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Supplemental Methods – Empirical method for identifying quality thresholds. 
 
We examined three metrics sensitive to the quality of the glutamate measurements for 
each study: mean + 2 SD for Cramer-Rao lower bound (CRLB), mean + 2 SD for singlet 
line width (FWHM), and mean COV for glutamate. For each metric, we averaged the 
values for the patient and control groups. We hypothesized that glutamate 
measurement quality would have a moderating effect on the meta-analytic results 
across studies comparing schizophrenia patients to healthy volunteers. Formally, we 
hypothesized there was a quality threshold Q, for which the meta-analytic result would 
be significantly stronger in studies surpassing Q than for those falling short of Q. To 
identify the quality threshold Q in an unbiased manner, we first ranked the studies for 
each metric. We then calculated the inverse variance-weighted pooled effect sizes from 
a moving sample of studies (k = 7) running from the lowest to the highest quality studies 
for each quality metric (analogous to a moving average). A best-fitting, 4-parameter, 
logistic function was fit to this series of pooled effect sizes using the computational 
resource at https://mycurvefit.com/ using the following equation: 
 
Y = d + ((a – d)/(1+(X/c)^b)) 
 
Where Y = the pooled effect size (k=7) and X = the rank of the set of seven adjacent 
studies for the quality metric being examined. The best fitting four parameters (a, b, c, 
and d) for each of the quality metrics is shown below.  
 
 a b c d Inflection point (Q) 
CRLB -0.1822 26.31 17.57 -0.5382 -.3602 
FWHM +0.0343 4.518 18.60 -0.8647 -.4152 
COV -0.0568 67.00 29.09 -0.4653 -.2610 
 
Parameter “a” is the asymptote of the pooled effect size for the lowest quality datasets, 
and parameter “d” is the asymptote of the pooled effect size for the highest quality 
datasets for each metric. These best fitting parameters were used to generate a logistic 
transform of the ranks of each quality metric. The empirical quality threshold Q was 
identified as the inflection point in the logistic transform curve. The inflection point (Q) is 
the midpoint between parameters “a” and “d” (thus Q = (a + d)/2). This point Q was 
used to stratify studies into low and high quality subgroups for each metric. All studies 
included in a set of 7 ranked studies for which the moving pooled effect size (k = 7) was 
more negative than Q were stratified into the high quality subgroup for that quality 
metric. All other studies were stratified into the lower quality subgroup. 
 
 
 
 

https://mycurvefit.com/
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Supplemental Results – Exploratory analysis of signal-to-noise as a quality metric. 
Spectral signal-to-noise (SNR) was not included as an a priori quality metric for testing 
the hypothesis that the meta-analytic result would be significantly stronger in studies 
surpassing an empirically identified threshold for measurement quality. We chose this 
approach in order to limit multiple comparisons for testing this hypothesis. It was our 
opinion, a priori, that SNR would be the least discriminating of the four quality metrics 
commonly reported (COV, CRLB, FWHM, and SNR). We reasoned that quality metrics 
based specifically on the glutamate measurement, such as CRLB and COV for 
glutamate, might have an advantage over those based on the whole spectrum, such as 
FWHM and SNR. With regard to the latter two, in our own lab we have consistently 
found low FWHM to be a better predictor of valid glutamate measurements than high 
SNR.  
 
In response to a question about this issue during peer review, we searched for and 
extracted SNR mean and SD values from the 36 mPFC studies included in our meta-
analysis. Only 23 studies reported these data, and only 20 used an equivalent method 
for calculating SNR (the LCModel default method). Applying the same procedure as for 
the other quality metrics, we identified 14 high quality datasets for SNR (mean minus 2 
SD ≥ 13). Six studies were identified as having lower quality SNR values. The 16 
studies not reporting SNR were included in the lower-quality subgroup. Moderator 
analyses showed that effect sizes were not significantly different between lower- and 
high-quality subgroups for SNR (omnibus model Q = 2.2, df =1, p = .13; heterogeneity: 
I2 = 45, p = .002). When studies not reporting SNR were excluded altogether from the 
moderator analysis, there was trend for mPFC glutamate to be more reduced in the 
high-quality versus the lower-quality SNR subgroup, but it was not significant with our 
corrected alpha (omnibus model Q = 3.9, df =1, p = .048; heterogeneity: I2 = 42, p = 
.02). Detailed statistics for each SNR subgroup are shown below. In agreement with our 
expectation, an empirical quality threshold based on SNR was less successful than the 
other quality metrics at identifying studies sensitive to reduced mPFC glutamate in 
schizophrenia.   
  
