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Supporting Text 

 

Supporting Materials and Methods: 

Text S1. Extended study area background 

As of 10/2020, 3,610 unconventional oil and gas (UOG) wells (wells emplaced with both 

hydraulic fracturing and horizontal drilling of shale), including the first such well in the state, 

were drilled in Washington, Beaver, and Greene counties, Pennsylvania (Figure S1A).1,2 This tri-

county area considered in the study is henceforth referred to as SWPA. Over 8,250 conventional 

oil/gas (COG) wells have also been drilled in the area (Figure S1A), alongside possibly tens of 

thousands of undocumented abandoned COG wells.3 Underlain by regional coal beds at varying 

depths, the region of SWPA and Washington County specifically are now approximately 35.1% 

and >53% mined, respectively (Figure S1B).4,5 Reflecting this overlap, 89% of UOG wells in 

SWPA are located in “coal areas”, defined as areas of workable coal seam(s). These wells are 

thus likely to be drilled through coal beds. At least 950 UOG wells in SWPA are drilled directly 

through pillars within coal mines.2 

In the SWPA region, like much of the Appalachian Basin, Ca-HCO3 or Ca-Mg-HCO3 are 

typically the dominant ions at shallow depths and in upland regions.6 Groundwaters evolve to 

Na-HCO3 or Na-Cl type water with increasing depth or residence time due to ion exchange 

and/or mixing with Appalachian Basin brine.7 Groundwater flow paths in SWPA are typically 

intermediate to local flow systems with saline groundwater present at depths of tens of meters 

below land surface.6 Furthermore, while very few faults outcrop at the surface in the study area, 

anticlinal and synclinal folding is found throughout Washington and Greene counties (Figure 

S1C). 
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Text S2. Additional databases used  

Additional spatial data used in our study were obtained by downloading (1) 

unconventional oil and gas well, conventional oil and gas well, and coal mining area locations 

from the PA DEP Open Data Portal, (2) bedrock lithology, fault, syncline, and anticline 

locational data from the United States Geological Survey PA Geologic Map database and (3) 

primary and secondary highway locations from the U.S. Census Bureau TIGER/Line Shapefiles 

database.2,8,9  

 

Text S3. Additional spatial analysis details 

The great-circle (Haversine) distances between groundwater samples and the nearest coal 

mining areas, highways, faults, anticlines, and synclines were calculated in ArcGIS Pro 2.6.2 

using the “Near” feature. The distances between groundwater samples and oil and gas wells and 

the density of oil and gas wells within 1km were calculated using R 3.6.1. For distance 

calculations, we calculated the distance to the closest oil and gas well, and the density of UOG 

wells was determined by calculating the number of oil and gas wells drilled within 1km of a 

given water sample. Our distance and density analyses considered only oil and gas wells that 

were drilled prior to groundwater sample collection, and excluded wells with a status listed as 

“Operator Reported Not Drilled” or “Proposed But Never Materialized”. Some wells in the PA 

DEP database do not report a spud date, and we excluded such wells from our analyses because 

we could not ensure they were drilled prior to groundwater sample collection. To ensure this was 

justified, we investigated and found the majority of wells reported as “Active” but lacking spud 

dates were wells for which permits had been issued but were not yet drilled. 
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The 5x5km window size and 200m steps used in our sliding window analysis were 

selected to be consistent and to allow comparisons with past work that analyzed correlations 

between CH4 concentrations and proximity to anticlines, faults, and oil and gas wells using these 

exact window and step sizes10,11. The 5x5km window and 200m step size were initially selected 

based on a consideration of computational complexity and heatmap smoothness. Our sliding 

window algorithm also necessitates at least 10 samples are located within a window before the 

Kendall rank correlation is calculated, and a 5x5km window size generally ensures adequate 

sample numbers to identify statistically significant correlations, if present. 

 

Text S4. Geochemical protocol to identify recently migrated methane 

To delineate longstanding CH4 from newly migrated (“anomalous”) CH4 that may be 

attributable to UOGD, we implemented a geochemical protocol adapted from Wen et al. (2019).5 

This protocol identifies potentially anomalous CH4 based on salinity and redox-related 

parameters. First, samples were screened to include only those with [CH4] ≥ 1 mg/L. Next, 

samples were screened based on ion ratios to exclude samples that contain CH4 that may be 

present due to naturally occurring Appalachian brine migration, retaining only samples with a 

calcium to sodium mass ratio ([Ca] / [Na]) ≥ 0.52 and [Cl] ≤ 30 mg/L. Past studies in the 

Appalachian Basin have documented [CH4] ≥ 1 mg/L rarely occurs naturally in non-Na 

dominated groundwater because Appalachian basin brines are NaCl-rich.12,13 Thus when [CH4] ≥ 

