willyhelmina Olomi ^e ,
	425	Doreen Pamba ^e , Simeon Mwanyonga ^e , Celina Nhamuave ^f , António Machiana ^f , Carla Madeira ^f ,
	426	Emelva Manhiça ^f , Nádia Sitoe ^f , Jorge Ribeiro ^f , Christof Geldmacher ^g , Andrea Rachow ^g , Olena
	427	Ivanova ^g , Laura Olbrich ^g , Elmar Saathoff ^g , Michael Hoelscher ^g .
	428	
	429	^a Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School
	430	of Hygiene & Tropical Medicine, London, UK
	431	^b Karolinska Institute, Stockholm, Sweden
	432	^c Biomedical Research and Training Institute, Harare, Zimbabwe
	433	^d Zvitambo Research Institute, Harare, Zimbabwe
40 41 42	434	eNational Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
42 43 44	435	fInstituto Nacional de Saúde, Marracuene, Mozambique
45 46	436	⁹ Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich,
47 48	437	Munich, Germany
49 50	438	
51 52	439	Competing interests statement
53 54 55 56	440	None declaired.
	441	
57 58	442	Disclaimer
59 60	443	Not applicable.

2					
3	444	References			
4	445				
5	446	1	Global tuberculosis report 2021.		
6	447		https://www.who.int/publications/i/item/9789240037021 (accessed 28 Oct 2021).		
7	448	2	The end TB STraTegy global strategy and targets for tuberculosis prevention, care		
8 9	449		and control after 2015 a. Published Online First:		
9 10	450		2014.https://www.who.int/tb/strategy/End_TB_Strategy.pdf (accessed 28 Oct 2021).		
11	451	3	WHO. Global Tuberculosis Report.		
12	452		2020.https://www.who.int/publications/i/item/9789240013131 (accessed 31 Jul 2021).		
13	453	4	Snider B, Patel B, McBean E. Asymptomatic Cases, the Hidden Challenge in		
14	454		Predicting COVID-19 Caseload Increases. Infect Dis Reports 2021, Vol 13, Pages		
15	455		340-347 2021; 13 :340–7. doi:10.3390/IDR13020033		
16	456	5	TB Disease - Symptoms, treatment & prevention - TBFacts. https://tbfacts.org/tb-		
17	457		disease/ (accessed 28 Aug 2021).		
18	458	6	Honeyborne I, McHugh TD, Phillips PPJ, et al. Molecular Bacterial Load Assay, a		
19	459		Culture-Free Biomarker for Rapid and Accurate Quantification of Sputum		
20	460		Mycobacterium tuberculosis Bacillary Load during Treatment. J Clin Microbiol		
21	461	_	2011; 49 :3905. doi:10.1128/JCM.00547-11		
22 23	462	7	UNIAIDS. UNAIDS Global AIDS Update. 2021.		
25 24	463		https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf		
25	464	0			
26	465	8	ZIMBABWE POPULATION CENSUS 2012 WOMEN AND MEN PROFILE SUMMARY		
27	466		REPORT. Published Online First: 2016.https://www.zimstat.co.zw/wp-		
28	467		content/uploads/publications/Social/Gender/Women-and-Men-Report-2012.pdf		
29	468	9	(accessed 15 Oct 2021). Tanzania Census 2012 - Dashboard. http://dataforall.org/dashboard/tanzania/		
30	469 470	9	(accessed 15 Oct 2021).		
31	470 471	10	ZIMBABWE POPULATION-BASED HIV IMPACT ASSESSMENT ZIMPHIA 2020 KEY		
32	471	10	FINDINGS. https://phia.icap.columbia.edu/wp-content/uploads/2020/11/ZIMPHIA-		
33	473		2020-Summary-Sheet Web.pdf (accessed 3 Sep 2021).		
34 25	474	11	Xadreque H, Maunze A, Dade M, <i>et al.</i> IV RECENSEAMENTO GERAL DA		
35 36	475	• •	POPULAÇÃO E HABITAÇÃO. 2017.http://www.ine.gov.mz/iv-rgph-		
37	476		2017/mocambique/censo-2017-brochura-dos-resultados-definitivos-do-iv-rgph-		
38	477		nacional.pdf (accessed 31 Jul 2021).		
39	478	12	Population of Cities in Zimbabwe (2021).		
40	479		https://worldpopulationreview.com/countries/cities/zimbabwe (accessed 3 Aug 2021).		
41	480	13	World atlas. https://knoema.com/atlas/United-Republic-of-Tanzania. (accessed 26 Jul		
42	481		2021).		
43	482	14	Prevalence of HIV, total (% of population ages 15-49) Data.		
44	483		https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS?locations=ZW (accessed 3 Aug		
45	484		2021).		
46	485	15	Incidence of tuberculosis (per 100,000 people) - Zimbabwe Data.		
47 48	486		https://data.worldbank.org/indicator/SH.TBS.INCD?locations (accessed 3 Aug 2021).		
40	487	16	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of		
50	488		Tuberculosis in Vietnam. N Engl J Med 2018; 378 :221–9.		
51	489		doi:10.1056/NEJMOA1700209		
52	490	17	Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for		
53	491		triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence		
54	492		algorithms. Lancet Digit Heal 2021;3:e543–54. doi:10.1016/S2589-7500(21)00116-3		
55	493	18	MacPherson P, Webb EL, Kamchedzera W, et al. Computer-aided X-ray screening for		
56	494		tuberculosis and HIV testing among adults with cough in Malawi (the PROSPECT		
57	495		study): A randomised trial and cost-effectiveness analysis. <i>PLoS Med</i> 2021; 18 :1–17.		
58	496	40	doi:10.1371/journal.pmed.1003752		
59	497	19	Dorman S, Schumacher S, Alland D, <i>et al.</i> Xpert MTB/RIF Ultra for detection of		
60	498 400		Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. <i>L</i> apart infact Dia 2018; 49 :76 - 84 - doi:10.1016/S1472		
	499		diagnostic accuracy study. Lancet Infect Dis 2018; 18 :76–84. doi:10.1016/S1473-		

1			
2			
3	500		3099(17)30691-6
4	501	20	WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of
5	502		Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Published Online First:
6 7	503		2017.http://apps.who.int/bookorders. (accessed 19 Oct 2021).
8	504	21	World Health Organization. WHO consolidated guidelines on tuberculosis: Module 2:
9	505		Screening. 2021.https://www.who.int/publications/i/item/9789240022676 (accessed 9
10	506	~~	Dec 2021).
11	507	22	Hamasur B, Bruchfeld J, van Helden P, <i>et al.</i> A sensitive urinary lipoarabinomannan
12	508	23	test for tuberculosis. <i>PLoS One</i> 2015; 10 . doi:10.1371/JOURNAL.PONE.0123457
13	509 510	23	Portevin D, Moukambi F, Clowes P, <i>et al.</i> Assessment of the novel T-cell activation marker-tuberculosis assay for diagnosis of active tuberculosis in children: a
14	510		prospective proof-of-concept study. Lancet Infect Dis 2014; 14 :931–8.
15 16	512		doi:10.1016/S1473-3099(14)70884-9
17	513	24	Schuetz A, Haule A, Reither K, et al. Monitoring CD27 expression to evaluate
18	514		Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo. <i>PLoS One</i>
19	515		2011;6. doi:10.1371/JOURNAL.PONE.0027284
20	516	25	Ahmed MIM, Ntinginya NE, Kibiki G, et al. Phenotypic Changes on Mycobacterium
21	517		Tuberculosis-Specific CD4 T Cells as Surrogate Markers for Tuberculosis Treatment
22	518		Efficacy. Front Immunol 2018;9:2247. doi:10.3389/FIMMU.2018.02247/BIBTEX
23	519	26	Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional
24 25	520		signatures for incipient tuberculosis: a systematic review and patient-level pooled
26	521		meta-analysis. <i>Lancet Respir Med</i> 2020; 8 :395–406.
27	522	07	doi:http://dx.doi.org/10.1016/S2213-2600%2819%2930282-6
28	523 524	27	Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, <i>et al.</i> Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. <i>Lancet Infect Dis</i>
29	524 525		2021; 21 :354–65. doi:10.1016/S1473-3099(20)30914-2/ATTACHMENT/EB270186-
30	525 526		669A-4F82-8A80-FB38FA1FB796/MMC1.PDF
31	527	28	Warsinske H, Rao A, Moreira F, <i>et al.</i> Assessment of Validity of a Blood-Based 3-
32 33	528	_0	Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease
34	529		Severity, and Treatment Response. JAMA Netw open 2018;1:e183779.
35	530		doi:10.1001/JAMANETWORKOPEN.2018.3779
36	531	29	Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of
37	532		pulmonary tuberculosis: a multicohort analysis. <i>Lancet Respir Med</i> 2016;4:213–24.
38	533		doi:10.1016/S2213-2600(16)00048-5
39	534	30	Mendelson F, Griesel R, Tiffin N, <i>et al.</i> C-reactive protein and procalcitonin to
40 41	535		discriminate between tuberculosis, Pneumocystis jirovecii pneumonia, and bacterial
41	536		pneumonia in HIV-infected inpatients meeting WHO criteria for seriously ill: a
43	537 538	31	prospective cohort study. <i>BMC Infect Dis</i> 2018; 18 . doi:10.1186/S12879-018-3303-6 Huang C, Lee L, Ho C, <i>et al.</i> High serum levels of procalcitonin and soluble TREM-1
44	539	51	correlated with poor prognosis in pulmonary tuberculosis. J Infect 2014;68:440–7.
45	540		doi:10.1016/J.JINF.2013.12.012
46	541	32	Feng J, Su W, Pan S, et al. Role of TREM-1 in pulmonary tuberculosis patients-
47	542	-	analysis of serum soluble TREM-1 levels. Sci Rep 2018;8. doi:10.1038/S41598-018-
48 49	543		26478-2
49 50	544	33	Kumar NP, Velayutham B, Nair D, et al. Angiopoietins as biomarkers of disease
51	545		severity and bacterial burden in pulmonary tuberculosis. Int J Tuberc Lung Dis
52	546		2017; 21 :93. doi:10.5588/IJTLD.16.0565
53	547	34	Kathamuthu G, Moideen K, Baskaran D, <i>et al.</i> Tuberculous lymphadenitis is
54	548		associated with altered levels of circulating angiogenic factors. Int J Tuberc Lung Dis
55	549 550	25	2018; 22 :557–66. doi:10.5588/IJTLD.17.0609 Sivra A. Makingan L. Vanda Zuma N. <i>et al.</i> Plasma Cutaking Predictors of
56	550 551	35	Sivro A, McKinnon L, Yende-Zuma N, <i>et al.</i> Plasma Cytokine Predictors of Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
57 58	551 552		infected Individuals from Durban, South Africa. <i>Clin Infect Dis</i> 2017; 65 :819–26.
59	553		doi:10.1093/CID/CIX357
60	554	36	La Manna M, Orlando V, Li Donni P, <i>et al.</i> Identification of plasma biomarkers for
	555		discrimination between tuberculosis infection/disease and pulmonary non tuberculosis