 
 
Region 

 
Subgroup 

 
Datasets 

 
Cases 

Healthy 
Controls 

      Effect Size 
      (95% CI)      

 
P value 

Heterogeneity 
I2, %   P value 

MPFC All datasets 36 1022 1064 -.19 (-.07 to -.32) .003 48       <.001 

 SNRa ≥ 13 14 444 521 -.30 (-.14 to -.47) <.001 33         .12 

 SNRa < 13  6 251 231 -.02 (+.32 to -.36) .91 67          .02 

 SNR not stated 16 327 312 -.17 (+.04 to -.38) .12 42          .04 
amean minus 2 standard deviations of SNR values, averaged across patients and controls   
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Table S1. Excluded studies and reason for exclusion. Abbreviations: glx = 
glutamate+glutamine, gln = glutamine, HC = healthy control group, MRS = Magnetic 
Resonance Spectroscopy, NR = Not Reported, SD = Standard Deviation.  
 
Total 
Count 

Count by 
Reason 

Study Reason for Exclusion 

1 1 Atagun et al. (2017) 1 no glutamate measure (also no gln or glx) 
2 2 Bartolomeo et al. (2019) 2 no glutamate measure (glx) 
3 3 Bernier et al. (2016) 3 no glutamate measure (glx) 
4 4 Birur et al. (2020) 4 no glutamate measure (glx) 
5 5 Block et al. (2000) 5 no glutamate measure (glx) 
6 6 Bustillo et al. (2011) 6 no glutamate measure (glx) 
7 7 Bustillo et al. (2017) 7 no glutamate measure (glx) 
8 8 Bustillo et al. (2017) 8 no glutamate measure (glx) 
9 9 Bustillo et al. (2019) 9 no glutamate measure (glx) 
10 10 Cadena et al. (2018) 10 no glutamate measure (glx) 
11 11 Capizzano et al. (2011) 11 no glutamate measure (glx) 
12 12 Cen et al. (2020) 12 no glutamate measure (glx) 
13 13 Chang et al. (2007) 13 no glutamate measure (glx) 
14 14 Chiu et al. (2018) 14 no glutamate measure (glx) 
15 15 Choe et al. (1994) 15 no glutamate measure (also no gln or glx) 
16 16 Choe et al. (1996) 16 no glutamate measure (also no gln or glx) 
17 17 Chouinard et al. (2017) 17 no glutamate measure (also no gln or glx) 
18 18 Conus et al. (2018) 18 no glutamate measure (also no gln or glx) 
19 19 Curcic-Blake et al. (2017) 19 no glutamate measure (glx) 
20 20 Da Silva et al. (2018) 20 no glutamate measure (also no gln or glx) 
21 21 Da Silva et al. (2018) 21 no glutamate measure (also no gln or glx) 
22 22 Da Silva et al. (2019) 22 no glutamate measure (also no gln or glx) 
23 23 Dlabac-de Lange et al. (2017) 23 no glutamate measure (glx) 
24 24 de la Fuente-Sandoval et al. 

(2015) 24 
no glutamate measure (glx) 

25 25 de la Fuente-Sandoval et al. 
(2018) 25 

no glutamate measure (glx) 