1 mg/L is measured in waters with Ca-dominated chemistry, the CH4 is more likely to be 

anomalous. Finally, a redox-related filter was applied to further detect samples that contain 

recently migrated CH4. Past work has argued the anaerobic oxidation of CH4 in groundwater is 

coupled to the reduction of sulfate (SO4) and iron (Fe); thus, when CH4 is present in groundwater 

for long time periods, both [SO4] and [Fe] are low.14 In contrast, transiently high [SO4] and [Fe] 
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has been observed in groundwaters containing recently migrated CH4 from leaking UOGD 

wells.5,15 Thus, samples that contained [SO4] ≥ 6 mg/L or [SO4] ≥ 6 mg/L + [Fe] ≥ 0.3 mg/L were 

thus considered potentially impacted by recent CH4 migration, following the criteria of Wen et 

al.5 

The results of this protocol are summarized as follows: 382 / 6,991 groundwater samples 

in our dataset contain [CH4] over 1 mg/L and were thus investigated for redox and salinity 

species concentrations that might indicate recent CH4 migration from a leaking UOG well 

(shown in red in the workflow in Figure 1). Out of those 382 samples, only 32 contain a [Ca] / 

[Na] mass ratio ≥ 0.52 and [Cl] ≤ 30 mg/L, indicating for the majority of the samples, elevated 

[CH4] is likely caused by natural brine migration in SWPA. Of the 32 samples that are unlikely 

to be impacted by natural brine migration, 22 show [SO4] ≥ 6 mg/L and 11 show both [SO4] ≥ 6 

mg/L plus [Fe] ≥ 0.3 mg/L. Because sulfate and iron concentrations are typically transiently high 

following a recent influx of CH4 from leaking oil and gas wells, the 22 samples that were CH4- 

and Ca-rich and met either of these redox filters were considered potentially impacted by 

recently migrated CH4 (Figure S3). 

Considering our results in tandem with sliding window, 3 of the 22 samples are located 

within hotspots where [CH4] significantly increases nearby UOG wells (Figure 3A). As such, 

multiple lines of evidence suggest CH4 may have recently migrated from UOG wells. The lack of 

hotspots overlapping with the other 19 samples does not necessarily indicate that these samples 

were not impacted by UOGD. This geochemical protocol may be better suited for identifying 

isolated incidents (e.g., only one water supply well contaminated), as a significant correlation 

between [CH4] and proximity to UOGD may not be identified by sliding window if only one 

sample is impacted. Alternatively, the timescales over which CH4 migration may induce redox 
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chemistry changes is not well-understood, so sliding window may better detect contaminated 

localities where a transient spike in iron has already occurred, or where electron acceptors (e.g., 

iron oxides or sulfate) were already depleted prior to CH4 migration. It is also possible that our 

geochemical protocol flags some false positives. For example, long well screens can enable 

mixing of groundwaters and induce similar changes to redox chemistry. In theory, water wells 

drilled nearby fractures that enable fluid mixing (e.g., deep anoxic and shallower oxic 

groundwater) could also produce a similar effect. 

 

Text S5. Additional details on Non-negative Matrix Factorization 

Trace ions (e.g., iodide (I), bromide (Br)) and isotopes capable of distinguishing sources 

of salts in groundwater15,16 are rarely analyzed in the PADEP dataset and, even when analyzed, 

are frequently not detected to be above reporting limit. As such, traditional geochemical ratio 

analysis is not well suited for distinguishing UOGD-related brine contamination from 

background Cl sources (such as road salt or organic wastes) across all samples in our dataset. To 

delineate Cl sources using major ion data, we applied a machine learning method, non-negative 

matrix factorization (NMF). 

Our NMF methodology adapted a previously published approach17 for analyzing sources 

of SO4 in streams. NMF derives the mixing proportions and compositions of endmember water 

types for each analyte by decomposing the matrix multiplication equation V = W x H, where V is 

the groundwater sample matrix, W is a matrix of the mixing proportions of endmember sources 

at each location, and H is a matrix comprising the chemical compositions of endmember water 

types. To prepare the data for NMF, we calculated the molar ratios of Ba, Ca, Mg, SO4, and Na 

to Cl and normalized each ratio to its highest respective value. 
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While NMF does not require prior knowledge of endmember compositions, it does 

require a known number of endmembers. We thus defined the number of endmembers as the 

minimum number of components needed to explain 90% of the variance in the data in a Principal 

Component Analysis. For Cl, this required 3 endmembers. After defining the number of 

endmembers, we ran NMF using 10,000 model iterations with random initiation. For the 10,000 

model deconvolutions run, only model outputs where mixing proportions summed to 1.00 ± 0.05 

were retained. These model outputs were then filtered to retain only the top 5% best fitting 

models, based on the calculated sum square error values (see Shaughnessy et al. (2021)17 for the 

SSE equation used). The chemistry and mixing proportions of endmember sources within each 

sample were subsequently calculated based on the mean and standard deviation of the filtered 

model outputs. 

 

 

Supporting Results and Discussion: 

Text S6: Correlations between conventional wells and groundwater species 

To investigate the impacts of conventional drilling relative to UOGD, we first considered 

region-wide correlations between [CH4] or [Cl] vs. conventional well proximity or density. 

Analyzing the Kendall rank correlation, we found significant correlations (p-values < 0.05) 

between both [CH4] and [Cl] and the distance to the nearest COG well across SWPA, but 

insignificant correlations between these species and COG well density (Table S3). We thus 

identify a significant correlation between [CH4] and proximity to COG wells, but not distance to 

UOG wells (Table 1), in SWPA. Li et al. identified the same correlation for COG wells in their 

dataset from NEPA, where the number of COG wells is much smaller.10 These results, across 
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regions with very different histories of hydrocarbon extraction, suggest CH4 leakage from COG 

wells may be widespread and more frequent than leakage from UOG wells. 