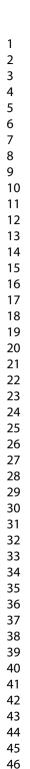
1			
2			
3			
	556		disease. PLoS One 2018;13. doi:10.1371/JOURNAL.PONE.0192664
4	557	37	Sivro A, McKinnon L, Yende-Zuma N, et al. Plasma Cytokine Predictors of
5	558		Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
6	559		infected Individuals from Durban, South Africa. Clin Infect Dis 2017;65:819–26.
7	560		doi:10.1093/CID/CIX357
8		38	
9	561	30	Chegou NN, Sutherland JS, Malherbe S, et al. Diagnostic performance of a seven-
10	562		marker serum protein biosignature for the diagnosis of active TB disease in African
11	563		primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax
12	564		2016; 71 :785–94. doi:10.1136/thoraxjnl-2015-207999
13	565	39	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
	566		prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
14	567		Statement. <i>BMC Med</i> 2015; 13 :1–10. doi:10.1186/S12916-014-0241-Z/TABLES/1
15		40	
16	568	40	Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities,
17	569		and Pitfalls in Research and Practice. Front public Heal 2017;5.
18	570		doi:10.3389/FPUBH.2017.00307
19	571	41	Agency ZS. QUALITY CONTROL MANUAL Provincial Report Harare Central Census
20	572		Office. https://www.zimstat.co.zw/wp-
21	573		content/uploads/publications/Population/population/Harare.pdf (accessed 3 Aug
22	574		2021).
23		42	
24	575	42	Mozambique Population 2021 (Demographics, Maps, Graphs).
25	576		https://worldpopulationreview.com/countries/mozambique-population (accessed 27 Jul
	577		2021).
26	578	43	ZIMBABWE NATIONAL HIV/AIDS AND TUBERCULOSIS CONTROL
27	579		PROGRAMMES. Republic of Zimbabwe NATIONAL HIV/AIDS AND TUBERCULOSIS
28	580		CONTROL PROGRAMMES. https://www.who.int/hiv/pub/guidelines/zimbabwe.pdf
29	581		(accessed 1 Sep 2021).
30	582		
31			
32	583		
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
55 56			
57			
58			
59			
60			

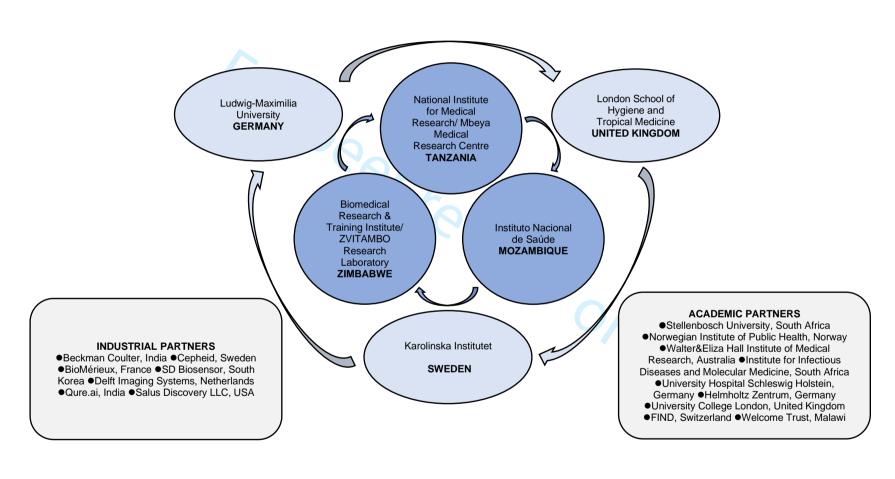
1 2		
2 3 4	584	Figure legend
5 6 7 8 9 10	585	Figure 1. The ERASE-TB consortium
	586	Abbreviations: ERASE-TB=Early Risk Assessment in TB contactS by new diagnostic tEsts
	587	
11 12	588	Figure 2. Location and characteristics of ERASE-TB study sites
13 14	589	Notes: The location of each study site is indicated by a red asterix. Source data used within
15 16	590	this figure are taken from the references [7,8,42,43,9–15,41].
17 18	591	Abbreviations: ERASE=Early Risk Assessment in TB contactS by new diagnostic tEsts;
19 20 21	592	TB=tuberculosis; HIV=human immunodeficiency virus
21 22 23	593	
24 25	594	Figure 3. Eligibility criteria and schedules of events for index cases and household contacts
26 27	595	Notes: A=depending on the time point of study enrollment and consequently on the duration
28 29	596	available for follow-up, i.e. 18 or 24 months, the follow-up visit at 24 months ± 30 days may be
30 31 32 33	597	conditional; B =the follow-up visit by phone may be conducted after the last scheduled follow-
	598	up visit at 18 months ± 30 days or 24 months ± 30 days to assess whether symptoms suggestive
34 35	599	of TB have occurred, TB diagnosis has been made or anti-TB treatment has been initiated;
36 37	600	C=unwell visits by phone or on-site may be conducted between scheduled follow-up visits if a
38 39 40	601	participant presents at a recruitment healthcare facility with signs and symptoms suggestive of
41 42	602	TB; D =coached spontaneous or induced sputum collection for storage at scheduled follow-up
43 44	603	visit at 18 months \pm 30 days or 24 months \pm 30 days, and for repetition of HIV testing if tested
45 46	604	negative at baseline; E=coached spontaneous or induced sputum collection upon the decision
47 48	605	of the investigating team for testing by Xpert MTB/RIF Ultra if participant presents with signs
49 50	606	and symptoms suggestive of TB; F=coached spontaneous or induced sputum collection in
51 52	607	case of Xpert MTB/RIF Ultra positivity or strong clinical suspicion of TB for repetition of the
53 54	608	Xpert MTB/RIF Ultra; $G=$ in case of HIV positivity to be followed by the assessment of CD4
55 56 57	609	counts; H=CXR to be conducted at an unscheduled on-site unwell visit upon the decision of
58 59	610	the investigating team depending on the nature of symptoms reported, and the time elapsed
60	611	since the last CXR including its findings; I=not to be conducted among pregnant women;

Page 23 of 29

BMJ Open

J=stored venous blood includes 6mL EDTA blood for whole blood and plasma, 4mL serum and 2.5mL PAXgene blood, all samples will be deep frozen for retrospective testing using new diagnostics as described in text; **K**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required an unscheduled on-site or home visit will be arranged by phone, the resolution of symptoms can alternatively be addressed by phone; L=collection of PBMC at baseline and follow-up visit at 6 months ±30 days is optional, thus will not be performed at each participating site and for each participant; **M**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required or doubtful if required an unscheduled unwell visit by phone will be arranged, the resolution of symptoms can alternatively be addressed by phone; N=spirometry and/or diabetes (HbA1c) will be performed at scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if required or not performed at baseline, anaemia (Hb) will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if possible; **O**=blood pressure measurement will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days; P=WGS to be performed once Mtb infection is confirmed and an isolate could be recovered.


Abbreviations: TB=tuberculosis; WHO=World Health Organization; HIV=human immunodeficiency virus; WGS=whole genome sequencing; MBLA=molecular bacterial load assay; CXR=chest radiograph; IGRA=interferon gamma release assay; PBMC=peripheral blood mononuclear cell; TAM-TB=T- cell activation marker tuberculosis; MTB=Mycobacterium tuberculosis; RIF=rifampicin, Hb=haemoglobin; HbA1c=glycated hemoglobin; LAM=lioparabinomannan; CD4=cluster of differentiation 4


