

Supplementary Information for

Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies

Jiacheng Li, Miao Li*, Ning An, Shuo Zhang, Qinan Song, Yilin Yang, Jing Li, Xiang Liu

School of Environment, Tsinghua University, 30# Shuangqing Road, Hai Dian District, Beijing, 100086, China.

*E-mail: miaoli@tsinghua.edu.cn; Tel.: 86-10-62772485.

This PDF file includes:

Figures S1 to S15 Table S1 to S3 References for SI reference citations

Supplementary Figure 1. TEM images of Co-CN.

Supplementary Figure 2. SEM image of Co-CNP and its energy-dispersive spectroscopy (EDS): C (red), P (blue), N (green), and Co (purple)

Supplementary Figure 3. XRD patterns of Co-CN and Co-CNP.

Supplementary Figure 4. Deconvoluted XPS spectrum of (a) C 1s and (b) Co 2p in Co-CNP, (c)the C K-edge XANES results of Co-CNP

Supplementary Figure 5. Deconvoluted XPS spectra of (a) Co 2p, (b) C 1s, and (c) N 1s in Co-CN SAC with a high resolution.

Supplementary Figure 6. FTIR spectra of the CoP1N3 and CoN4 samples.

Supplementary Figure 7. UV-vis spectra of the Co-CNP samples.

Supplementary Figure 8. N₂-sorption and the corresponding pore size distributions in the (a) Co-CN, (b) Co-CNP samples.

Supplementary Figure 9. (a) 1H NMR spectra (800 MHz) of standard (¹⁵NH₄)₂SO₄ samples with different concentrations. (b) linear fitting of the integral area ratio (¹⁵N-¹⁵NH₄⁺/C₄H₄O₄) and ¹⁵N-¹⁵NH₄⁺ concentration.

Supplementary Figure 10. The CV curves of Co-CN (a) and Co-CNP (b) at different scan rates in the non-Faradaic region; The capacitive current differences of $(J_A - J_B)/2$ as a function of rates in for Co-CN (c) and Co-CNP (d).

Supplementary Figure 11. (a) The LSV curves with different sweep rates for Co-CN at nitrates solution (a) and Co-CNP at nitrite solution (b).

Supplementary Figure 12. Cycle Faradaic efficiency for NH₄⁺ production and NH₄⁺-yield on Co-CNP SACs.

Supplementary Figure 13. CV results for Co-CNP with different cycle durations.

Supplementary Figure 14. The adsorption models on an ideal CoP_1N_3 site

Supplementary Figure 15. The side-view of nitrate adsorption model on an ideal CoP_1N_3 site

Sample	Shell	CN a	<i>R</i> [Å] ^b	σ²(10 ⁻³) ^с	R factor ^d		
Co-CN	Cu-N	4.1	1.92	6.3	0.009		
	Co-N	3.2	1.94	5.1	0.019		
CO-CNP	Co-P	0.9	2.21	5.1	0.018		

Table S1. EXAFS fitting parameters for various samples.

^a *CN* is the coordination number, ^b *R* is the average bonding distance, ^c σ^2 is Debye–Waller factor and ^d *R* factor represents the fitting quality.

 Table S2. Physical and chemical properties of samples.

Sample	S _{BET} (m²/g)	V _{meso} ^a (cc/g)	d _{meso} a (nm)	ECSA (cm ²)		
Co-CN	18.0	0.07	36.7	0.49		
Co-CNP	35.4	0.12	24.2	0.79		

^a Mesopore volume and diameter were obtained from the N₂-desorption branch using the BJH method.

No	Cathod	Cathode	Anode	Solution	NH₄⁺-	NH4 ⁺ -Yield rate	Ref
	е	Area		conditions	Faradaic		
		(cm²)			efficienc		
					у (%)		
1	Fe-PPy	0.25	-	0.1 M KOH +	100	2.75 mg _{NH3} ·h ⁻¹ ·cm ⁻²	1
				0.1 M KNO3			
2	Cu/Cu ₂	1	platinum	0.5 M Na ₂ SO ₄	95.8	-	2
	0		foil	200 ppm			
				nitrate-N			
3	Fe SAC	2	platinum	0.1 M K ₂ SO ₄	75	0.46 mmol·h ⁻¹ ·cm ⁻²	3
			foil	and 0.5 M			
				KNO₃			
4	TiO _{2-x}	1	platinum	0.5 M Na ₂ SO ₄	85	-	4
	nanotub		foil	+50 ppm			
	е			NO ₃ ⁻ –N			
5	Cu-	2	Platinum	PBS (0.1 M,	85.9	436 ± 85 µg·h ⁻¹ ·cm⁻	5
	PTCDA		foil	pH=7) 500		2	
				ppm of NO ₃ ⁻			
6	Au/C	-	Pt wire	1 mM KNO3 +	26	$(4.4 \pm 0.7) \times 10^2$	6
				0.5 M K ₂ SO ₄		pmol·s ⁻¹ ·cm ⁻²	
				(initial pH 3.5)			
7	Ti foil	0.3	glassy	0.1 M HNO3 +	82	-	7
			carbon	0.3 M KNO ₃			
			plate				
8	NiAlMn	2	Pt plate	0.5 M	92.2	-	8
	CoCu			KOH+0.05 M			
	alloy			KNO3			
9	Co-CNP	2.25	Ti/IrO ₂ —	0.02 M	92.0	433.3 µg _{№н4} ∙h⁻	This
			Ru	Na ₂ SO ₄		¹ ·cm ^{−2} .	Worl

Table S3. Comparison of nitr	te reduction in this study	y with previous reports.
------------------------------	----------------------------	--------------------------

References

1. Li, P. P., Jin, Z. Y., Fang, Z. W., & Yu, G. H., A single-site iron catalyst with preoccupied active center that achieves selective ammonia electrosynthesis from nitrate. *Energy Environ. Sci.* **14**, 3522-3531 (2021).

2. Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B., Unveiling the activity origin of a copperbased electrocatalyst for selective nitrate reduction to ammonia. *Angew. Chem. Int. Ed.* **59**, 5350-5354 (2020).

3. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. *Nat. Commun.* **12**, 2870-2880 (2021).

4. Jia, R. R. et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO₂. *ACS Catal.* **10**, 3533-3540 (2020).

5. Chen, G.F. *et al.* Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. *Nat. Energy* **5**, 605–613 (2020).

6. Jaecheol, C. *et al.* Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: a potential source of ammonia in dinitrogen reduction studies. *ACS Energy Lett.* **5**, 2095–2097 (2020).

7. McEnaney, J. M. *et al.* Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. *ACS Sustainable Chem. Eng.* **8**, 2672–2681 (2020).

8. Lu, C., Lu, S. G., Qiu, W. H., Liu, Q. G. Electroreduction of nitrate to ammonia in alkaline solutions using hydrogen storage alloy cathodes. *Electrochimica Acta* **44**, 2193–2197 (1999).