 Despite the regionally significant correlations, we only identify 3 hotspots in the sliding 

window analysis of [Cl] vs. proximity to COG wells and 2 hotspots in our analysis of [CH4] vs. 

proximity to conventional wells that meet the threshold for significance (Figure S2). 

Additionally, only 2 hotspots where [CH4] increases with COG well density and 4 hotspots 

where [Cl] increases with density were identified (Figure S3).  

 It may seem a puzzle that we see significant region-wide correlations between the 

distance to conventional wells and both [CH4] and [Cl], but fewer hotspots potentially associated 

with CH4 or Cl contamination from COGD (Figures S2, S3) than UOGD (Figures 2, 3). We 

hypothesize this seemingly contradictory finding may be a function of both well leakage rates 

and the volume of gas produced by COG vs. UOG wells. In terms of atmospheric emissions, a 

greater percentage of COG wells in the Appalachian Basin leak CH4 to the atmosphere relative 

to UOG wells, but the magnitude of emissions from COG wells is typically much smaller.18 

Similarly, it’s possible that CH4 leakage to groundwater is more common from COG wells than 

UOG wells, but smaller volumes of CH4 reach aquifers from leaking COG wells. 

Correspondingly, CH4 leakage from COG wells may be more widespread (reflected in the 

region-wide correlation we identify), but impact smaller areas and fewer water supply wells due 

to less gas volume leaked (resulting in fewer hotspots). 

Despite evidence for CH4 and Cl leakage to groundwater from COG wells, we are 

reasonably confidence that misattribution of COG-related contamination to UOGD is minimal.  

Overlap between density or distance heatmaps for COG vs. UOG wells is limited to partial 

overlap of one hotspot for [Cl] vs. well distance and one hotspot for [Cl] vs. well density. 
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Because we believe the regional correlation between [Cl] and proximity to UOGD is driven by 

hotspots, the relative lack of overlap with COG well hotspots implies that this regional 

correlation is not an artifact of COGD contamination. 

While we suggest the regional correlations we identify between proximity to COG wells 

and [CH4] / [Cl] may indicate more diffuse contamination not detected in sliding window 

analysis, we suspect such impacts may in fact be less common in the vicinity of UOG wells. 

Specifically, unconventional operators are required by PADEP regulations (78a.52a and 78a.73) 

to identify and monitor any orphan or abandoned wells within 1000 feet of the vertical or 

horizontal sections of a UOG well to avoid communication between wells. Abandoned wells are 

perhaps the COG wells most likely to contaminate water supplies, as such wells are typically 

unplugged and in disrepair, and thus the monitoring and potential abatement of such issues 

during UOGD may minimize the potential for COGD contamination misattributed to UOGD. 

  

Text S7. Assessing the relationship between topography, unconventional gas well locations, and 
[Cl] 
 
 To assess the relationship between topography, [Cl], and UOG well locations, 

topographic position index (TPI) was calculated for SWPA and Bradford County (in NEPA) 

following Weiss (2001).19 Using TPI, the topographic positions of water samples and UOG wells 

were classified as valley, lower slope, flat slope, middle slope, upper slope, or ridge (listed in 

order of low to high topographic positions). In SWPA, UOG wells are disproportionately drilled 

at higher topographic positions, with 63% of wells drilled at ridgetops and 92% of wells drilled 

in upslope (middle slope, upper slope, or ridge) positions (Figure S8A). In Bradford County, 

UOG wells are more evenly distributed across topographic positions, although a majority (54%) 

are still drilled in upslope classes (Figure S8B). 
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 To assess the role topography plays in the distribution of saline groundwater, we 

compared differences in [Cl] across TPI classes in our SWPA dataset (Figure S8C) and an 

11,244-sample groundwater dataset from Bradford County (Figure S8D). The Bradford County 

dataset, available on the Shale Network database20, is essentially identical to the dataset used to 

study SWPA. We assessed whether differences in [Cl] across the 6 topographic classes were 

statistically significant based on a Tukey’s Honest Significant Differences test. No significant 

differences in [Cl] were observed between TPI classes in SWPA (p > 0.05), documenting saline 

groundwater is relatively evenly distributed regardless of topographic position. This is consistent 

with past observations of i) a relatively uniform depth to brine across valleys and ridges in 

SWPA and ii) less topographic relief in SWPA vs. NEPA and thus a lower driving force for 

brine upwelling in valley bottoms.6 In contrast, [Cl] in Bradford County was significantly higher 

in valley bottoms compared to other TPI classes (p < 0.05). This finding is also consistent with i) 

shallower depths to saline groundwater in valley bottoms than ridgetops in NEPA6 or ii) brine 

upwelling into groundwater at low topographic positions in NEPA.21 Either or both could 

contribute to the prevalence of higher [Cl] in valley bottom groundwaters in the northeast region. 

 

Text S8. Sliding window analysis of [Cl] vs. UOG well distance and density in Bradford County, 

PA 

Unlike in SWPA, we identified a statistically significant decrease in [Cl] nearby UOG 

wells (Kendall’s τ = 0.017, p-value = 0.007) and statistically insignificant increase in [Cl] with 

increasing UOG well density (Kendall’s τ = 0.007, p-value = 0.088) in Bradford County. 