Figure 4. Study design

Abbreviations: HHC=household contact; TB=tuberculosis; IC=index case; WHO=World

Health Organization; CXR= chest radiograph; SS=symptom score; MTB=Mycobacterium

tuberculosis; RIF=rifampicin; pos=positive; CT=cpmputer tomography; FU=follow-up

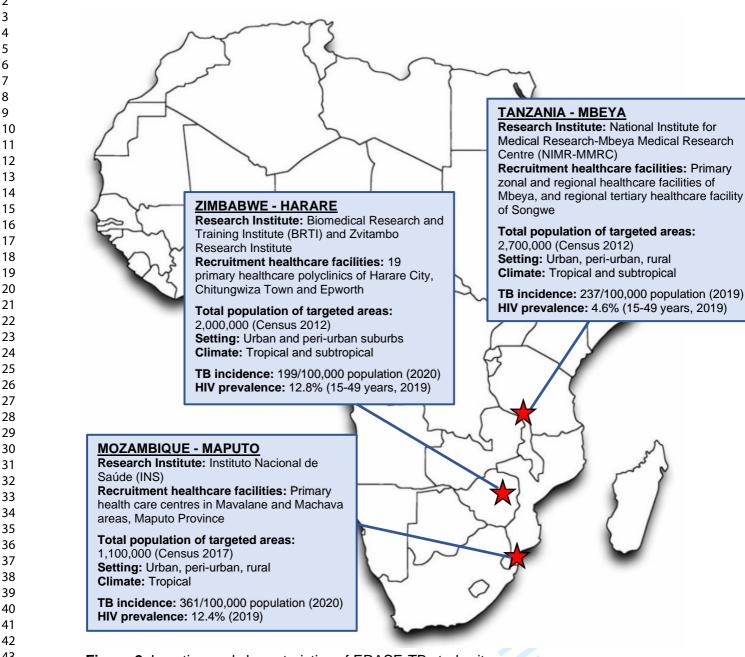
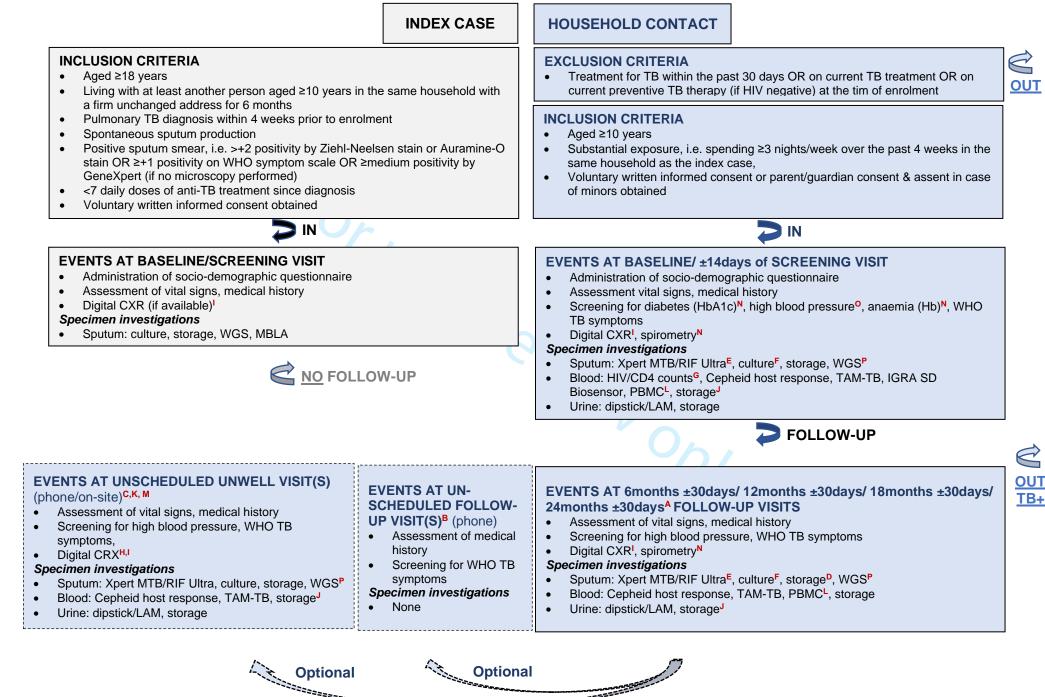
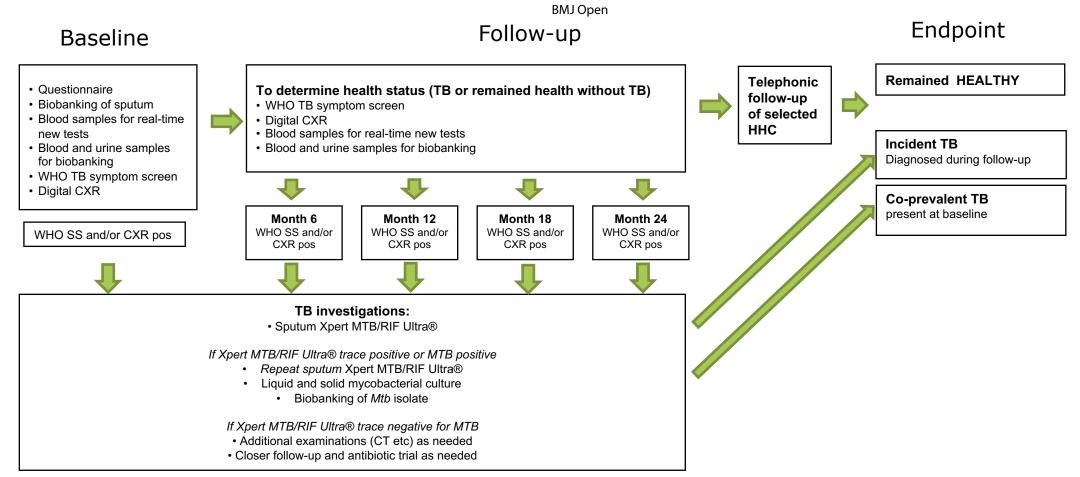



Figure 2. Location and characteristics of ERASE-TB study sites



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Figure 3. Eligibility criteria and schedules of events for index cases and household contacts

. cases an.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 29

Section & Topic	No	Item	Reported on p #
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2-3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	5-6
	4	Study objectives and hypotheses	6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	6-7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7 (Figure 3)
	7	On what basis potentially eligible participants were identified	7 (Figure 3)
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	7
	9	Whether participants formed a consecutive, random or convenience series	7, 11
Test methods	10a	Index test, in sufficient detail to allow replication	8-10, 11-13
	10b	Reference standard, in sufficient detail to allow replication	8-10, 11-13
	11	Rationale for choosing the reference standard (if alternatives exist)	8-10, 11-13
	12a	Definition of and rationale for test positivity cut-offs or result categories	13-14
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	13-14
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	13-14
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	13-14
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	13-14
	15	How indeterminate index test or reference standard results were handled	13-14
	16	How missing data on the index test and reference standard were handled	14
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	13-14
	18	Intended sample size and how it was determined	11
RESULTS			
Participants	19	Flow of participants, using a diagram	8-10 (Figure 3)
	20	Baseline demographic and clinical characteristics of participants	8-10 (Figure 3)
	2 1a	Distribution of severity of disease in those with the target condition	
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	
Test results	23	Cross-tabulation of the index test results (or their distribution)	
	-	by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	13-14
	25	Any adverse events from performing the index test or the reference standard	
DISCUSSION	_		
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	3
		generalisability	-
	27	Implications for practice, including the intended use and clinical role of the index test	5-6
OTHER			
INFORMATION			
	28	Registration number and name of registry	2
	20 29	Where the full study protocol can be accessed	
	30	Sources of funding and other support; role of funders	16
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross-tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross-tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

BMJ Open

Early risk assessment in pediatric and adult household contacts of confirmed tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a prospective, non-interventional, longitudinal, multi-country cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060985.R2
Article Type:	Protocol
Date Submitted by the Author:	23-Jun-2022
Complete List of Authors:	Marambire, Edson; Biomedical Research and Training Institute, Banze, Denise; Instituto Nacional de Saúde Mfinanga, Alfred; Mbeya Medical Research Centre Mutsvangwa, Junior; Biomedical Research and Training Institute Mbunda, Theodora ; NIMR-Mbeya Medical Research Programme Ntinginya, Nyanda; 6. National Institute of Medical Research-Mbeya Medical Research Centre Celso, Khosa; Instituto Nacional de Saúde Kallenius, Gunilla; Karolinska Institutet Calderwood, Claire J.; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases Geldmacher, Christof; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich ; German Center for Infection Research, Partner site Munich Held, Kathrin; University Hospital, Division of Infectious and Tropical Medicine, LMU Munich ; German Center for Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Appalarowthu, Tejaswi; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Rieß, Friedrich; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Panzner, Ursula; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Heinrich, Norbert; University Hospital, Division of Infectious Diseases and Tropical Medicine, LMU Munich; German Center for Infection Research, Partner site Munich Kranzer, Katharina; London School of Hygiene and Tropical Medicine Faculty of Infectious and Tropical Diseases; Biomedical Research and Training Institute
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Diagnostics, Infectious diseases

Keywords: Tuberculosis < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES, RESPIRATORY MEDICINE (see Thoracic Medicine)
SCHOLARONE [™] Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Early risk assessment in pediatric and adult household contacts of confirmed
5 6 7	2	tuberculosis cases by novel diagnostic tests (ERASE-TB): protocol for a
7 8 9	3	prospective, non-interventional, longitudinal, multi-country cohort study
10	4	
11 12 13 14 15 16 17	5	Edson Tawanda Marambire1*, Denise Banze2\$, Alfred Mfinanga3\$, Junior Mutsvangwa1, Theodora
	6	Mbunda ³ , Elias N. Nyanda ³ , Khosa Celso ² , Gunilla Kallenius ⁴ , Claire J. Calderwood ⁵ , Christof
	7	Geldmacher ^{6,7} , Kathrin Held ^{6,7} , Tejaswi Appalarowthu ^{6,7} , Friedrich Rieß ^{6,7} , Ursula Panzner ^{6,7} , Norbert
18	8	Heinrich ^{6,7#} , Katharina Kranzer ^{1,5,6#} , on behalf of the ERASE-TB Consortium
19 20	9	
21 22	10	¹ Biomedical Research and Training Institute, Harare, Zimbabwe
23 24	11	² Instituto Nacional de Saúde, Marracuene, Mozambique
25 26	12	³ National Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
27 28	13	^₄ Karolinska Institute, Stockholm, Sweden
28 29 30	14	⁵ Faculty of Infectious and Tropical Diseases and Tuberculosis Centre, London School of Hygiene &
31	15	Tropical Medicine, London, UK
32 33 34	16	⁶ Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich,
35 36	17	Germany
37	18	⁷ German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
38 39 40	19	
40 41	20	*Corresponding author: Edson Tawanda Marambire; 8 Rose Avenue, Belgravia, Harare, Zimbabwe; e-
42 43	21	mail: edsonmarambire@gmail.com; phone: +263772286311
44 45	22	
46 47	23	\$ Contributed equally
48 49	24	# Contributed equally
50 51	25	
52 53	26	Word count: 3,668
54 55	27	
56 57	28	Keywords: Mycobacterium tuberculosis, diagnostics, cohort study, household contacts, WHO
58 59 60	29	END TB strategy, ERASE-TB

3	
4	
5	
6 7	
/ ጸ	
9	
5 6 7 8 9 10 11 12 13 14 15	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
34 35	
36	
36 37 38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

30 ABSTRACT

31 Introduction

The World Health Organization (WHO) End-TB Strategy calls for the development of novel 32 33 diagnostics to detect tuberculosis earlier and more accurately. Better diagnostics, together with tools to predict disease progression are critical for achieving WHO END-TB targets. The Early 34 Risk Assessment in TB contactS by new diagnostic tEsts (ERASE-TB) study aims to evaluate 35 novel diagnostics and testing algorithms for early tuberculosis diagnosis and accurate 36 37 prediction of disease progression among household contacts exposed to confirmed index cases in Mozambigue, Tanzania and Zimbabwe. 38

39

Methods and analysis 40

A total of 2,100 household contacts (HHCs) (aged ≥10 years) of adults with microbiologically-41 42 confirmed pulmonary tuberculosis will be recruited and followed up at 6-month intervals for 18 to 24 months. At each time-point a WHO symptom screen and digital chest-radiograph (dCXR) 43 will be performed, and blood and urine samples collected. Individuals screening positive (WHO 44 45 symptom screen or dCXR) will be requested to provide sputum for Xpert MTB/Rif Ultra. At baseline, HHCs will also be screened for HIV, diabetes (HbA1c), chronic lung disease 46 (spirometry), hypertension and anaemia. Study outcomes will be co-prevalent tuberculosis 47 (diagnosed at enrollment), incident tuberculosis (diagnosed during follow-up) or no 48 49 tuberculosis at completion of follow up. Novel diagnostics will be validated using fresh and 50 biobanked samples with a nested case control design. Cases are defined as HHCs diagnosed with tuberculosis (for early diagnosis) or with incident tuberculosis (for prediction of 51 progression) and will be matched by age, sex and country to HHCs who remain healthy 52 53 (controls). Statistical analyses will include assessment of diagnostic accuracy by constructing 54 receiver operating curves and calculation of sensitivity and specificity.