26 26 Galinska et al. (2009) 26 no glutamate measure (glx) 
27 27 Galinska-Skok et al. (2018) 27 no glutamate measure (glx) 
28 28 Galinska-Skok et al. (2019) 28 no glutamate measure (glx) 
29 29 Gan et al. (2017) 29 no glutamate measure (also no gln or glx) 
30 30 Goto et al. (2012) 30 no glutamate measure (glx) 
31 31 Grent-'t-Jong et al. (2018) 31 no glutamate measure (glx) 
32 32 Hafizi et al. (2018) 32 no glutamate measure (also no gln or glx) 
33 33 Hasan et al. (2014) 33 no glutamate measure (glx) 
34 34 He et al. (2018) 34 no glutamate measure (also no gln or glx) 
35 35 Huang et al. (2017) 35 no glutamate measure (glx) 
36 36 Huang et al. (2019) 36 no glutamate measure (glx) 
37 37 Hugdahl et al. (2015) 37 no glutamate measure (glx) 
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38 38 Hutcheson et al. (2012) 38 no glutamate measure (glx) 
39 39 Jessen et al. (2013) 39 no glutamate measure (gln and glx) 
40 40 Kegeles et al. (2000) 40 no glutamate measure (glx) 
41 41 Kegeles et al. (2012) 41 no glutamate measure (glx) 
42 42 Keshavan et al. (2009) 42 no glutamate measure (glx) 
43 43 Kim et al. (2017) 43 no glutamate measure (also no gln or glx) 
44 44 Kim et al. (2017) 44 no glutamate measure (also no gln or glx) 
45 45 Kirtas et al. (2016) 45 no glutamate measure (also no gln or glx) 
46 46 Klauser et al. (2018) 46 no glutamate measure (also no gln or glx) 
47 47 Kraguljac et al. (2012) 47 no glutamate measure (glx) 
48 48 Kraguljac et al. (2019) 48 no glutamate measure (glx) 
49 49 Larabi et al. (2017) 49 no glutamate measure (glx) 
50 50 Lesh et al. (2019) 50 no glutamate measure (also no gln or glx) 
51 51 Liemburg et al. (2016) 51 no glutamate measure (glx) 
52 52 Liu et al. (2015) 52 no glutamate measure (also no gln or glx) 
53 53 Lotfi et al. (2018) 53 no glutamate measure (glx) 
54 54 Malaspina et al. (2016) 54 no glutamate measure (also no gln or glx) 
55 55 Marenco et al. (2016) 55 no glutamate measure (also no gln or glx) 
56 56 Mazgaj et al. (2016) 56 no glutamate measure (also no gln or glx) 
57 57 McQueen et al. (2020) 57 no glutamate measure (glx) 
58 58 Menschikov et al. (2016) 58 no glutamate measure (glx) 
59 59 Meyer et al. (2016) 59 no glutamate measure (also no gln or glx) 
60 60 Modinos et al. (2018) 60 no glutamate measure (also no gln or glx) 
61 61 Natsubori et al. (2014) 61 no glutamate measure (glx) 
62 62 Ohrmann et al. (2005) 62 no glutamate measure (glx) 
63 63 Ohrmann et al. (2007) 63 no glutamate measure (glx) 
64 64 Ohrmann et al. (2008) 64 no glutamate measure (glx) 
65 65 Ota et al. (2012) 65 no glutamate measure (glx) 
66 66 Ota et al. (2015) 66 no glutamate measure (glx) 
67 67 Piras et al. (2019) 67 no glutamate measure (also no gln or glx) 
68 68 Prasad et al. (2016) 68 no glutamate measure (also no gln or glx) 
69 69 Prasad et al. (2018) 69 no glutamate measure (also no gln or glx) 
70 70 Provenzano et al. (2020) 70 no glutamate measure (glx) 
71 71 Psomiades et al. (2018) 71 no glutamate measure (also no gln or glx) 
72 72 Rauchmann et al. (2020) 72 no glutamate measure (glx) 
73 73 Reid et al. (2016) 73 no glutamate measure (glx) 
74 74 Reyes-Madrigal et al. (2019) 74 no glutamate measure (also no gln or glx) 
75 75 Rogdaki et al. (2019) 75 no glutamate measure (glx) 
76 76 Rowland et al. (2009) 76 no glutamate measure (glx) 
77 77 Rowland et al. (2013) 77 no glutamate measure (glx) 
78 78 Rowland et al. (2016) 78 no glutamate measure (also no gln or glx) 
79 79 Shaw et al. (2020) 79 no glutamate measure (also no gln or glx) 
80 80 Sivaraman et al. (2018) 80 no glutamate measure (glx) 
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81 81 Strzelecki et al. (2015) 81 no glutamate measure (glx) 
82 82 Strzelecki et al. (2015) 82 no glutamate measure (glx) 
83 83 Strzelecki et al. (2015) 83 no glutamate measure (glx) 
84 84 Szulc et al. (2004) 84 no glutamate measure (glx) 
85 85 Szulc et al. (2011) 85 no glutamate measure (glx) 
86 86 Tandon et al. (2013) 86 no glutamate measure (glx) 
87 87 Tarumi et al. (2020) 87 no glutamate measure (glx) 
88 88 Tasic et al. (2019) 88 no glutamate measure (also no gln or glx) 
89 89 Thomas et al. (1998) 89 no glutamate measure (glx) 
90 90 Tibbo et al. (2004) 90 no glutamate measure (glx) 
91 91 Ublinskii et al. (2015) 91 no glutamate measure (also no gln or glx) 
92 92 Vingerhoets et al. (2019) 92 no glutamate measure (also no gln or glx) 
93 93 Wang et al. (2016) 93 no glutamate measure (glx) 
94 94 Wijtenburg et al. (2019) 94 no glutamate measure (also no gln or glx) 
95 95 Wood et al. (2007) 95 no glutamate measure (glx) 
96 96 Wood et al. (2008) 96 no glutamate measure (glx) 
97 97 Xia et al. (2018) 97 no glutamate measure (also no gln or glx) 
98 98 Xiang et al. (2019) 98 no glutamate measure (glx) 
99 99 Yamasue et al. (2003) 99 no glutamate measure (glx) 
100 100 Yang et al. (2019) 100 no glutamate measure (also no gln or glx) 
101 101 Yoo et al. (2009) 101 no glutamate measure (glx) 
102 102 Yoon et al. (2020) 102 no glutamate measure (also no gln or glx) 
103 1 Bustillo et al. (2016) 103 no HC group 
104 2 Dempster et al. (2015) 104 no HC group 
105 3 Demro et al. (2017) 105 no HC group 
106 4 Kaur et al. (2019) 106 no HC group 
107 5 Kegeles et al. (2019) 107 no HC group 
108 6 Mouchlianitis et al. (2016) 108 no HC group 
109 7 Nussbaum et al. (2016) 109 no HC group 
110 8 Rowland et al. (2017) 110 no HC group 
111 1 Bustillo et al. (2014) 111 either means or SDs NR 
112 2 Chiappelli et al. (2015) 112 either means or SDs NR 
113 3 Goldstein et al. (2015) 113 either means or SDs NR 
114 4 Limongi et al. (2020) 114 either means or SDs NR 
115 5 Nussbaum et al. (2017) 115 either means or SDs NR 
116 6 Stanley et al. (1996) 116 either means or SDs NR 
117 1 Davies et al. (2019) 117 intervention study with no baseline 
118 2 McQueen et al. (2018) 118 intervention study with no baseline 
119 1 Jelen et al. (2019) 119 MRS performed during a task 
120 2 Taylor et al. (2015) 120 MRS performed during a task 
121 1 da Silva Alves et al. (2011) 121 22q11.2 
122 1 Chiappelli et al. (2016) 122 participant overlap with other studies 
123 2 Chiappelli et al. (2018) 123 participant overlap with other studies 
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124 3 Jauhar et al. (2018) 124 participant overlap with other studies 
125 4 Maddock et al. (2018) 125 participant overlap with other studies 
126 5 Merritt et al. (2019) 126 participant overlap with other studies 
127 6 Overbeek et al. (2019) 127 participant overlap with other studies 
128 7 Rowland et al. (2016) 128 participant overlap with other studies 
129 8 Shah et al. (2020) 129 participant overlap with other studies 
130 9 Shukla et al. (2019) 130 participant overlap with other studies 
131 10 Theberge et al. (2002) 131 participant overlap with other studies 
132 1 Ongur et al. (2008) 132 no internal reference 
133 1 Smesny et al. (2015) 133 multivoxel MRSI acquisition 
134 1 Kim et al. (2018) 134 sex ratio group imbalance 
135 1 Girgis et al. (2019) 135 CT-PRESS sequence 
136 1 Bloemen et al. (2011) 136 high risk participants only 
137 2 Bossong et al. (2019) 137 high risk participants only 
138 3 Egerton et al. (2014) 138 high risk participants only 
139 4 Howes et al. (2020) 139 high risk participants only 
140 5 Modinos et al. (2018) 140 high risk participants only 
141 6 Purdon et al. (2008) 141 high risk participants only 
142 7 Stone et al. (2009) 142 high risk participants only 
143 8 Wenneberg et al. (2020) 143 high risk participants only 
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Table S2. Included studies of regions for which < 10 datasets are available. 
 