Hotspots where [Cl] increases with proximity to UOG wells or with UOG well density were 

mapped across Bradford County using sliding window analysis of the 11,244-sample Bradford 

County dataset.20 Three hotspots with significant [Cl] increases were identified in Bradford 
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County for both distance- (Figure S11) and density-based (Figure S12) analysis. To assess the 

per-well increase in [Cl] in density hotspots in Figure S12 we calculated the Akritas-Theil-Sen 

(ATS) slope, Kendall’s Tau and p-value of the correlation between [Cl] and UOG well density in 

hotspot samples (n = 736). These samples display a significant positive correlation between [Cl] 

and density (ATS slope = 19.2, Kendall’s τ = 0.171, p-value < 0.001). The calculated ATS slope 

thus predicts a 19.2mg/L increase in [Cl] per UOG well drilled. Multiplying this predicted 

increase (19.2mg/L) by the highest density of UOG wells in these hotspots (n = 5), the maximum 

predicted increase in [Cl] due to UOGD is 96.0mg/L. 

However, the largest hotspots on both the distance and density maps plot nearby the 

Bridge Street fault and Towanda anticline. This is the area where Wen et al. (2018) observed 

correlations between [CH4] and the distance to UOG wells, anticlines, and faults.11 Although 

these hotspots do not entirely overlap, we cannot eliminate the possibility these correlations 

between UOGD and [Cl] are related to natural brine migration along anticlines or faults rather 

than UOGD because of the many observations of such migration in similar localities. 

 

Text S9. Testing the sliding window geospatial tool (SWGT) on Susquehanna County, PA 

groundwater methane data 

 While SWGT has previously been applied to identify potentially CH4 contaminated sites 

in the Marcellus Shale region,10,11 we sought to further validate and exemplify the analysis using 

a test dataset of groundwater samples from Susquehanna County in NEPA. Dimock Township in 

Susquehanna County was the site of a contentious methane migration incident following 

UOGD.22 Our dataset contains 1,946 samples publicly available in the Shale Network database,20 

as well as 20 samples from Dimock Township discussed in previous literature.22 Sliding window 
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was run with and without the Dimock Township data to test the ability of SGWT to detect 

locations of known CH4 migration. 

When sliding window is run without Dimock Township data, one significant hotspot is 

identified in Auburn Township (Figure S13A). This hotspot is <1km from a well previously cited 

by the Pennsylvania Department of Environmental Protection for casing/cementing violations 

showing signs of gas migration.23 With Dimock Township data22 included, an additional hotspot 

is identified that is centered around the portion of Dimock Township (nearby Burdick and 

Meshoppen Creeks) associated with gas migration into homeowner wells (Figure S13B). As 

such, we conclude sliding window can successfully identify confirmed UOGD-related gas 

migration incidents within a large dataset when the appropriate water analyses are available. 

 

Text S10. Testing our Non-negative Matrix Factorization model using the Lautz et al. (2014) 

synthetic dataset 

 To test the viability of using NMF to analyze sources of Cl in a large data set of 

groundwater chemistry spanning a large geographic area, we applied our methodology to the 

synthetic “high Cl” data set from Lautz et al. (2014).15 This data set (n = 8,107) was created by 

the authors by conservatively mixing a random sample from a bootstraped low-Cl (<20mg/L) 

groundwater dataset (n = 3,000) with a randomly selected sample from synthetic data sets of road 

salt, basin brine, septic effluent, or animal waste endmember sources of Cl, with the exact 

mixing proportions varying between samples and with different endmembers in order to create a 

realistic data set of high-Cl groundwater. 

For our analysis, we considered the same analytes as Lautz et al. (2014): Ba, Br, Ca, I, K, 

Mg, Na, and Sr.15 Our model identified three endmembers that we attributed as brine, road salt, 

and waste-derived sources of chloride. The brine endmember was attributed based on high I/Cl 
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and Br/Cl molar ratios, road salt was identified based on high Na/Cl, and the waste-derived Cl 

endmember source was attributed based on high K/Cl, Mg/Cl, and Ca/Cl (Table S4). These 

endmembers align closely with the sources of Cl used to construct the data set (road salts, 

Appalachian Basin Brine, septic effluent, and animal waste). However, our NMF model grouped 

the septic effluent and animal waste Cl sources as one endmember (perhaps due to fewer 

inorganic species strongly associated with these sources of Cl compared to brine- or road salt-

derived Cl). 

We assessed our model’s performance relative to that of the Lautz et al. linear 

discriminant analysis (LDA) model15 as a rough measure of its accuracy, though we caution 

these approaches are not directly comparable. For the comparison, we classified the predominant 

source of Cl in every sample based on which endmember displayed the largest mixing proportion 

(e.g., abrine > aroad salt, awaste-derived was classified as a sample with brine-sourced Cl). Our NMF 

model classified the correct mixing endmember Cl source for 85% of brine-derived samples, 

86% of road salt derived samples, and 64% of waste-derived samples. These results show similar 

accuracy to that described when the Lautz et al. (2014) LDA model was applied to other regions 

of the U.S. with known sources of Cl contamination.24 

 

Text S11. Groundwater flow in SWPA vs. NEPA 

 Hydrogeologic regimes vary between SWPA and NEPA, potentially influencing UOGD 

contaminant transport and domestic well vulnerability to contamination. Greater topographic 

relief in NEPA produces greater hydraulic head, and more regional groundwater flow compared 

to SWPA.6 Additionally, recharge is generally slower in domestic wells in SWPA compared to 

NEPA.25 Slower flow in SWPA could act to limit the transport of contaminants from a UOG 
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wellpad to a domestic well, or alternatively reduce the dilution of contaminants in contaminated 

aquifers. However, the exact vulnerability of a domestic well in SWPA or NEPA is ultimately 

shaped by multiple factors including the depth of the well, aquifer(s) from which it draws water, 

topographic position, and the presence of nearby preferential flowpaths (e.g., fractures or coal 

seams). 