55

Ethics and dissemination 56

ERASE-TB has been approved by regulatory and ethical committees in each African country and by each partner organisation. Consent, with additional assent for participants <18 years, is voluntary. Attestation by impartial witnesses is sought in case of illiteracy. Confidentiality of <text> participants is being maintained throughout. Study findings will be presented at scientific conferences and published in peer-reviewed international journals.

Study registration number

NCT04781257

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4	65	Strengths and limitations of this study
5	66	• Recruitment of highly infectious index cases aimed at maximising the number of
7 8	67	tuberculosis (TB) diagnoses in the household contact (HHCs) cohort.
9 10	68	• Sequencing of Mycobacterium tuberculosis isolates from both index cases and HHCs
11 12	69	allows confirmation of household transmission and thus determination of timing of the
13 14	70	transmission event; resulting in more precise estimates of new test sensitivity
15 16 17	71	compared to population-based cohorts with unknown timing of infection.
17 18 19	72	• Large sample size across three southern African countries with high HIV prevalence;
20 21	73	including adolescents will ensure study findings are generalisable to the clinically
22 23	74	relevant population at high risk of TB compared to studies focused on adults only.
24 25	75	• Despite the large cohort of HHCs, the number of diagnosed TB cases will be small,
26 27	76	limiting the power of the study and sub-group analyses such as by age and HIV status.
28 29	77	Geographically limited to sub-Saharan Africa, therefore results may not be
30 31	78	generalisable to other populations, including those with lower HIV prevalence such as
32 33	79	in South-East Asia or the Americas.
34 35 36		
37 38		
39 40		
41		
42 43		
44		
45 46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		

80 INTRODUCTION

Tuberculosis (TB) remains a leading global public health problem, with an estimated 10 million new cases and 1.5 million deaths globally in 2020 [1]. In 2014, the World Health Assembly approved the World Health Organization (WHO) End-TB Strategy, aiming for a 90% reduction in TB incidence and 95% reduction in TB deaths by 2035 [2]. However, in 2019, three million TB cases ('the missing millions') remained undiagnosed and untreated globally, resulting in potentially avoidable morbidity, mortality and onward transmission. The Covid-19 pandemic has resulted in a large decrease in the number of people newly diagnosed with TB and reported. This has increased the diagnostic gap by a further 1.3 million, resulting in an estimated 4.2 million undiagnosed TB cases in 2020 [3]. Also, for the first time in a decade TB deaths have risen, from an estimated 1.4 million in 2019 to 1.5 million in 2020, as a result of reduced access to and provision of essential TB services including diagnostics during the Covid-19 pandemic.

94 Without an efficacious and safe vaccine, early detection and containment are the main tools 95 to interrupt transmission and successfully control TB. Similar to SARS-CoV2, asymptomatic 96 spreading of *M.tuberculosis* and subclinical but infectious disease states are a major concern 97 in the control of airborne infectious diseases [4]. Early and accurate identification of persons 98 with TB, combined with identification of those at risk of progression to TB and provision of 99 targeted preventive treatment are critical to reducing TB-associated morbidity and mortality, 100 and preventing onward transmission.

102 Currently available diagnostics such as sputum microscopy, mycobacterial culture and nucleic 103 acid amplification tests are based on direct pathogen detection, thus requiring a high 104 mycobacterial load; they therefore predominately target advanced TB when onward 105 transmission and significant lung damage has occurred [5,6]. Further, for many patients with 106 minimal or no symptoms, expectoration of high-quality sputum specimens remains

BMJ Open

challenging, limiting the accuracy of sputum-based tests. The same holds true for young children and people living with HIV.

The Early Risk Assessment in TB Contacts by new diagnoStic tEsts (ERASE-TB) study aims to fill this diagnostic gap by evaluating new sputum and non-sputum-based TB diagnostics for early TB detection (before onward transmission occurs), as well as tools for more accurate prediction of TB progression to allow for targeted preventive therapy.

- METHODS AND ANALYSES

Study objectives

ERASE-TB's primary objectives are (I) to determine the sensitivity and specificity of novel diagnostics to detect TB, in particular asymptomatic or minimally symptomatic TB; (II) to evaluate novel diagnostics for detection of likely TB progression; and (III) to enhance the performance of novel diagnostics by simulating testing algorithms coupled with individual risk estimates from a mathematical model. The secondary objectives are (I) to determine the TB prevalence among household contacts (HHCs) of infectious TB index cases (ICs) at baseline and during a 18-24 months follow-up; (II) to establish a biorepository of cryopreserved specimens from HHCs for future development and validation of diagnostic tests; and (III) to assess the association of selected chronic disease conditions and TB among HHCs.

Study endpoints

The study's primary endpoints are the presence or development of TB among HHCs with the following possible scenarios of (I) prevalent symptomatic TB at baseline, (II) incident TB during follow-up, and (III) remained healthy until study completion. An endpoint review committee will review the data and case classification before finalization.

Through the sequencing of Mycobacterium tuberculosis (Mtb) isolates, cases of co-prevalent or incident TB will be classified either as secondary, infected by the source case - the timepoint

of infection will be known; or as infected by another, unknown source of infection, with anunknown timepoint of infection.

138 Recruitment sites

Recruitment of ICs and HHCs at selected primary healthcare facilities and communities has commenced in Harare, Zimbabwe in March 2021, Maputo, Mozambigue in August 2021, and Mbeya, Tanzania in September 2021. Partners of the ERASE-TB consortium are illustrated in Figure 1. All three countries have a high TB incidence ranging from 100 to 499/100,000 population [1] and HIV prevalence among adults aged 15 years and older of 5% to 20% [7]. The African research institutions have established collaborations with their respective National Tuberculosis Programs ensuring referral and approproate follow-up of TB patients. Figure 2 illustrates the geographic location of research institutions, healthcare facilities where recruitment is taking place, demographic characteristics of study populations, and estimates on TB incidence and HIV prevalence [8–15].

150 Study design

ERASE-TB is a non-interventional, longitudinal, prospective cohort study among HHCs aged ≥10 years exposed to highly infectious pulmonary TB ICs aged ≥18 years. Eligibility criteria are detailed in Figure 3 and the study design is shown in Figure 4. TB ICs are eligible if the bacterial load in their sputum is at least at the "medium" level according to Xpert MTB/RIF or Xpert MTB/RIF Ultra, and they have received less than seven daily doses of anti-TB treatment before enrollment. This maximises the likelihood of culturing and storing *Mtb* isolates. The total study duration will be 36 months. This includes 12-months enrollment of ICs and HHCs, and 18- to 24-months follow-ups of HHCs. Follow-up ends when a HHCs withdraws from the study, is lost to follow-up, dies, or is diagnosed with TB and referred for treatment. Scheduled or unscheduled unwell visits can be conducted physically and/or telephonically in case of abnormal finding e.g. by abnormal dCXR, or when a participant feels unwell inbetween scheduled follow-up visits.

2		
3 4	163	
5 6	164	Procedures
7 8	165	TB index cases
9 10	166	Following informed consent obtained, a questionnaire is administered to collect socio-
11 12	167	demographic information, TB risk factors, and the medical history of TB, HIV and other
13 14	168	diseases. Two spontaneous sputum samples are obtained, of which one is for mycobacterial
15 16	169	culturing and one for storage for performing retrospectively Molecular Bacterial Load Assay
17 18	170	(MBLA) to quantify viable Mtb by 16S rRNA [6]; an alternative means to quantify expectorated
19 20	171	bacterial load for an estimate of infectiousness. Both liquid and solid mycobacterial cultures
21 22	172	are performed on decontaminated sputum samples, with all Mtb isolates stored at -80 degrees
23 24 25	173	for future DNA extraction and whole genome sequencing. A questionnaire on symptom
25 26 27	174	duration and TB risk factors is also administered.
28 29	175	
30 31	176	Household key informant
32 33	177	At baseline, a household key informant (either the TB index case or one of the household
34 35	178	contacts) is identified and asked to answer questions of a household questionnaire that collects
36 37	179	socio-economic elements like structure of the house or flat, income and household assets, and
38 39	180	covariates possibly associated with risk of TB infection, e.g., windows/air exchange, presence
40 41	181	of comorbid conditions, and risk factors like the source of cooking energy, and properties of
42 43 44	182	the household kitchen.
44 45 46	183	
40 47 48	184	Household contacts
49 50	185	Informed consent is obtained from all eligible adult HHCs. For HHC <18 years of age, the
51 52	186	guardian is asked to provide informed consent, with assent also sought from children
53 54	187	dependent on local guidance. At baseline a questionnaire is administered collecting
55 56	188	information on socioeconomic and demographic characteristics, past medical history of TB,
57 58	189	HIV and other diseases, exposure risk factors, smoking and alcohol history. The physical
59 60	190	examination includes height, weight, mid-upper arm circumference and blood pressure

measurement. In addition, all HHCs are offered free HIV testing according to the National
Guidelines. All people with confirmed HIV infection will have CD4 counts performed and be
referred for TB preventive therapy. Those not yet on antiretroviral therapy (ART) and those
who interrupted ART are referred for ART at local services.

Point of care HbA1c (A1cCare, SD Biosensor, Gyeonggi-do, Republic of Korea) and haemoglobin (Hemocue 301+, Hemocue, Angelholm, Sweden) tests and spirometry (including pre- and post-bronchodilation with inhaled salbutamol) are performed at baseline or the sixmonth visit. HHCs who did not take up HIV testing or other screening at baseline are offered these tests at each study visit. Any HHCs with test results requiring treatment or further investigations are referred for respective services.

27 202

HHCs are screened for TB using the WHO symptom questionnaire and a digital chestradiograph (dCXR), reviewed by a clinical officer. dCXRs are not performed in pregnant HHCs.
HHCs with a positive WHO symptom screening and abnormal dCXR are asked to provide
sputum samples for TB investigations i.e., for GeneXpert and mycobacterial culture. Those
with negative symptom screen and normal dCXR are asked to provide a spontaneous sputum
sample for storage (with sputum induction performed if required).

41 209

At baseline, urine, serum, plasma, whole blood (native, and with RNA preservation in PAXgene[®] tubes [BD Biosciences, NJ, USA]) are stored. A finger-prick sample is taken and investigated using the Xpert TB Host Response RUO Prototype cartridge (Cepheid, Sunnyvale, CA, USA). T-cell Activation Marker Tuberculosis (TAM-TB) assay and Interferon Gamma Release Assay (IGRA; STANDARDTM F TB-Feron FIA (IFN-gamma; SD Biosensor, Republic of Korea), are performed on fresh venous blood. In Tanzania and Mozambigue, storage of peripheral blood mononuclear cells for later characterization of the TB-specific immune response is also performed.