Region Reference 
Thalamus Aoyama et al. (2011) 165 
Thalamus Bojesen et al. (2019) 166 
Thalamus Bustillo et al. (2010) 167 
Thalamus Egerton et al. (2018) 168 
Thalamus Legind et al. (2019) 169 
Thalamus Taylor et al. (2017) 170 
Thalamus Theberge et al. (2003) 171 
Thalamus Wang et al. (2019) 151 
Dorsolateral Prefrontal Cortex Iwata et al. (2019) 145 
Dorsolateral Prefrontal Cortex Kaminski et al. (2020) 146 
Dorsolateral Prefrontal Cortex Ragland et al. (2020) 147 
Dorsolateral Prefrontal Cortex Rusch et al. (2008) 148 
Dorsolateral Prefrontal Cortex Stanley et al. (2007) 149 
Dorsolateral Prefrontal Cortex van Elst et al. (2005) 150 
Dorsolateral Prefrontal Cortex Wang et al. (2019) 151 
Striatum de la Fuente-Sandoval et al. (2011) 144 
Striatum Plitman et al. (2016) 161 
Striatum Plitman et al. (2018) 162 
Striatum Tayoshi et al. (2009) 163 
Striatum Thakkar et al. (2017) 158 
Frontal White Matter Chiappelli et al. (2015) 152 
Frontal White Matter Lutkenhoff et al. (2010) 153 
Frontal White Matter Tunc-Skarka et al. (2009) 154 
Frontal White Matter Wang et al. (2019) 151 
Occipital Cortex Balz et al. (2018) 156 
Occipital Cortex Kumar et al. (2020) 155 
Occipital Cortex Marsman et al. (2014) 157 
Occipital Cortex Thakkar et al. (2017) 158 
Cerebellum de la Fuente-Sandoval et al. (2011) 144 
Cerebellum Piras et al. (2019) 67 
Parietal Cortex Korenic et al. (2020) 159 
Parietal Cortex Lee et al. (2018) 160 
Superior Temporal Cortex Atagun et al. (2015) 164 
Superior Temporal Cortex Balz et al. (2018) 156 
Inferior Frontal Cortex Kumar et al. (2020) 155 
Lateral Orbitofrontal Cortex Wang et al. (2019) 151 
Ventromedial Prefrontal Cortexa Yang et al. (2015) 172 
 