 When broadly assessed on a regional scale, domestic groundwater supplies in both 

SWPA and NEPA are potentially more vulnerable to surface and subsurface sources of UOGD 

contamination than other shale gas basins in the United States. Groundwater age studies in both 

NEPA and a portion of the Appalachian Basin bordering SWPA (northern West Virginia) both 

report typical groundwater in domestic wells is a mix of fresh water recharged post-1950 and 

waters recharged pre-1950 with higher salinities and total dissolved solids.26,27 In contrast, 

domestic wells in the Eagle Ford, Bakken, and Haynesville Shale plays (U.S.A.) predominantly 

contain entirely pre-1950 waters, making UOGD-related contamination from surface sources 

(e.g., leaking impoundment pits or spills) unlikely in the short term.28,29 In the Williston Basin, 

surbsurface hydrogeologic transport of contamination from a UOGD wellpad into water supplies 

>0.5km is unlikely given the short amount of time since the onset of UOGD and long timescales 

necessary for contaminant transport.28 However, domestic wells in both NEPA and SWPA, 

where groundwaters typically contain modern recharge, may be vulnerable to contamination 

from both land surface activities (e.g., leaking impoundments) and subsurface leaks. 

 As such, we conclude that relative to other shale gas basins, SWPA and NEPA may be 

more likely to experience contamination but hydrogeologic differences between the two settings 

are unlikely to dramatically alter the frequency of contamination. Future work could pair our 
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analysis methods with hydrogeologic models to predict domestic well vulnerability to 

UOGD.30,31 

 

Text S12: Gas geochemistry in a small subset of sample sites 

Although our datasets are large, they and other studies using PA DEP pre-drill 

measurements10,11,12 generally do not provide all the data that can be collected in location-

specific case studies to delineate sources of CH4. Additionally, while ethane concentrations were 

measured in 6,957 / 6,991 samples in the data set, ethane detection limits are >2.5 mg/L in 2,157 

of the samples in our data set and >1 mg/L in 3,899 of the samples. Resultantly, ethane 

concentrations in only 77 samples are reported above the limit, limiting the utility of calculated 

C1/C2+ ratios across the region. Other measurements such as CH4 isotopic compositions and 

water table depths are generally not reported, and water sample or well depths are only 

sometimes reported. Therefore, no analyses of these important observations can be made from 

our dataset. This points to the importance of case studies in smaller regions to test hypotheses or 

to develop multiple lines of evidence to explain incidents of contamination when they occur. 

However, more detailed data on dissolved gas concentrations and gas isotopic 

compositions are available for a small number of sites (n = 58) in our data set. Generally, the 

anions and cations discussed in the main body of this paper were measured on separate samples, 

and isotopic measurements were completed on samples collected from the same water sources on 

later dates. We have no knowledge of why additional samples were taken, but one possibility is 

that the regulator was testing the waters because of higher [CH4]. Within these samples, δ13C-

CH4 ranges from -49.75‰ to -76.57‰, δ2H-CH4 ranges from -152.9‰ to -317.5‰, δ13C-C2H6 

ranges from -18.84‰ to -36.20‰, and ratios of CH4 (C1) to ethane and propane (C2 + C3) range 
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from 29 to 36,320 (Figure S14). [CH4] in the corresponding samples in our geochemical data set 

range from 6.54 to 73.40mg/L. 

Of these 58 samples, 7 were collected from the hotspot circled in Figure 3A where we 

suspected a shale gas well may be leaking CH4 into groundwater. For these samples, measured 

values of δ13C-CH4 (-62.35‰ to -66.38‰) and δ2H-CH4 (-189.7‰ to -200.5‰) are consistent 

with a biogenic origin of CH4. However, C1 / (C2 + C3) ratios (116 - 315) fall within the range 

typically associated with thermogenic CH4 or a mix of thermogenic and biogenic CH4.32 

Additionally, values of [CH4] (8.05 – 22.50 mg/L) are much higher than the concentrations 

typically associated with biogenic CH4 in Pennsylvania.33,34 We focus on three possible 

explanations to explain the δ13C-CH4 and C1 / (C2 + C3) observed in these samples: CH4 

oxidation, the mixing of thermogenic and biogenic gases, or the presence of coal bed gas.  