Procedures for follow-up and unwell visits are similar to those at baseline. Measurement of HIV status, haemoglobin, HbA1c, spirometry, CD4 count and IGRA testing are not performed at follow-up visits, unless not done previously. At the last scheduled visit all HHCs not known to have HIV are re-offered HIV testing and a spontaneous or induced sputum sample is stored for all participants.

Household contacts screening positive for TB symptoms and/or with a DCXR suggestive of TB

HHCs screening positive for symptoms and/or those with DCXRs suggestive of TB are asked for a sputum sample, which is investigated using Xpert MTB/RIF Ultra (Cepheid). If this sample is positive for *Mtb* (including a trace result), a minimum of two additional sputum samples are investigated, following decontamination, with Xpert MTB/RIF Ultra, solid and liquid culture. Isolates stored from these cultures will be sequenced for matching with the IC isolates in order to verify intra-household transmission. Sputum induction is performed for those unable to provide a spontaneous sputum sample. HHCs with microbiologically confirmed TB are referred for TB treatment to the National TB Programme.

Patient and public involvement

The ERASE-TB study sites have established Community Advisory Boards, which are voices of communities, people affected, and study participants, providing a strategic link between the communities and the study team. Community Advisory Boards meet regularly and provide feedback on design, procedures and conduct of the study. They will also be closely involved in the dissemination of study results. In addition to the Community Advisory Boards, each study site conducts community engagement activities focused on young people with the aim to foster interst in science and research, specififcally in the field of respiratory diseases/illness. This includes close partnership with schools and universities. Furthermore, planned qualitative research will specifically aim to understand the perceptions of HHCs with regards to TB diagnostics and screening.

1 2		
2 3 4	247	
5 6	248	Sample size
7 8 9 10	249	An estimated 800 to 900 TB-confirmed ICs are required for the subsequent enrollment of an
	250	anticipated 2,100 HHCs, i.e., 700 HHCs per country. Loss to follow-up of HHCs is estimated
11 12	251	to be 10%. A total of 64 HHCs (3%) are estimated to be diagnosed with TB during the study
13 14	252	period, based on previous active case finding studies among HHCs [16]. Validation for
15 16	253	subclinical and early TB will include incident (n=49) and co-prevalent TB cases (n=15).
17 18	254	Validation for detection of incipient <i>M.tb</i> infection will include samples of participants with
19 20	255	incident TB (n=49) matched 1:4 to samples of participants without TB (n=196). For tests
21 22 23	256	diagnosing incipient <i>M.tb</i> infection sensitivities of 73% and 82% would be detected with a
23 24 25	257	precision of 59-85% and 68-91% respectively. For specifcities of 92% and 94% the confidence
26 27	258	intervals would be 87-95% and 90-97%.
28 29	259	
30 31	260	Novel test candidates
32 33	261	A range of novel test candidates targeted at pathogen detection or identification of host
34 35	262	responses to Mtb are being applied, either in real-time (for all participants) or retrospectively
36 37	263	(in a case-control design). Whilst a number of novel test candidates have been pre-specified,
38 39 40	264	the ERASE-TB biobanking processes allow for addition of further candidate tests to be
40 41 42	265	evaluated on stored samples as they become available.
43 44	266	
45 46	267	DCXRs offer good sensitivity for diagnosis of pulmonary TB. However, high inter- and intra-
47 48	268	investigator variability, and lack of trained interpreters present a barrier to implementation in
49 50	269	many high-TB burden settings. Computer-aided interpretation systems, such as CAD4TB
51 52	270	(Delft Imaging, Hertogenbosch, Netherlands) and qXR (Qure.ai, India) may increase image-
53 54	271	reading capacity, with good performance, and serve, therefore, as a systematic screening tool
55 56 57	272	to identify individuals in need of confirmatory TB tests [17,18].
57 58 59 60	273	

Page 13 of 29

BMJ Open

274 Xpert MTB/RIF Ultra is a nucleic acid amplification test for *Mtb* with a lower limit of detection 275 compared to the previous Xpert MTB/RIF generation, and, therefore, conferring higher 276 sensitivity in paucibacillary specimens. This, however, comes at the expense of specificity, 277 particularly in high TB incidence settings, resulting in 'false positives' [19]. WHO guidelines 278 recommend Xpert MTB/RIF Ultra for TB diagnosis among adults and children acknowledging 279 that further evaluation, particularly of the role of Xpert MTB/RIF Ultra for TB screening, is 280 needed [20,21].

FLOW-TB is an advanced enzyme-linked immunosorbent assay for the detection of *Mtb* lipoarabinomannan (a mycobacterial cell wall component) in urinary specimens with results available within 65 minutes [22].

The T-cell activation marker-TB assay (TAM-TB) detects Mtb-specific CD4 T-cells through *invitro* antigen stimulation with *Mtb*-derived peptides, i.e., from ESAT-6 and CFP-10, followed by flow cytometry. TAM-TB discriminated latent *Mtb* infection from TB in freshly collected blood with 83% sensitivity and 96-98% specificity in previous studies. Further, TAM-TB may detect early TB disease progression up to 9 months prior to the identification of *Mtb* in sputum [23– 25].

Multiple transcriptomic signatures, capturing the host response to TB, have been described as promising candidate tests for earlier TB diagnosis (up to two years before microbiological diagnosis). An individual patient data meta-analysis suggested equivalent performance of eight signatures, with 25-40% sensitivity and 92-95% specificity 0-24 months before TB diagnosis. Diagnostic accuracy of each signature improved as the interval between testing and microbiological TB diagnosis shortened [26]. Several signatures have been developed into polymerase chain reaction (PCR)-based assays to facilitate real-time implementation: the recent CORTIS trial reported sensitivity of 48% and specificity of 75% for incipient TB for the RISK-11 signature [27]. Cepheid have developed a 3-transcript TB score into a fully automated

in-cartridge PCR assay performed on finger-prick blood using the Xpert platform (Xpert TB
 Host Response RUO Prototype cartridge). This cartridge will be evaluated using freshly
 collected specimens in ERASE-TB; storage of RNA-stabilised blood samples also allows for
 retrospective evaluation of additional transcriptomic signatures in our cohort [28,29]

An alternative approach to capture the host response to TB is through protein-based biomarker signatures. Candidate tests in this category include a serum- or plasma-based multiplex assay assessing 13 protein biomarkers (CRP, procalcitonin [30], sTREM-1 [31,32], angiopoietin-2 [33,34], interleukin-6 [35], TRAIL [36] and IP-10 [37]) that is being developed by the London School of Hygiene and Tropical Medicine; in additon, a seven biomarker signauture is under development as a point-of-care test for TB diagnosis, with 94% sensitivity and 73% specificity detected in previous work [38].

° 314

315 Statistical analyses

Baseline characteristics and analytical data will be summarized using descriptive statistics inclusive of mean, median, range, standard deviation, and absolute as well as relative frequencies depending on the nature of data. A logistic regression model will be used to identify characteristics of TB among ICs, households and HHCs that are predictive of incident TB. From the study database, we will simulate algorithms of different tests to obtain the testing combination with the best accuracy. We will couple tests with a mathematical model that quantifies the risk of infection and/or disease to enhance predictive performance. The reporting of the development of the prediction model will follow the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative [39].

The validation of novel diagnostic tests for detecting TB will be analysed as a 1:4 matched nested case-control study with HHCs diagnosed with TB at baseline and during follow-up serving as cases, and HHCs who do not develop TB during follow-up as controls; controls will be matched for site, age, sex, HIV status and other risk factors for developing TB. Sensitivity Page 15 of 29

BMJ Open

and specificity of novel tests will be determined using pre-existing positive/negative cut-offs where these exist [40]; and receiver operating curves (ROC) constructed with area under the ROC curve calculated. For tests aiming to identify individuals at high risk of TB in the future, only HHCs who are diagnosed with TB during follow-up will serve as cases (i.e. those diagnosed with TB at baseline will be excluded). Stored samples from all timepoints will be retrieved and diagnostic accuracy (i.e. sensitivity and specificity) of the novel test determined at different time-points before TB diagnosis. The decision of assigning the "active TB" endpoints to participants will be blinded from the new test results to avoid inclusion bias.

Data management

All source data will be kept confidential in secured locations with restricted access by authorized personnel only inclusive of monitors, auditors and reviewers of ethical and regulatory committees in line with applicable data privacy regulations. Each participant is asked to consent to this handling of the data, and is assigned a pseudonymous identification number that is used throughout the study on all source data.

Accurate documentation of paper-based and electronic source data, e.g., original records and certified copies of original records, progress notes, screening logs, and recorded data from automated instruments, will be maintained. The pseudonymized clinical data captured on paper-based Case Report Forms will be entered at the sites into a database using the web-based Clinical Data Management System of OpenClinica (OpenClinica LLC, Waltham, MA, USA). The study specific database has been built, maintained and hosted by the LMU Klinikum on a centralized secure server. Data modifications and necessary corrections performed in the database also within the context of double data entry will be documented and tracked in audit trails. Data quality and plausibility are assured by a series of pre-programmed edit and range checks in OpenClinica. Further validation checks are programmed in Stata (Statacorp, College Station, TX, USA) with extracts of the database and electronically received data, e.g., spirometry, dCXR and laboratory, will be integrated into analyses of datasets.

2		
3 4	358	
5 6	359	Monitoring
7 8	360	Assigned study monitors will visit the sites at regular intervals physically and/or virtually in
9 10	361	addition to frequent day-to-day communication. Close follow-up on all study-related aspects
11 12	362	will be performed to ascertain compliance with standards of Good Clinical Practice, the
13 14	363	Declaration of Helsinki, and other local and national regulatory guidelines inclusive of
15 16	364	guidelines for infection prevention and control of airborne-transmitted diseases, e.g., social
17 18	365	distancing in well-ventilated spaces, and wearing of personal protective equipment. In
19 20 21	366	particular, monitors that support designated study personnel are responsible to verify (I)
21 22 23	367	adequacy of the study personnels' qualifications and facilities, (II) accuracy of informed
24 25	368	consent procedures and patient eligibility, (III) adherence to the study protocol, (IV) protection
26 27	369	of rights and well-being of participants, (V) adherence to infection prevention and control
28 29	370	measures (VI) accuracy and completeness of study documents and other study-related
30 31	371	records, and (VII) maintenance of source documents.
32 33	372	
34 35	373	Ethics and dissemination
36 37	374	The study protocol and informed consent/assent documents have been approved by regulatory
38 39 40	375	and ethical committees of the participating institutions [Medical Research Council in Zimbabwe
40 41 42	376	(MRCZ/A/2618), the National Health Research Ethics Committee in Tanzania (TMDA-
43 44	377	WEB0021/CTR/0004/03), the National Bioethics Committee for Health in Mozambique
45 46	378	(541/CNBS/21), and the ethical committees of London School of Hygiene & Tropical Medicine,
47 48	379	United Kingdom (22522-2), and the medical faculty of the Ludwig-Maximilians-Universität
49 50	380	München, Germany (20-0771)].
51 52	381	

Adult ICs and HHCs are asked for written informed consent prior to their participation. Underage HHCs are asked for assent in addition to obtaining the consent of their legal guardians/parents; with ages for assent depending on local guidance. In case of illiteracy, the participant is asked to give its consent by fingerprint while an adult impartial, literate witness

BMJ Open

present during the entire consent procedure signs the consent on behalf. All participants have the right to withdraw from the study at any time. Findings derived from ERASE-TB will be presented at scientific conferences, and published in peer-reviewed international journals.