Table S2. Included studies of regions for which < 10 datasets are available.  
The Legind et al. (2019) 149 and Stanley et al. (2007) 157 studies each had 2 datasets. aVentromedial Prefrontal defined as having 
the midpoint of voxel inferior to the most rostral point of the corpus callosum.  
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Table S3  Medial Prefrontal Glutamate - Study Characteristics, Glutamate Data, and Quality Metrics. 
 
1st Author/Year/Parameters HC N HC Mean  HC STD  PT N PT Mean  PT STD Hedges g 95% CRLB 95% FWHM mean CoV 
Bartha 1997    1.5T ST-20 10 11.75 2.75 10 10.3 2 -0.576 NR NR 0.214 
Theberge 2003    4T ST-20 21 15.89 2.81 21 13.31 3.82 -0.755 NR NR 0.232 
Terpstra 2005   4T ST-5 9 10 0.7 13 10.2 0.9 0.233 NR NR 0.079 
Tayoshi 2009    3T ST-18 25 11.5 3.6 30 9.8 2.7 -0.534 NR NR 0.294 
Bustillo 2010    4T ST-20 10 15.82 2.59 14 14.55 1.37 -0.624 0.105 NR 0.129 
Lutkenhoff 2010   3T PR-30 21 11.83 3.81 9 8.11 3.34 -0.982 0.229 0.10 0.367 
Ongur 2010    3T M-PR-68 17 0.804 0.152 19 0.889 0.21 0.449 0.22 NR 0.213 
Shirayama 2010   3T PR-30 18 1.275 0.088 19 1.256 0.15 -0.150 0.082 NR 0.094 
Aoyama 2011    4T ST-20 17 15.6 6 15 15.6 5.7 0.000 NR NR 0.375 
Tibbo 2013    3T ST-240 41 7.83 1.8 33 8.05 1.91 0.118 0.149 0.09 0.234 
Demjaha 2014    3T PR-30 10 8.62 1.02 14 9.49 2.18 0.467 NR NR 0.174 
Marsman 2014   7T S-LAS-28 18 8.65 1.14 14 8.48 1.34 -0.135 0.042 0.038 0.145 
Brandt 2016    7T ST-14 24 9.05 0.72 24 9.16 1.66 0.085 NR NR 0.130 
Gallinat 2016    3T PR-80 27 15.17 1.11 29 14.46 1.56 -0.514 0.158 NR 0.091 
Rowland 2016    7T ST-14 29 8.1 0.67 27 7.9 0.85 -0.259 NR 0.0405 0.095 
Xin 2016    3T SPEC-6 33 14.18 0.98 25 13.47 1.59 -0.548 0.03 0.043 0.094 
Chen 2017    3T M-PR-68 24 6.54 1.99 24 6.07 2.48 -0.206 NR NR 0.356 
Taylor 2017    7T ST-10 18 10 1.3 15 10.7 1.2 0.543 NR NR 0.121 
Wijtenburg-1 2017  3T ST-6.5 54 9.54 0.7 48 9.25 0.8 -0.384 0.065 0.066 0.080 
Wijtenburg-2 2017  3T ST-6.5 39 8.71 0.8 47 8.16 1 -0.596 0.077 0.062 0.107 
Chiappelli 2018   3T ST-6.5 21 13.62 0.96 20 12.9 1.25 -0.635 0.063 0.0585 0.084 
Egerton 2018    3T PR-30 60 1.339 0.137 70 1.335 0.164 -0.028 0.088 0.06 0.113 
Kumar 2018    7T ST-17 45 6.21 0.81 27 6.01 0.66 -0.261 NR 0.085 0.120 
Posperilis 2018   7T ST-15 20 1.33 0.14 20 1.29 0.1 -0.322 0.025 0.058 0.091 
Rigucci 2018   3T SPEC-6 33 14.2 0.9 35 13.28 1.52 -0.719 0.03 NR 0.089 
Bojesen 2019    3T PR-30 36 1.55 0.1 37 1.51 0.14 -0.325 0.064 0.098 0.079 
Borgan 2019    3T PR-30 65 13 2.2 46 13.2 2 0.094 NR 0.0586 0.160 
Hjelmervik 2019   3T PR-35 33 16.55 1.69 33 17.09 1.8 0.306 NR 0.09 0.104 
Iwata 2019    3T PR-35 26 15.98 1.74 74 16.94 1.66 0.568 NR 0.0678 0.103 
Legind-1 2019    3T PR-30 49 10.36 1.03 28 10.44 1.1 0.075 0.072 0.075 0.102 
Legind-2 2019    3T PR-30 36 10.26 0.9 22 10.43 1.65 0.136 0.074 0.07 0.123 
Pillinger 2019    3T PR-30 18 1.33 0.21 19 1.25 0.18 -0.401 0.099 NR 0.151 
Reid 2019    7T ST-5 21 6.93 0.5 21 6.57 0.5 -0.706 0.029 0.038 0.074 



