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Instrumentation details of the modular, ambient drift tube 

The drift tube was constructed from printed circuit boards totaling ~20 cm and was assembled as 

previously described.1–3 Two, three-grid ion shutters were used to gate ions in and out of the drift region 

with stopping voltages of 65 V and 80 V, respectively. The design of this home-built drift tube is similar in 

size and function to a commercially available modular drift tube,4 which does not currently support FT-

IMS multiplexing approaches without instrument modification. Using a 3D-printed adapter, the drift tube 

was coupled to a prototype Thermo Scientific Q Exactive Plus UHMR Orbitrap mass spectrometer 

(Bremen, Germany) modified to allow UVPD in the HCD cell as described previously.5 In-house pulled 

capillaries coated with a AuPd target were filled with 1-3 µL of each sample and place at the entrance to 

the PCB-DT using a nano-electrospray ionization (nESI) source. A schematic representation of the 

instrument is shown in Figure S1a of the Supporting Information.  

The drift and ESI potentials were controlled using two XP Glassman High Voltage power supplies 

(High Bridge, NJ). A potential of 10 kV was applied to the entrance of drift tube for a gradient of ~455 

V/cm at ambient pressure (~0.6 Townsends). An ESI voltage between 10.7 and 11.1 kV were used for all 

experiments, corresponding to effect ESI potentials of 0.7 – 1.1 kV. The gates were electrically isolated 

using pulsers from GAA Custom Engineering (Benton City, WA) and operated simultaneously, controlled 

using custom LabVIEW program (National Instruments, Austin, TX).1,3 The parameters of the square-wave 

frequency sweep (Figure S2a) for the FT-IMS experiments of each sample were determined individually 

and are displayed in Table S1. Temperature was recorded using a Neoteck Indoor Outdoor Thermometer 

and ambient pressure measurements for Austin, TX were obtained from the National Weather Service 

(w1.weather.gov). Nitrogen was used as the drift gas and was applied at ~1.5 L/min at the exit of the drift 

tube (entrance to the mass spectrometer).  

 Arrival time distributions from drift tube IMS can be directly converted to CCS values based on 

first principles calculations. The reduced mobility (K0) of each of the ions was determined using equation 

(1) from the length of the drift tube (l), drift voltage (U), pressure (P), and temperature (T). The Mason-

Schamp equation (2) was employed to derive the collision cross section (CCS) from the mobility, mass (μ), 

and charge (z) of the extracted ions. The remaining variables are constants, including standard 

temperature, pressure, and buffer gas number density (T0, P0, and N0, respectively), Boltzman’s constant 

(kb), and elementary charge (e). 
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Table S1. Experimental aFT-IMS parameters for each protein in this study. 
 

 
Fixed Injection 

Time (ms) 
Start Frequency 

(Hz) 
End Frequency 

(Hz) 
Sweep Duration 

(min) 
Azurin 400 5 7000 10 
Calmodulin 400 5 5000 8 
Hemoglobin 400 5 5000 8 
Streptavidin 200 5 7000 8 
Transferrin 300 5 5000 8 
Benralizumab 200 5 5000 8 
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Table S2. The peak CCS values and full width at half maximum are listed for all proteins analyzed in this 
study organized in ascending order by mass. Experimental CCS values are in good agreement with 
literature reports.  

Protein Mass 
(kDa) 

Charge 
State 

Literature 
CCSN2 (nm2) 

Experimental 
DTCCSN2 (nm2) 

Full Width at Half 
Max (nm2) 

azurin monomer 

 5 - 15.3 0.5 
14.0 6 - 15.7 0.6 

 7 - 16.5 0.7 

azurin dimer 

 8 - 23.7 0.9 
28.0 9 - 24.0 0.7 

 10 - 24.6 0.4 
apo-calmodulin 

monomer 16.7 6 14.86* 17.0 0.6 

holo-calmodulin 
monomer 16.9 6 15.26* 17.2 0.7 

hemoglobin 
holo-heterodimer 

 9 - 27.2 1.5 
32.3 10 25.47 27.8 1.2 

 11 27.87, 29.38 28.4 1.3 

hemoglobin 
holo-heterotetramer 

 14 - 42.0 1.2 
64.7 15 42.37 42.4 1.0 

 16 42.57, 43.28 42.9 1.0 

apo-streptavidin 
tetramer 

 12 37.79** 37.2 1.5 
51.9 13 38.49 37.6 1.1 

 14 38.79 38.3 1.1 

holo-streptavidin 
tetramer 

 12 - 37.6 1.2 
52.9 13 - 38.0 1.0 

 14 - 38.4 1.0 

apo-transferrin 
monomer 

 15 - 49.3 2.7 
76.7 16 - 50.0 2.1 

 17 46.3210* 50.5 1.7 

holo-transferrin 
monomer 

 15 - 49.3 1.8 
79.8 16 - 49.7 1.5 

 17 45.9610* 50.4 1.4 

Benralizumab 

 20 - 71.4 2.9 
148.5 21 72.2311*** 72.0 2.8 

 22 72.2511*** 72.6 2.6 
* Literature CCS values were measured using helium drift gas resulting in smaller CCSs relative to those 
obtained using nitrogen drift gas. 
** Literature CCS values obtained from charge-reducing MS conditions. 
*** Literature CCS values are reported for a NIST IgG antibody with similar mass and structure to 
Benralizumab. 
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Table S3. aFT-IMS processing parameters for each protein using the first one or three minutes of 
each sweep acquired using experimental parameters in Table S1. The start frequencies and ion 
injection times were unchanged. 
 

