

Supplementary Information for

Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies

Jiacheng Li, Miao Li*, Ning An, Shuo Zhang, Qinan Song, Yilin Yang, Jing Li, Xiang Liu

School of Environment, Tsinghua University, 30# Shuangqing Road, Hai Dian District, Beijing, 100086, China.

*E-mail: [miaoli@tsinghua.edu.cn;](mailto:miaoli@tsinghua.edu.cn) Tel.: 86-10-62772485.

This PDF file includes: Figures S1 to S15 Table S1 to S3

References for SI reference citations

Supplementary Figure 1. TEM images of Co-CN.

Supplementary Figure 2. SEM image of Co-CNP and its energy-dispersive spectroscopy (EDS): C (red), P (blue), N (green), and Co (purple)

Supplementary Figure 3. XRD patterns of Co-CN and Co-CNP.

Supplementary Figure 4. Deconvoluted XPS spectrum of (a) C 1s and (b) Co 2p in Co-CNP, (c)the C K-edge XANES results of Co-CNP

Supplementary Figure 5. Deconvoluted XPS spectra of (a) Co 2p, (b) C 1s, and (c) N 1s in Co-CN SAC with a high resolution.

Supplementary Figure 6. FTIR spectra of the CoP1N3 and CoN4 samples.

Supplementary Figure 7. UV–vis spectra of the Co-CNP samples.

Supplementary Figure 8. N₂-sorption and the corresponding pore size distributions in the (a) Co-CN, (b) Co-CNP samples.

Supplementary Figure 9. (a) 1H NMR spectra (800 MHz) of standard (¹⁵NH₄)₂SO₄ samples with different concentrations. (b) linear fitting of the integral area ratio $(^{15}N-^{15}NH_{4}^{+}/C_{4}H_{4}O_{4})$ and $^{15}N-^{15}NH_{4}^{+}$ concentration.

Supplementary Figure 10. The CV curves of Co-CN (a) and Co-CNP (b) at different scan rates in the non-Faradaic region; The capacitive current differences of $(J_A - J_B)/2$ as a function of rates in for Co-CN (c) and Co-CNP (d).

Supplementary Figure 11. (a) The LSV curves with different sweep rates for Co-CN at nitrates solution (a) and Co-CNP at nitrite solution (b).

Supplementary Figure 12. Cycle Faradaic efficiency for NH₄⁺ production and NH₄⁺-yield on Co-CNP SACs.

Supplementary Figure 13. CV results for Co-CNP with different cycle durations.

Supplementary Figure 14. The adsorption models on an ideal CoP₁N₃ site

Supplementary Figure 15. The side-view of nitrate adsorption model on an ideal $CoP₁N₃$ site

$\frac{1}{2}$ and $\frac{1}{2}$								
Sample	Shell	CN ^a	$R[A]$ ^b	$\sigma^2 (10^{-3})$ c	R factor ^d			
Co-CN	Cu-N	4.1	1.92	6.3	0.009			
Co-CNP	Co-N	3.2	1.94	5.1	0.018			
	$Co-P$	0.9	2.21	5.1				

Table S1. EXAFS fitting parameters for various samples.

^a CN is the coordination number, ^bR is the average bonding distance, ^cσ² is Debye–Waller factor and ^d R factor represents the fitting quality.

Table S2. Physical and chemical properties of samples.

Sample	S_{BET} (m ² /g)	$\rm V_{meso}^a$ (cc/g).	$d_{\text{meso}}^{\text{a}}$ (nm)	$ECSA$ (cm ²)
Co-CN	18.0	0.07	36.7	0.49
Co-CNP	35.4	0.12	24.2	0.79

 a Mesopore volume and diameter were obtained from the N₂-desorption branch using the BJH method.

References

1. Li, P. P., Jin, Z. Y., Fang, Z. W., & Yu, G. H., A single-site iron catalyst with preoccupied active center that achieves selective ammonia electrosynthesis from nitrate. *Energy Environ. Sci.* **14**, 3522-3531 (2021).

2. Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B., Unveiling the activity origin of a copperbased electrocatalyst for selective nitrate reduction to ammonia. *Angew. Chem. Int. Ed*. **59**, 5350-5354 (2020).

3. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. *Nat. Commun.* **12**, 2870-2880 (2021).

4. Jia, R. R. et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. *ACS Catal.* **10,** 3533-3540 (2020).

5. Chen, G.F. *et al.* Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. *Nat. Energy* **5,** 605–613 (2020).

6. Jaecheol, C. *et al.* Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: a potential source of ammonia in dinitrogen reduction studies. *ACS Energy Lett.* **5**, 2095−2097 (2020).

7. McEnaney, J. M. *et al.* Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. *ACS Sustainable Chem. Eng.* **8,** 2672–2681 (2020).

8. Lu, C., Lu, S. G., Qiu, W. H., Liu, Q. G. Electroreduction of nitrate to ammonia in alkaline solutions using hydrogen storage alloy cathodes. *Electrochimica Acta* **44**, 2193–2197 (1999).