Smucny et al.  Supplement 

10 

1st Author/Year/Parameters HC N HC Mean  HC STD  PT N PT Mean  PT STD Hedges g 95% CRLB 95% FWHM mean CoV 
Wang 2019    7T ST-14 87 8.16 0.57 75 7.83 0.65 -0.540 0.03 0.042 0.076 
Dempster 2020   7T LAS-100 27 8.35 2.3 26 8.51 2.05 0.072 0.066 NR 0.258 
Korenic 2020    3T PR-30 22 13.3 1.3 19 13.2 1.2 -0.078 NR NR 0.094 
 
Table S3: Studies ordered by year of publication. First author, year, field strength, sequence and TE are shown in first column. ST = STEAM; PR = 
PRESS; LAS = LASER; M-PR = MEGA-PRESS; SPEC = SPECIAL; HC = healthy controls; PT = patients; N = sample size; Mean = mean 
glutamate value; STD = standard deviation of glutamate values; 95% CRLB = mean + 2SD CRLB values averaged across patient and control 
groups; 95% FWHM = mean + 2SD FWHM values in PPM averaged across patient and control groups; mean COV = coefficient of variation of 
glutamate values (STD/mean) averaged across patient and control groups. 
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Table S4  Hippocampal Glutamate - Study Characteristics, Glutamate Data, and Quality Metrics 
 
1st Author/Year/Parameters HC N HC Mean  HC STD  PT N PT Mean  PT STD Hedges g 95% CRLB 95% FWHM mean CoV 
Bartha 1999  1.5T ST-20 11 7.58 1.67 11 6.83 2.32 -0.356 NR NR 0.280 
van Elst 2005  2T PR-30 16 2.37 0.8 8 4.34 2.83 1.100 NR NR 0.495 
Olbrich 2008  2T PR-30 32 2.37 1.13 9 3.91 0.87 1.395 NR NR 0.350 
Rusch 2008  2T PR-30 12 2.67 0.7 14 3.56 1.44 0.742 NR NR 0.333 
Lutkenhoff 2010  3T PR-30 21 9.26 5.67 9 7.54 1.9 -0.341 0.264 0.10 0.432 
Nenadic 2015  3T PR-30 42 9.878 2.628 18 10.095 2.53 0.082 NR NR 0.258 
Stan 2015  3T M-PR-70 16 0.88 0.08 18 0.82 0.09 -0.685 0.063 NR 0.100 
Gallinat 2016  3T PR-80 29 10.42 1.53 29 12.1 1.47 1.105 NR NR 0.134 
Singh 2018  3T PR-33 28 1.24 0.21 28 1.15 0.16 -0.475 NR NR 0.154 
Korenic 2020 3T PR-30 21 8.5 1.3 19 8.2 1.3 -0.226 NR NR 0.156 
Shakory 2020  3T PR-35 31 10.51 1.4 10 10.12 1.15 -0.284 0.09 .092 0.123 
 