 

End frequency (Hz) 
1-min sweep 3-min sweep 

Azurin 700 2100 
Calmodulin 625 1875 
Hemoglobin 625 1875 
Streptavidin 875 2625 
Transferrin 625 1875 
Benralizumab 625 1875 
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Figure S1. a) Instrument schematic of the ~20 cm drift tube affixed to the front-end of an Ultra High Mass 
Range Orbitrap mass spectrometer, equipped with in-source trapping for desolvation, followed by UVPD 
in the HCD cell prior to mass analysis. b) Extracted ion chromatogram of an ion during an 8-minute FT-IMS 
sweep zoomed to the first two minutes. Ion frequency can be seen in the first minute before diminishing 
signal. c) Zero-padding and half-window apodization performed prior to d) transformation with 
absorption mode FT resulting in an arrival time distribution.
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Figure S2. The pulsing scheme for the dual-gate drift tube. Both gates are operated synchronously, opened 
and closed using a square waveform with a) a frequency swept from low to high for FT-IMS experiments 
or b) a frequency fixed to a desired drift time (td) with a designated pulse width (tw). 
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Figure S3. a) Overlaid nESI mass spectra of apo- (blue) and holo-streptavidin (black) using the PCB-IMS 
with both gates open. b) ATDs of apo- and holo-streptavidin tetramers (12+ through 14+) produced from 
transformation of averaged extracted ion chromatograms generated during 8-min aFT-IMS sweeps. The 
raw data are represented as circles and the fitted data are overlaid as solid lines. 
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Figure S4. Overlaid collision cross section distributions of a) streptavidin tetramers and b) transferrin 
monomers bound (holo) or unbound (apo) to their ligands, biotin and Fe(III), respectively, following 8-min 
aFT-IMS sweeps. The raw data are represented as circles and the fitted data are overlaid as solid lines. 
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Figure S5. Representative nESI mass spectra of a) apo-transferrin and b) holo-transferrin using the PCB-
IMS with both gates open. Inset shows expansion of the 16+ charge states of apo- and holo-TF 
demonstrating resolution of iron-bound states. 
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Figure S6. Representative nESI mass spectra of a) apo-calmodulin and b) holo-calmodulin obtained using 
the PCB-IMS. c) Magnification of 6+ charge state demonstrating resolution of Ca-bound states. d) CCS 
distributions of apo (0 Ca) and holo (2 and 4 Ca bound) calmodulin obtained following 8-min aFT-IMS 
sweeps with the raw data represented as circles and the fitted data overlaid as lines. CCS distributions of 
calmodulin containing 1 or 3 Ca are omitted to minimize congestion of the figure.  
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Figure S7. Representative nESI mass spectra of hemoglobin obtained using the PCB drift tube with both 
gates open. No desolvation energy was applied to avoid disassembly of protein complexes. 
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Figure S8. a) ATDs of holo-hemoglobin heterodimers and heterotetramers converted to b) collisional cross 
section distributions following 8-min aFT-IMS sweeps. The raw data are represented as circles and the 
fitted data are overlaid as solid lines. 
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Figure S9. a) Representative nESI mass spectra of azurin generated using the PCB-IMS. CCS distributions 
of b) Az monomers and c) Az dimers following a 10-min aFT-IMS sweep with raw data represented as 
circles and the fitted data overlaid as solid lines. 
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Figure S10. a) ATDs obtained from 10-min aFT-IMS sweeps of azurin with raw data represented as circles 
and the fitted data overlaid as solid lines. Mass spectra obtained using fixed gate acquisition from b) 25-
27 ms, c) 27-29 ms, d) 29-31 ms, e) 31-33 ms, f) 33-35 ms, and g) 35-37 ms corresponding to the periods 
demarcated by dashed lines in (a). Ions at m/z 2002 and 2802 are magnified for visibility.
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Figure S11. Representative MS/MS spectra of streptavidin tetramers (12+ through 14+) subjected to a) 40 
V HCD and b) 1 pulse, 2 mJ UVPD. c) ATDs of tetrameric streptavidin obtained from 8-min aFT-IMS sweeps. 
Frequency-tagged monomers resulting from d) HCD and from e) UVPD obtained from 20-min aFT-IMS 
sweeps. The raw data for all ATDs are represented as circles and the fitted data are overlaid as solid lines. 
Drift times of ejected monomers correspond to the tetrameric precursors from which they were 
generated. 
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Figure S12. CCS distributions for a) apo- and holo-transferrin, b) apo- and holo-calmodulin, c) 
benralizumab, d) azurin monomers, and e) azurin homodimers using truncated FT-IMS acquisition times. 