We calculated how oxidation of a theoretical biogenic CH4 alters δ13C-CH4, δ2H-CH4, 

and C1 / (C2 + C3) based on equations 1-3: 

δ13Ct = δ13Ci - εC * log(f)     (1) 

δ2Ht = δ2Hi – εD * log(f)     (2) 

C1 / (C2+C3)t = C1 / (C2+C3)i * f    (3) 

where εC and εD are the kinetic fractionation factors for carbon & hydrogen, respectively, and f 

represents the fraction of initial CH4 remaining. δ13Ci, δ2Hi, and C1 / (C2 + C3)i represent the 

initial gas composition, while δ13Ct, δ2Ht, and C1 / (C2 + C3)t represent the gas composition at a 

given f. We constructed our model using values for εC (3) and εD (54) reported by Schout et al.,35 

and biogenic CH4 with an initial δ13C-CH4 of -70‰, δ2H-CH4 of -290‰, and C1 / (C2 + C3) of 

1,000. Our calculation indicates the oxidation of such CH4 would produce δ13C-CH4, δ2H-CH4, 

and C1 / (C2 + C3) within the range observed in our samples (Figure S15) at an f of 0.16-0.19 
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(e.g., 81-84% of original CH4 oxidized). While oxidation could thus plausibly explain the 

seemingly biogenic δ13C-CH4 and thermogenic C1 / (C2 + C3) ratios in these samples, a trend in 

δ13C-CH4 vs. δ2H-CH4 or δ13C-CH4 vs. C1 / (C2 + C3) indicative of progressive oxidation is not 

especially apparent within the hotspot samples or the full isotopic dataset (Figure S14). 

Next, we evaluated whether the mixing of thermogenic gas with biogenic gas could 

produce a gas geochemistry consistent with what we observe in the hotspot samples, particularly 

focusing on a scenario where thermogenic CH4 leaked from a UOG well mixes with biogenic 

CH4 present in an aquifer prior to drilling. Mixing Marcellus shale gas (δ13C-CH4 = -37.7‰, 

δ2H-CH4 = -165.6‰, C1 / (C2 + C3) = 37.55, based on averages reported in Sharma et al.36) with 

biogenic gas (δ13C-CH4 = -75‰, δ2H-CH4 = -205‰, C1 / (C2 + C3) = 1,000) also produces δ13C-

CH4, δ2H-CH4, and C1 / (C2 + C3) that fit within the range in our samples at a mix of 24-30% 

Marcellus gas (Figure S15). 

 Alternatively, the observed δ13C-CH4 and C1 / (C2 + C3) may simply reflect the presence 

of coal bed CH4. While coal bed gases are often predominantly CH4, C1 / (C2 + C3) < 100 has 

been reported for the Pittsburgh coal seam in SWPA.37 However, δ13C-CH4 values in gas 

samples from the Freeport and Pittsburgh coals in Pennsylvania are typically isotopically heavier 

than our samples, although coal bed methane δ13C-CH4 can vary considerably.38 Methanogenesis 

within coals could also produce secondary biogenic gas that mixes with more thermogenic coal 

bed CH4 to produce a mixed isotopic signature,38 perhaps explaining the more depleted δ13C-

CH4. 

Despite the ambiguous provenance of CH4 in this locality, some of the scenarios explored 

are consistent with a potential impact of UOGD. A mix of thermogenic and biogenic gas could 

conceivably result from leakage of thermogenic gas from a UOG well. Additionally, it’s possible 
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that UOG wells could enable the upward migration of coalbed gas into groundwater if they lack 

coal casings. As we documented UOG wells intersecting coal mining areas that lacked coal 

casings in this hotspot, this mechanism is especially plausible in these samples. 
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Supporting Figures: 

 