Current study status

The recruitment of ICs and HHCs is in progress in Zimbabwe, Mozambique and Tanzania since March, August and September 2021, respectively. The follow-up of HHCs is anticipated to be completed in March, August and September 2023 in Zimbabwe, Mozambigue and Tanzania, respectively; laboratory analyses are estimated to be performed by December 2024.

Author contributions

The study proposal and protocol were written by NH, KK with scientific input from CK, TM, CG, JM. ETM, UP, DB, AM wrote the initial manuscript with scientific input on the database and data management section from FR, TA. NH, KK critically reviewed the initial draft of the manuscript. KH, GK, CJC, ENN, TA, provided critical feedback on the manuscript. All authors have read and approved the final version of the manuscript.

Funding statement

ERASE-TB is part of the EDCTP2 programme supported by the European Union (grant number RIA2018D-2508-ERASE-TB), the German Center for Infection Research (DZIF) grant number: 02.710 and the Swedish Research Council (220-23602). CJC is funded by the Wellcome Trust (203905/Z/16/Z). Cepheid, Inc., and SD Biosensor provided test kits and analyzers at no cost to the Consortium.

Acknowledgments

We are grateful to the study personnel from the Biomedical Research and Training Institute and the Zvitambo Research Institute, Zimbabwe, the Instituto Nacional de Saúde, Mozambique, and the National Institute for Medical Research - Mbeya Medical Research

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	414	Centre, Tanzania for their exceptional efforts and contributions, which made this research
	415	possible.
	416	
	417	Consortium authorship
	418	The following are members of the ERASE-TB consortium: Anna Shepherd ^a , Hazel M Dockrell ^a ,
	419	Judith Bruchfeld ^b , Christopher Sundling ^b , Charles Sandy ^c , Mishelle Mugava ^c , Tsitsi
	420	Bandason ^c , Martha Chipinduro ^c , Kuda Mutasa ^d , Sandra Rukobo ^d , Lwitiho Sudi ^e , Antelmo
	421	Haule ^e , Emmanuel Sichone ^e , Paschal Qwaray ^e , Bariki Mtafya ^e , Harrieth Mwambola ^e , Lilian
19 20 21	422	Minja ^e , Issa Sabi ^e , Peter Edwin ^e , Dogo Ngalison ^e , Stella Luswema ^e , Willyhelmina Olomi ^e ,
21 22 23	423	Doreen Pamba ^e , Simeon Mwanyonga ^e , Celina Nhamuave ^f , António Machiana ^f , Carla Madeira ^f ,
24 25	424	Emelva Manhiça ^f , Nádia Sitoe ^f , Jorge Ribeiro ^f , Christof Geldmacher ^g , Andrea Rachow ^g , Olena
26 27 28 29 30 31 32 33 34 35	425	Ivanova ⁹ , Laura Olbrich ⁹ , Elmar Saathoff ⁹ , Michael Hoelscher ⁹ .
	426	
	427	^a Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School
	428	of Hygiene & Tropical Medicine, London, UK
	429	^b Karolinska Institute, Stockholm, Sweden
36 37	430	^c Biomedical Research and Training Institute, Harare, Zimbabwe
38 39 40	431	^d Zvitambo Research Institute, Harare, Zimbabwe
40 41 42	432	eNational Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania
43 44	433	fInstituto Nacional de Saúde, Marracuene, Mozambique
45 46	434	⁹ Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich,
47 48 49 50 51 52 53 54 55 56 57 58	435	Munich, Germany
	436	
	437	Competing interests statement
	438	None declaired.
	439	
	440	Disclaimer
59 60	441	Not applicable.

2			
3	442	Refe	erences
4	443		
5	444	1	Global tuberculosis report 2021.
6	445		https://www.who.int/publications/i/item/9789240037021 (accessed 28 Oct 2021).
7	446	2	The end TB STraTegy global strategy and targets for tuberculosis prevention, care
8 9	447		and control after 2015 a. Published Online First:
9 10	448		2014.https://www.who.int/tb/strategy/End_TB_Strategy.pdf (accessed 28 Oct 2021).
11	449	3	WHO. Global Tuberculosis Report.
12	450		2020.https://www.who.int/publications/i/item/9789240013131 (accessed 31 Jul 2021).
13	451	4	Snider B, Patel B, McBean E. Asymptomatic Cases, the Hidden Challenge in
14	452		Predicting COVID-19 Caseload Increases. Infect Dis Reports 2021, Vol 13, Pages
15	453	_	340-347 2021; 13 :340–7. doi:10.3390/IDR13020033
16	454	5	TB Disease - Symptoms, treatment & prevention - TBFacts. https://tbfacts.org/tb-
17	455	-	disease/ (accessed 28 Aug 2021).
18	456	6	Honeyborne I, McHugh TD, Phillips PPJ, et al. Molecular Bacterial Load Assay, a
19	457		Culture-Free Biomarker for Rapid and Accurate Quantification of Sputum
20	458		Mycobacterium tuberculosis Bacillary Load during Treatment. J Clin Microbiol
21 22	459	-	2011; 49 :3905. doi:10.1128/JCM.00547-11
22	460	7	UNIAIDS. UNAIDS Global AIDS Update. 2021.
23	461		https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf
25	462	0	(accessed 28 Oct 2021). ZIMBABWE POPULATION CENSUS 2012 WOMEN AND MEN PROFILE SUMMARY
26	463 464	8	
27	464 465		REPORT. Published Online First: 2016.https://www.zimstat.co.zw/wp- content/uploads/publications/Social/Gender/Women-and-Men-Report-2012.pdf
28	465 466		(accessed 15 Oct 2021).
29	400 467	9	Tanzania Census 2012 - Dashboard. http://dataforall.org/dashboard/tanzania/
30	468	3	(accessed 15 Oct 2021).
31	469	10	ZIMBABWE POPULATION-BASED HIV IMPACT ASSESSMENT ZIMPHIA 2020 KEY
32	470	10	FINDINGS. https://phia.icap.columbia.edu/wp-content/uploads/2020/11/ZIMPHIA-
33 34	471		2020-Summary-Sheet Web.pdf (accessed 3 Sep 2021).
35	472	11	Xadreque H, Maunze A, Dade M, <i>et al.</i> IV RECENSEAMENTO GERAL DA
36	473	•••	POPULAÇÃO E HABITAÇÃO. 2017.http://www.ine.gov.mz/iv-rgph-
37	474		2017/mocambique/censo-2017-brochura-dos-resultados-definitivos-do-iv-rgph-
38	475		nacional.pdf (accessed 31 Jul 2021).
39	476	12	Population of Cities in Zimbabwe (2021).
40	477		https://worldpopulationreview.com/countries/cities/zimbabwe (accessed 3 Aug 2021).
41	478	13	World atlas. https://knoema.com/atlas/United-Republic-of-Tanzania. (accessed 26 Jul
42	479		2021).
43	480	14	Prevalence of HIV, total (% of population ages 15-49) Data.
44	481		https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS?locations=ZW (accessed 3 Aug
45 46	482		2021).
46 47	483	15	Incidence of tuberculosis (per 100,000 people) - Zimbabwe Data.
48	484		https://data.worldbank.org/indicator/SH.TBS.INCD?locations (accessed 3 Aug 2021).
49	485	16	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of
50	486		Tuberculosis in Vietnam. N Engl J Med 2018; 378 :221–9.
51	487	<i></i>	doi:10.1056/NEJMOA1700209
52	488	17	Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for
53	489		triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence
54	490	40	algorithms. Lancet Digit Heal 2021;3:e543–54. doi:10.1016/S2589-7500(21)00116-3
55	491	18	MacPherson P, Webb EL, Kamchedzera W, <i>et al.</i> Computer-aided X-ray screening for
56	492		tuberculosis and HIV testing among adults with cough in Malawi (the PROSPECT study): A randomised trial and cost effectiveness analysis. <i>PLoS Med</i> 2021; 18 :1, 17
57 58	493 404		study): A randomised trial and cost-effectiveness analysis. <i>PLoS Med</i> 2021; 18 :1–17. doi:10.1371/journal.pmed.1003752
58 59	494 495	19	Dorman S, Schumacher S, Alland D, <i>et al.</i> Xpert MTB/RIF Ultra for detection of
59 60	495 496	19	Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre
00	496 497		diagnostic accuracy study. Lancet Infect Dis 2018; 18 :76–84. doi:10.1016/S1473-
	-101		