Table S4: Studies ordered by year of publication. First author, year, field strength, sequence and TE are shown in first column. ST = STEAM; PR = 
PRESS; M-PR = MEGA-PRESS; HC = healthy controls; PT = patients; N = sample size; Mean = mean glutamate value; STD = standard deviation 
of glutamate values; 95% CRLB = mean + 2SD CRLB values averaged across patient and control groups; 95% FWHM = mean + 2SD FWHM 
values in PPM averaged across patient and control groups; mean COV = coefficient of variation of glutamate values (STD/mean) averaged across 
patient and control groups. 
 
Moderator effects 
Meta-regression analysis showed no effect of either field strength or log TE. The distributions of these regressors, 
however, were very limited. There were no studies above 3T, and 8 of the 11 studies used TE between 30 and 35 ms. 
Three datasets were categorized as ≥ 80% unmedicated and 6 datasets as all medicated (2 datasets excluded). 
Medication status did not significantly moderate effect size (omnibus model Q = 2.2, df =1, p = .14; heterogeneity: I2 = 75, 
p < .001). Similarly, 4 datasets were categorized as recent onset and 7 as chronic. Neither phase of illness nor mean 
patient age significantly moderated effect size (omnibus model Q = 0.0, df =1, NS; heterogeneity: I2 = 80, p = .001; and 
omnibus model Q = 2.5, df =1, p = .114; heterogeneity: I2 = 74, p = .001, respectively). 
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Table S5  Thalamic Glutamate - Study Characteristics, Glutamate Data, and Quality Metrics 
 
1st Author/Year/Parameters HC N HC Mean  HC STD  PT N PT Mean  PT STD Hedges g 95% CRLB 95% FWHM mean CoV 
Theberge 2003  4T ST-20 19 13.11 1.74 19 12.88 1.37 -0.144 NR NR 0.120 
Bustillo 2010  4T ST-20 10 11.5 4.26 12 12.29 3.38 0.200 0.275 NR 0.323 
Aoyama 2011  4T ST-20 17 13.89 2.69 16 13.71 1.79 -0.076 NR NR 0.348 
Taylor 2017  7T ST-10 18 7.4 0.60 15 7.4 1.00 0.0 NR NR 0.108 
Egerton 2018  3T PR-30 60 1.09 .15 70 1.09 .20 0.0 0.165 0.075  0.1623 
Bojesen 2019  3T PR-30 32 1.22 .15 38 1.29 .15 0.461 0.13 0.057  0.120 
Legind-1 2019  3T PR-30 52 7.07 .84 23 7.55 .84 0.565 0.185 0.075 0.115 
Legind-2 2019  3T PR-30 36 7.34 .92 22 7.45 1.13 0.108 0.155 0.075 0.139 
Wang 2019  7T ST-14 74 6.36 0.54 66 6.24 0.63 -0.204 0.10 0.0705 0.093 
 
Table S5: Studies ordered by year of publication. First author, year, field strength, sequence and TE are shown in first column. ST = STEAM; PR = 
PRESS; HC = healthy controls; PT = patients; N = sample size; Mean = mean glutamate value; STD = standard deviation of glutamate values; 
95% CRLB = mean + 2SD CRLB values averaged across patient and control groups; 95% FWHM = mean + 2SD FWHM values in PPM averaged 
across patient and control groups; mean COV = coefficient of variation of glutamate values (STD/mean) averaged across patient and control 
groups. 
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Table S6  Dorsolateral Prefrontal Glutamate - Study Characteristics, Glutamate Data, and Quality Metrics 
 