Figure S1. Maps of the locations of unconventional and conventional oil and gas wells, coal 
mining areas identified by the PADEP, regional geology with regards to bedrock lithology and 
folding, and the location of groundwater samples (collected from wells or springs) included in 
our dataset within Beaver (top), Washington (middle) and Greene (bottom) counties in SWPA.  
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Figure S2. Sliding window heatmaps displaying correlations between the distance to 
conventional oil and gas (COG) wells and (A) [CH4] or (B) [Cl] within Beaver (top), 
Washington (middle) and Greene (bottom) counties in SWPA. The locations of COG wells are 
shown in light blue. Areas shaded red indicate negative correlations ([analyte] increases as the 
distance to a COG well decreases) while areas shaded blue indicate positive correlations 
([analyte] decreases as the distance to a COG well decreases). Darker colors imply stronger 
correlation between water chemistries at a given point on the map and proximity to the feature of 
interest. Areas shaded white are locations where sliding window was run and those shaded grey 
are localities without sufficient data density for sliding window analysis. 
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Figure S3. Sliding window heatmaps displaying correlations between the density of 
conventional oil and gas (COG) wells within 1km of a respective water sample and (A) [CH4] or 
(B) [Cl]. The locations of COG wells are shown in light blue. Areas shaded blue indicate 
negative correlations ([analyte] decreases as COG well density increases) while areas shaded red 
indicate positive correlations ([analyte] increases as COG well density increases), with color 
intensity corresponding to the relative frequency of significant positive (red) or negative (blue) 
correlations. We consider areas with a relative frequency of significant correlation > 0.7 as 
“hotspots” (maroon to black coloration). See Figure S2 for a description of the significance of 
areas shaded white and grey. 
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Figure S4. Sliding window heatmaps displaying correlations between [CH4] and the distance to 
(A) coal mining areas (outlined in blue-green) and (B) anticlinal fold axes within Beaver (top), 
Washington (middle) and Greene (bottom) counties in SWPA. See Figure S2 for descriptions of 
color shading and the significance of areas shaded white and grey. 
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Figure S5. The locations of the 22 samples flagged by the geochemical protocol as being 
potentially impacted by recent CH4 migration (yellow triangle) along with locations of 
unconventional (dark blue) and conventional (light blue) oil and gas wells cited for casing or 
cementing violations in the PA DEP compliance report database 22. Beaver (top), Washington 
(middle) and Greene (bottom) counties are outlined. Samples circled in red are located within 
hotspots where [CH4] increases with proximity to UOG wells (Figure 3A). 
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Figure S6. Sliding window heatmap displaying correlations between [Cl] and the distance to 
U.S. Census Bureau TIGER/Line shapefile roads in SWPA. See Figure S2 for descriptions of 
color shading and the significance of areas shaded white and grey. 
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Figure S7. Histograms of NMF-derived mixing proportions for endmember sources of chloride, 
depicting the mixing proportions for all samples included in the final model. The contribution of 
road salt to samples is highly skewed, with a small percentage of samples appearing highly 
impacted (i.e., 16% of samples with aroad salt > 0.75 vs. 44% of samples with aroad salt < 0.25) by 
road salting. Only 2% and 4% of samples contain abrine > 0.75 or aMR > 0.75, respectively. 
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Figure S8. UOG well locations in SWPA (A) and Bradford County (B) grouped by their 
respective topographic position. Topographic positions were assigned based on Weiss (2001), 
where classes 1-6 correspond to a topographic position of ridge, upper slope, middle slope, flat 
slope, lower slope, and valley, respectively 16. Plots of chloride concentrations across 
topographic positions in SWPA (C) and Bradford County (D). The lower and upper bounds of 
each box correspond to the first (Q1) and third (Q3) quantile [Cl], respectively, while the solid 
line through the box represents the median [Cl]. The upper whisker corresponds to Q3 + 
1.5*(Q3-Q1), while the lower whisker corresponds to Q1– 1.5*(Q3-Q1). Outlier values are not 
shown in the plot. The mean [Cl] in each topographic position is denoted using a red circle. A * 
corresponds to a statistically significant difference in mean [Cl] (p < 0.05), assessed for every 
topographic position using a Tukey’s Honest Significant Differences test. The only significant 
difference identified was for TPI Class 6 (valleys) in Bradford County, where [Cl] was 
significantly higher than any other TPI class. 
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Figure S9. Sliding window heatmaps for correlations between the proximity to unconventional 
wells and concentrations of barium (A), strontium (B), and NMF-derived concentrations of 
chloride attributable to a brine source (C). The locations of unconventional wells are shown in 
dark blue dots on the heatmap. Hotspots on the barium and strontium heatmaps generally align 
with hotspots identified for Cl (Figure 3B), supporting a brine source of Cl in these localities. 
 
 
 

 
Figure S10. Schematic diagram of the workflow used to derive a conservative estimate of the 
number of potentially leaking wells in the study area based on sliding window outputs. 
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Figure S11. Sliding window heatmap displaying correlations between chloride concentrations 
and the proximity to unconventional wells in Bradford County. 
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Figure S12. Sliding window heatmap displaying correlations between chloride concentrations 
and the density of unconventional wells in Bradford County. See Figure S3 for an explanation of 
the color scheme. 
 
 
 
 
 

 
Figure S13. Sliding window heatmaps for correlations between methane concentrations and the 
distance to unconventional wells in Susquehanna County. Analysis without Dimock Township 
samples from Hammond (2016) is shown in (A), while analysis including Dimock samples are 
displayed in (B). The location of Dimock Township is outlined in black in (B). 
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Figure S14. Methane carbon isotopic composition (δ13C-CH4) plotted against (A) ratios of 
methane (C1) to ethane (C2) + propane (C3) or (B) methane hydrogen isotopic composition (δ2H-
CH4). Samples located in the hotspot circled in Figure 3A are denoted in red, while samples 
outside the hotspot are shown in black. 
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Figure S15. Gas chemistry (δ13C-CH4, δ2H-CH4, C1 / (C2 + C3)) data from the hotspot circled in 
Figure 3A fit to models for the oxidation of biogenic methane (A & B) or the mixing of biogenic 
and Marcellus Shale gas (C & D). See Text S12 for an explanation of the compositions of 
endmember gases and model designs. 
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Supporting Tables 

 

Table S1. Endmember sources of chloride and their respective molar ratios 

Endmember Ba / Cl Ca / Cl Mg / Cl SO4 / Cl Na / Cl Interpretation 

1 0.0065 ± 0.0027 4.9 ± 2.0 0.6 ± 0.3 0 0.3 ± 0.3 Brine 

2 0.0005 ± 0.0003 0.1 ± 0.9 0.3 ± 0.3 0.2 ± 0.3 3.8 ± 1.8 Road salt 

3 0 9.1 ± 3.9 3.3 ± 1.4 3.0 ± 1.3 0.5 ± 0.4 Rain 
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Table S2. Summary of additional brine species (X) in SWPA produced water, the predicted 
increases in concentration (in mg/L) per UOGD well drilled, and the highest predicted 
concentration in hotspots relative to EPA limits. 