1			
2			
3	498		3099(17)30691-6
4	499	20	WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of
5	500		Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Published Online First:
6 7	501		2017.http://apps.who.int/bookorders. (accessed 19 Oct 2021).
8	502	21	World Health Organization. WHO consolidated guidelines on tuberculosis: Module 2:
9	503		Screening. 2021.https://www.who.int/publications/i/item/9789240022676 (accessed 9
10	504	~~	Dec 2021).
11	505	22	Hamasur B, Bruchfeld J, van Helden P, <i>et al.</i> A sensitive urinary lipoarabinomannan
12	506 507	23	test for tuberculosis. <i>PLoS One</i> 2015; 10 . doi:10.1371/JOURNAL.PONE.0123457 Portevin D, Moukambi F, Clowes P, <i>et al.</i> Assessment of the novel T-cell activation
13	507 508	25	marker-tuberculosis assay for diagnosis of active tuberculosis in children: a
14	509		prospective proof-of-concept study. <i>Lancet Infect Dis</i> 2014; 14 :931–8.
15 16	510		doi:10.1016/S1473-3099(14)70884-9
17	511	24	Schuetz A, Haule A, Reither K, et al. Monitoring CD27 expression to evaluate
18	512		Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo. PLoS One
19	513		2011;6. doi:10.1371/JOURNAL.PONE.0027284
20	514	25	Ahmed MIM, Ntinginya NE, Kibiki G, et al. Phenotypic Changes on Mycobacterium
21	515		Tuberculosis-Specific CD4 T Cells as Surrogate Markers for Tuberculosis Treatment
22	516		Efficacy. Front Immunol 2018;9:2247. doi:10.3389/FIMMU.2018.02247/BIBTEX
23 24	517	26	Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional
24	518		signatures for incipient tuberculosis: a systematic review and patient-level pooled
26	519		meta-analysis. <i>Lancet Respir Med</i> 2020; 8 :395–406.
27	520 521	27	doi:http://dx.doi.org/10.1016/S2213-2600%2819%2930282-6 Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, <i>et al.</i> Biomarker-guided tuberculosis
28	521	21	preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis
29	523		2021; 21 :354–65. doi:10.1016/S1473-3099(20)30914-2/ATTACHMENT/EB270186-
30	524		669A-4F82-8A80-FB38FA1FB796/MMC1.PDF
31 32	525	28	Warsinske H, Rao A, Moreira F, et al. Assessment of Validity of a Blood-Based 3-
33	526		Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease
34	527		Severity, and Treatment Response. JAMA Netw open 2018;1:e183779.
35	528		doi:10.1001/JAMANETWORKOPEN.2018.3779
36	529	29	Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of
37	530		pulmonary tuberculosis: a multicohort analysis. <i>Lancet Respir Med</i> 2016;4:213–24.
38	531	20	doi:10.1016/S2213-2600(16)00048-5
39 40	532	30	Mendelson F, Griesel R, Tiffin N, <i>et al.</i> C-reactive protein and procalcitonin to discriminate between tuberculosis, Pneumocystis jirovecii pneumonia, and bacterial
40	533 534		pneumonia in HIV-infected inpatients meeting WHO criteria for seriously ill: a
42	535		prospective cohort study. BMC Infect Dis 2018; 18 . doi:10.1186/S12879-018-3303-6
43	536	31	Huang C, Lee L, Ho C, <i>et al.</i> High serum levels of procalcitonin and soluble TREM-1
44	537	0.	correlated with poor prognosis in pulmonary tuberculosis. <i>J Infect</i> 2014; 68 :440–7.
45	538		doi:10.1016/J.JINF.2013.12.012
46	539	32	Feng J, Su W, Pan S, et al. Role of TREM-1 in pulmonary tuberculosis patients-
47 48	540		analysis of serum soluble TREM-1 levels. Sci Rep 2018;8. doi:10.1038/S41598-018-
49	541		26478-2
50	542	33	Kumar NP, Velayutham B, Nair D, et al. Angiopoietins as biomarkers of disease
51	543		severity and bacterial burden in pulmonary tuberculosis. Int J Tuberc Lung Dis
52	544 545	24	2017; 21 :93. doi:10.5588/IJTLD.16.0565
53	545 546	34	Kathamuthu G, Moideen K, Baskaran D, <i>et al.</i> Tuberculous lymphadenitis is associated with altered levels of circulating angiogenic factors. <i>Int J Tuberc Lung Dis</i>
54	546 547		2018; 22 :557–66. doi:10.5588/IJTLD.17.0609
55 56	548	35	Sivro A, McKinnon L, Yende-Zuma N, <i>et al.</i> Plasma Cytokine Predictors of
57	549		Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
58	550		infected Individuals from Durban, South Africa. <i>Clin Infect Dis</i> 2017; 65 :819–26.
59	551		doi:10.1093/CID/CIX357
60	552	36	La Manna M, Orlando V, Li Donni P, et al. Identification of plasma biomarkers for
	553		discrimination between tuberculosis infection/disease and pulmonary non tuberculosis

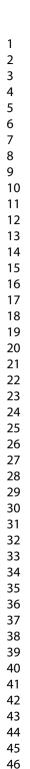
1			
2			
3	554		disease. PLoS One 2018; 13 . doi:10.1371/JOURNAL.PONE.0192664
4	555	37	Sivro A, McKinnon L, Yende-Zuma N, <i>et al.</i> Plasma Cytokine Predictors of
5	556	01	Tuberculosis Recurrence in Antiretroviral-Treated Human Immunodeficiency Virus-
6			
7	557		infected Individuals from Durban, South Africa. <i>Clin Infect Dis</i> 2017; 65 :819–26.
8	558	~ ~	doi:10.1093/CID/CIX357
9	559	38	Chegou NN, Sutherland JS, Malherbe S, et al. Diagnostic performance of a seven-
10	560		marker serum protein biosignature for the diagnosis of active TB disease in African
11	561		primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax
12	562		2016; 71 :785–94. doi:10.1136/thoraxjnl-2015-207999
13	563	39	Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
14	564		prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
15	565		Statement. BMC Med 2015;13:1–10. doi:10.1186/S12916-014-0241-Z/TABLES/1
16	566	40	Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities,
17	567		and Pitfalls in Research and Practice. Front public Heal 2017;5.
18	568		doi:10.3389/FPUBH.2017.00307
19	569	41	Agency ZS. QUALITY CONTROL MANUAL Provincial Report Harare Central Census
20	570	T 1	Office. https://www.zimstat.co.zw/wp-
20	570		content/uploads/publications/Population/population/Harare.pdf (accessed 3 Aug
22			
23	572 573	42	2021). Mazambigua Dapulation 2021 (Demographica, Mana, Crapha)
24	573 574	42	Mozambique Population 2021 (Demographics, Maps, Graphs). https://worldpopulationreview.com/countries/mozambique-population (accessed 27 Jul
25			
26	575	40	
27	576	43	ZIMBABWE NATIONAL HIV/AIDS AND TUBERCULOSIS CONTROL
28	577		PROGRAMMES. Republic of Zimbabwe NATIONAL HIV/AIDS AND TUBERCULOSIS
29	578		CONTROL PROGRAMMES. https://www.who.int/hiv/pub/guidelines/zimbabwe.pdf
30	579		(accessed 1 Sep 2021).
31	580		
32	581		
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43 44			
44 45			
45 46			
40 47			
47			
40			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			

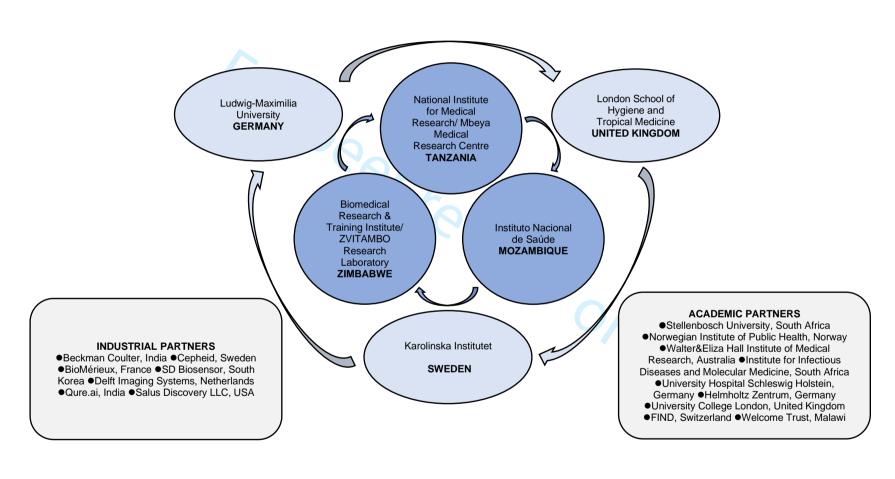
1 2		
3 4 5 6 7 8 9 10 11 12 13 14	582	Figure legend
	583	Figure 1. The ERASE-TB consortium
	584	Abbreviations: ERASE-TB=Early Risk Assessment in TB contactS by new diagnostic tEsts
	585	
	586	Figure 2. Location and characteristics of ERASE-TB study sites
	587	Notes: The location of each study site is indicated by a red asterix. Source data used within
15 16	588	this figure are taken from the references [7,8,41–43,9–15].
17 18	589	Abbreviations: ERASE=Early Risk Assessment in TB contactS by new diagnostic tEsts;
19 20 21	590	TB=tuberculosis; HIV=human immunodeficiency virus
22 23	591	
24 25	592	Figure 3. Eligibility criteria and schedules of events for index cases and household contacts
26 27	593	Notes: A=depending on the time point of study enrollment and consequently on the duration
28 29	594	available for follow-up, i.e. 18 or 24 months, the follow-up visit at 24 months ± 30 days may be
30 31	595	conditional; B =the follow-up visit by phone may be conducted after the last scheduled follow-
32 33	596	up visit at 18 months \pm 30 days or 24 months \pm 30 days to assess whether symptoms suggestive
34 35	597	of TB have occurred, TB diagnosis has been made or anti-TB treatment has been initiated;
36 37	598	C=unwell visits by phone or on-site may be conducted between scheduled follow-up visits if a
38 39 40	599	participant presents at a recruitment healthcare facility with signs and symptoms suggestive of
40 41 42	600	TB; D =coached spontaneous or induced sputum collection for storage at scheduled follow-up
43 44	601	visit at 18 months \pm 30 days or 24 months \pm 30 days, and for repetition of HIV testing if tested
45 46	602	negative at baseline; E=coached spontaneous or induced sputum collection upon the decision
47 48	603	of the investigating team for testing by Xpert MTB/RIF Ultra if participant presents with signs
49 50	604	and symptoms suggestive of TB; F=coached spontaneous or induced sputum collection in
51 52	605	case of Xpert MTB/RIF Ultra positivity or strong clinical suspicion of TB for repetition of the
53 54	606	Xpert MTB/RIF Ultra; G =in case of HIV positivity to be followed by the assessment of CD4
55 56 57	607	counts; H=CXR to be conducted at an unscheduled on-site unwell visit upon the decision of
57 58 59	608	the investigating team depending on the nature of symptoms reported, and the time elapsed
60	609	since the last CXR including its findings; I=not to be conducted among pregnant women;

Page 23 of 29

BMJ Open

J=stored venous blood includes 6mL EDTA blood for whole blood and plasma, 4mL serum and 2.5mL PAXgene blood, all samples will be deep frozen for retrospective testing using new diagnostics as described in text; **K**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required an unscheduled on-site or home visit will be arranged by phone, the resolution of symptoms can alternatively be addressed by phone; L=collection of PBMC at baseline and follow-up visit at 6 months ±30 days is optional, thus will not be performed at each participating site and for each participant; **M**=in case the evaluation of symptoms of a participant unable to present at a recruitment healthcare facility is required or doubtful if required an unscheduled unwell visit by phone will be arranged, the resolution of symptoms can alternatively be addressed by phone; N=spirometry and/or diabetes (HbA1c) will be performed at scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if required or not performed at baseline, anaemia (Hb) will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days if possible; **O**=blood pressure measurement will be performed at baseline and scheduled follow-up visits at 6 months ±30 days, 12 months ±30 days and 18 or 24 months ±30 days; P=WGS to be performed once Mtb infection is confirmed and an isolate could be recovered.