1st Author/Year/Parameters HC N HC Mean  HC STD  PT N PT Mean  PT STD Hedges g 95% CRLB 95% FWHM mean CoV 
van Elst 2005   2T PR-30 33 2.9 0.7 21 7.49 8.4 0.876 NR NR 0.682 
Stanley-1 2007  1.5T ST-20 27 6.91 1.31 8 5.82 .92 -0.858 NR 0.080 0.174 
Stanley-2 2007  1.5T ST-20 34 6.45 1.48 10 6.42 1.11 -0.021 NR 0.080 0.202 
Rusch 2008   2T PR-30 22 3.04 0.64 20 3.82 1.43 0.702 NR NR 0.292 
Iwata 2019   3T PR-35 26 13.94 1.32 21 13.55 1.6 -0.264 0.058 0.077 0.106 
Wang 2019   7T ST-14 84 6.65 0.52 72 6.41 0.75 -0.375 0.044 0.049 0.162 
Kaminski 2020   3T PR-80 35 8.22 0.9 55 7.92 1.1 -0.289 NR NR 0.124 
Ragland 2020   3T PR-80 49 0.906 0.091 38 0.894 0.104 -0.123 0.072 0.056 0.108 
 
Table S6: Studies ordered by year of publication. First author, year, field strength, sequence and TE are shown in first column. ST = STEAM; PR = 
PRESS; HC = healthy controls; PT = patients; N = sample size; Mean = mean glutamate value; STD = standard deviation of glutamate values; 
95% CRLB = mean + 2SD CRLB values averaged across patient and control groups; 95% FWHM = mean + 2SD FWHM values in PPM averaged 
across patient and control groups; mean COV = coefficient of variation of glutamate values (STD/mean) averaged across patient and control group
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Figure S1: PRISMA Flow Diagram173  
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Figure S2 
Hippocampal Glutamate 

 

 
 
Figure S2: Meta-analysis forest plot for 11 datasets reporting hippocampal glutamate in schizophrenia 
patients and healthy control subjects. Datasets are listed in order of coefficient of variation (COV) of 
glutamate averaged across patient and control groups, with lowest COV at bottom. First author, year, field 
strength, sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST = STEAM; 
PR = PRESS; RE = random effects. 
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Figure S3 
Thalamic Glutamate 

 

 
 
 
 
Figure S3.  Meta-analysis forest plot for 9 datasets reporting thalamic glutamate in schizophrenia patients 
and healthy control subjects. Datasets are listed in order of coefficient of variation (COV) of glutamate 
averaged across patient and control groups, with lowest COV at bottom. First author, year, field strength, 
sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST = STEAM; PR = 
PRESS; RE = random effects. 
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Figure S4 
Dorsolateral PFC Glutamate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S4. Meta-analysis forest plot for 8 datasets reporting dorsolateral PFC glutamate in schizophrenia 
patients and healthy control subjects. Datasets are listed in order of coefficient of variation (COV) of 
glutamate averaged across patient and control groups, with lowest COV at bottom. First author, year, field 
strength, sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST = STEAM; 
PR = PRESS; RE = random effects. 
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Figure S5 

Striatal Glutamate 
 

 
 
 
Figure S5. Exploratory meta-analysis forest plot for 5 datasets reporting striatal glutamate in 
schizophrenia patients and healthy control subjects. Datasets are listed in order of coefficient of variation 
(COV) of glutamate averaged across patient and control groups, with lowest COV at bottom. First author, 
year, field strength, sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST 
= STEAM; PR = PRESS; SLAS = Semi-LASER; RE = random effects. 
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Figure S6 
Frontal White Matter Glutamate 

 

 
 
Figure S6. Exploratory meta-analysis forest plot for 4 datasets reporting frontal white matter glutamate in 
schizophrenia patients and healthy control subjects. Datasets are listed in order of coefficient of variation 
(COV) of glutamate averaged across patient and control groups, with lowest COV at bottom. First author, 
year, field strength, sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST 
= STEAM; PR = PRESS; RE = random effects. 
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Figure S7 
Occipital Cortex Glutamate 

 

 
 
 
Figure S7. Exploratory meta-analysis forest plot for 4 datasets reporting occipital cortex glutamate in 
schizophrenia patients and healthy control subjects. Datasets are listed in order of coefficient of variation 
(COV) of glutamate averaged across patient and control groups, with lowest COV at bottom. First author, 
year, field strength, sequence and TE are listed at left. Hedge’s g and 95% CI are at center and right. ST 
= STEAM; PR = PRESS; SLAS = Semi-LASER; RE = random effects.  
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