Species 
[X]/[Cl] 

ratio 
[X] increase 

per UOG well 

Highest [X] 
predicted in 

hotspots EPA MCL/SMCL 

% EPA limit at 
highest 

predicted [X] 
TDS 2.22E+00 7.98E+00 9.58E+01 500 SMCL 19.16% 
Ag 8.82E-05 3.17E-04 3.81E-03 0.1 SMCL 3.81% 
Al 3.89E-04 1.40E-03 1.68E-02 0.05 SMCL 33.64% 
As 1.76E-04 6.34E-04 7.61E-03 0.01 MCL 76.06% 
B 3.84E-04 1.38E-03 1.66E-02    
Ba 1.76E-02 6.35E-02 7.62E-01 2 MCL 38.12% 
Be 7.06E-05 2.54E-04 3.05E-03 0.004 MCL 76.26% 
Br 1.01E-02 3.62E-02 4.34E-01    
Ca 1.48E-01 5.33E-01 6.39E+00    
Cd 8.81E-05 3.17E-04 3.81E-03 0.005 MCL 76.12% 
Cl 1.00E+00 3.60E+00 4.32E+01 250 SMCL 17.28% 
Co 5.38E-04 1.94E-03 2.32E-02    
Cr 8.77E-05 3.16E-04 3.79E-03 0.1 MCL 3.79% 
Cs 3.32E-06 1.20E-05 1.44E-04    
Cu 2.18E-04 7.86E-04 9.43E-03 1 SMCL 0.94% 
F 2.97E-04 1.07E-03 1.28E-02 2 SMCL 0.64% 

Fe (total) 1.54E-03 5.54E-03 6.65E-02 0.3 SMCL 22.15% 
Hg 1.61E-06 5.80E-06 6.96E-05 0.002 MCL 3.48% 
I 3.13E-04 1.13E-03 1.35E-02    
K 2.51E-02 9.05E-02 1.09E+00    
Li 9.26E-04 3.33E-03 4.00E-02    
Mg 1.62E-02 5.84E-02 7.01E-01    
Mn 1.40E-04 5.05E-04 6.06E-03 0.05 SMCL 12.11% 
Mo 7.02E-04 2.53E-03 3.03E-02    
NO2 3.58E-04 1.29E-03 1.55E-02 1 MCL 1.55% 
NO3 8.47E-04 3.05E-03 3.66E-02 10 MCL 0.37% 
NH4 2.54E-02 9.13E-02 1.10E+00    
Na 4.11E-01 1.48E+00 1.78E+01    
Ni 4.49E-04 1.62E-03 1.94E-02 0.1 MCL 19.38% 

PO4 7.81E-04 2.81E-03 3.37E-02    

Pb 4.40E-05 1.58E-04 1.90E-03 0.015 Action 
Level 12.66% 

Rb 1.10E-05 3.96E-05 4.75E-04    
S 1.02E-02 3.66E-02 4.40E-01    

SO3 1.12E-01 4.04E-01 4.85E+00    
SO4 1.83E-01 6.60E-01 7.92E+00 250 SMCL 3.17% 
Sb 1.76E-04 6.35E-04 7.62E-03    
Se 8.83E-05 3.18E-04 3.81E-03 0.05 MCL 7.63% 
Sr 2.30E-02 8.30E-02 9.96E-01    
Ti 8.78E-04 3.16E-03 3.80E-02    
Tl 1.78E-04 6.40E-04 7.68E-03 0.002 MCL 383.85% 
Zn 4.53E-05 1.63E-04 1.96E-03 5 SMCL 0.04% 

Alkalinity 
(as HCO3) 1.44E-01 5.18E-01 6.22E+00    

DIC 1.16E-03 4.17E-03 5.00E-02    
DOC 3.84E-01 1.38E+00 1.66E+01    
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Table S3. Correlations between [CH4] or [Cl] and distance to/density of conventional oil & gas 
(COG) wells 
 
Calculation Distance to COG wells vs. Density of COG wells vs. 
Species [CH4]* [Cl]* [CH4] [Cl] 
Kendall’s 𝜏 -0.018 -0.019 0.010 0.010 
p-value 0.019 0.015 0.201 0.214 

* denotes statistically-significant correlations 
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Table S4. NMF-derived endmember sources of chloride using the Lautz et al. (2014) synthetic 
high-Cl dataset and their respective molar ratios used to interpret endmember identities.  
 

End 
member 

I / Cl Na / Cl K / Cl Mg / Cl Ca / Cl Ba / Cl Sr / Cl Interpretation 

1 9.1E-5 ± 
1.9E-5 

0.66 ±  
0.14 

0  0.11 ±  
0.02 

0.40 ±  
0.08 

0.0015 ±  
0.0003 

0.0073 ± 
0.0016 

Brine 

2 7.2E-6 ± 
3.0E-6 

2.6 ±  
1.1 

0.029 ± 
0.012  

0 0.014 ±  
0.005  

0.0011 ±  
0.0005 

0.0031 ±  
0.0012 

Road salt 

3 1.8E-5 ± 
4.7E-6 

0.0085 ±  
0.0192 

0.13 ± 
0.03 

0.99 ±  
0.26 

2.43 ±  
0.65 

0.00062 ±  
0.00016 

0.0034 ±  
0.0009 

Organic waste 

 
 