Abbreviations: TB=tuberculosis; WHO=World Health Organization; HIV=human immunodeficiency virus; WGS=whole genome sequencing; MBLA=molecular bacterial load assay; CXR=chest radiograph; IGRA=interferon gamma release assay; PBMC=peripheral blood mononuclear cell; TAM-TB=T- cell activation marker tuberculosis; MTB=Mycobacterium tuberculosis; RIF=rifampicin, Hb=haemoglobin; HbA1c=glycated hemoglobin; LAM=lioparabinomannan; CD4=cluster of differentiation 4


Figure 4. Study design

Abbreviations: HHC=household contact; TB=tuberculosis; IC=index case; WHO=World

Health Organization; CXR= chest radiograph; SS=symptom score; MTB=Mycobacterium

tuberculosis; RIF=rifampicin; pos=positive; CT=cpmputer tomography; FU=follow-up

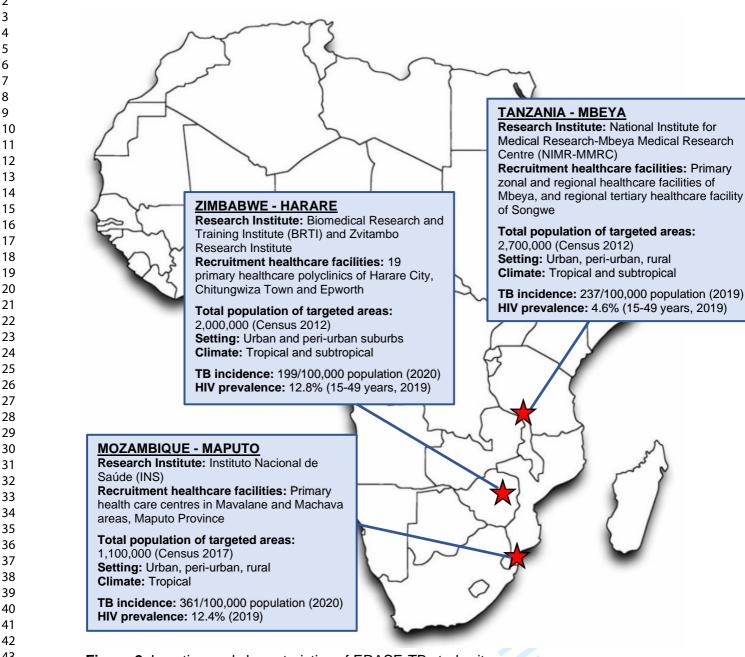
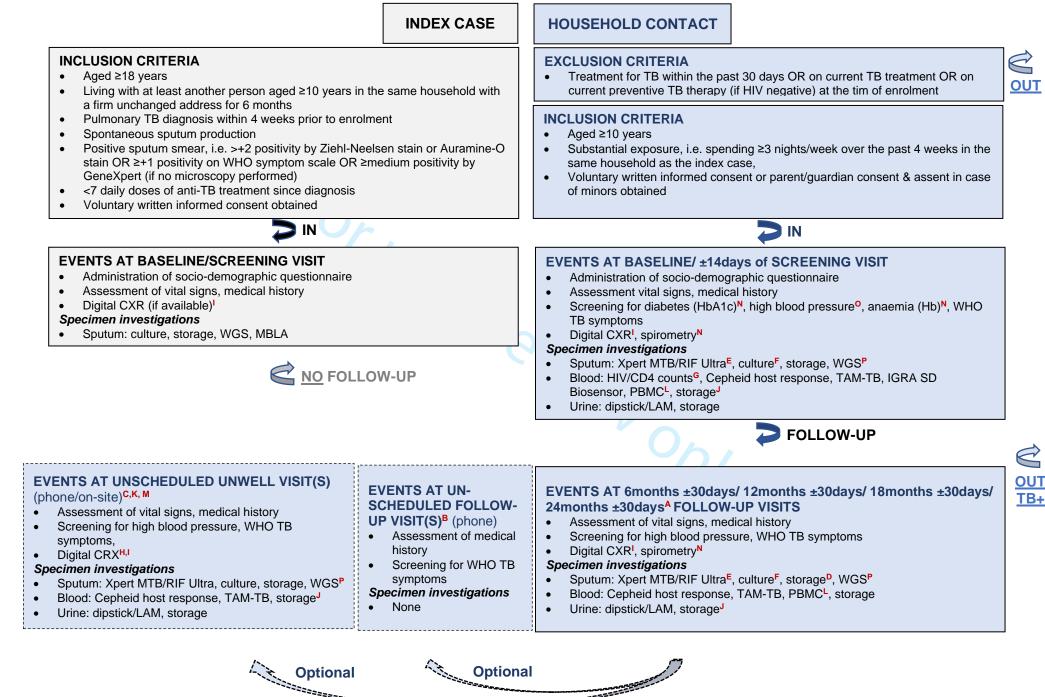
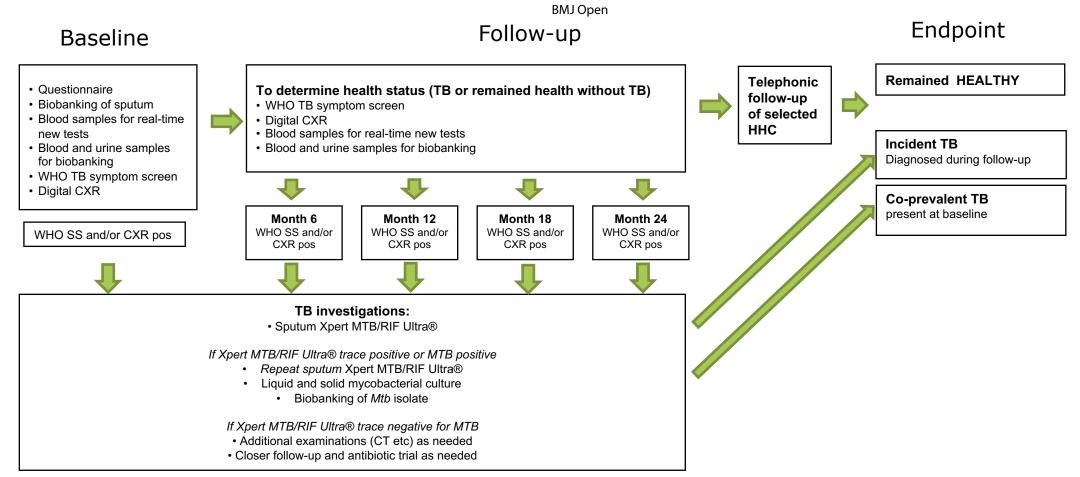



Figure 2. Location and characteristics of ERASE-TB study sites



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Figure 3. Eligibility criteria and schedules of events for index cases and household contacts

. cases an.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 29

Section & Topic	No	Item	Reported on p #
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2-3
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	5-6
	4	Study objectives and hypotheses	6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	6-7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7 (Figure 3)
	7	On what basis potentially eligible participants were identified	7 (Figure 3)
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	7
	9	Whether participants formed a consecutive, random or convenience series	7, 11
Test methods	10a	Index test, in sufficient detail to allow replication	8-10, 11-13
	10b	Reference standard, in sufficient detail to allow replication	8-10, 11-13
	11	Rationale for choosing the reference standard (if alternatives exist)	8-10, 11-13
	12a	Definition of and rationale for test positivity cut-offs or result categories	13-14
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	13-14
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	13-14
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	13-14
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	13-14
	15	How indeterminate index test or reference standard results were handled	13-14
	16	How missing data on the index test and reference standard were handled	14
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	13-14
	18	Intended sample size and how it was determined	11
RESULTS			
Participants	19	Flow of participants, using a diagram	8-10 (Figure 3)
	20	Baseline demographic and clinical characteristics of participants	8-10 (Figure 3)
	21a	Distribution of severity of disease in those with the target condition	
	21b	Distribution of alternative diagnoses in those without the target condition	
	22	Time interval and any clinical interventions between index test and reference standard	
Test results	23	Cross-tabulation of the index test results (or their distribution)	
	-	by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	13-14
	25	Any adverse events from performing the index test or the reference standard	
DISCUSSION	-		
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	3
		generalisability	-
	27	Implications for practice, including the intended use and clinical role of the index test	5-6
OTHER			
INFORMATION			
	28	Registration number and name of registry	2
	29	Where the full study protocol can be accessed	
	30	Sources of funding and other support; role of funders	16
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

STARD 2015

AIM

STARD stands for "Standards for Reporting Diagnostic accuracy studies". This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication.

EXPLANATION

A **diagnostic accuracy study** evaluates the ability of one or more medical tests to correctly classify study participants as having a **target condition.** This can be a disease, a disease stage, response or benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any other method for collecting information about the current health status of a patient.

The test whose accuracy is evaluated is called **index test.** A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by comparing the distribution of the index test results with those of the **reference standard**. The reference standard is the best available method for establishing the presence or absence of the target condition. An accuracy study can rely on one or more reference standards.

If test results are categorized as either positive or negative, the cross-tabulation of the index test results against those of the reference standard can be used to estimate the **sensitivity** of the index test (the proportion of participants *with* the target condition who have a positive index test), and its **specificity** (the proportion *without* the target condition who have a negative index test). From this cross-tabulation (sometimes referred to as the contingency or "2x2" table), several other accuracy statistics can be estimated, such as the positive and negative **predictive values** of the test. Confidence intervals around estimates of accuracy can then be calculated to quantify the statistical **precision** of the measurements.

If the index test results can take more than two values, categorization of test results as positive or negative requires a **test positivity cut-off**. When multiple such cut-offs can be defined, authors can report a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The **area under the ROC curve** informs in a single numerical value about the overall diagnostic accuracy of the index test.

The **intended use** of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The **clinical role** of a test explains its position relative to existing tests in the clinical pathway. A replacement test, for example, replaces an existing test. A triage test is used before an existing test; an add-on test is used after an existing test.

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply.

DEVELOPMENT

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The list represents an update of the first version, which was published in 2003.

More information can be found on <u>http://www.equator-network.org/reporting-guidelines/stard.</u>

