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Supplementary Discussion 

Supplementary Discussion 1. Transfer matrix calculation 

To calculate the propagation of light, we employed the 4×4 Mueller matrix formalism. The procedure 
for evaluating the light traveling through the medium is described in the following. We first consider 
the refractive index tensor in the medium as 

𝒏 = (

𝑛𝑥 0 0
0 𝑛𝑦 0

0 0 𝑛𝑧

). 

Thus, the dielectric permittivity tensor is given: 

𝜺 = (

𝑛𝑥
2 0 0

0 𝑛𝑦
2 0

0 0 𝑛𝑧
2

) = (

𝜀𝑥 0 0
0 𝜀𝑦 0

0 0 𝜀𝑧

). 

Assuming the optical uniaxiality, the tensor with the optical axis oriented in the x direction (say the 
reference axis) reads 

𝒏 = (

𝑛𝑒 0 0
0 𝑛𝑜 0
0 0 𝑛0

), 

where 𝑛𝑜 and 𝑛𝑒 are the ordinary and the extraordinary refractive index, respectively. In our optical 
simulation, director fields are produced by functions for the poling (PP) and helielectric (HN*) 
structures. By using this structural information, the dielectric permittivity tensor is generated for 
each director orientation as follows. The rotation matrix is created from the rotation angle of the 
director from the reference axis (β), so that the effective dielectric permittivity tensor becomes: 

(

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

) = 𝑹𝑻(𝛽) (

𝜀𝛼 0 0
0 𝜀𝛽 0

0 0 𝜀𝛾

)𝑹(𝛽), 

where 𝑹(𝛽) is the rotation matrix that rotates by angle of β. 
The elements of Maxwell’s equations in Cartesian coordinates are written as follows: 

(

 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 −

𝜕

𝜕𝑧

𝜕

𝜕𝑦

0 0 0
𝜕

𝜕𝑧
0 −

𝜕

𝜕𝑥

0 0 0 −
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧
−
𝜕

𝜕𝑦
0 0 0

−
𝜕

𝜕𝑧
0

𝜕

𝜕𝑥
0 0 0

𝜕

𝜕𝑦
−
𝜕

𝜕𝑥
0 0 0 0

)
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𝐸𝑥

𝐸𝑦

𝐸𝑧

𝐻𝑥

𝐻𝑦

𝐻𝑧)

 
 
 
 
 
 
 
 

=
1

𝑐

𝜕

𝜕𝑡
 

(

 
 
 
 
 
 
 
 

𝐷𝑥

𝐷𝑦

𝐷𝑧

𝐵𝑥

𝐵𝑦

𝐵𝑧)

 
 
 
 
 
 
 
 

(1), 

where  𝑐 is the speed of light, 𝐸,𝐻 the components of electric and magnetic field and 𝐷, 𝐵 the 

electric and magnetic flux density, respectively. When the 6×6 matrix, the matrix of the electric 

and magnetic field vector and the matrix of the electric and magnetic flux density are abbreviated 
as 𝐓, 𝐆 and 𝐂,  Eq. (1) is described as 

𝐓𝐆 =
1

𝑐

𝜕

𝜕𝑡
𝐂. (2)  

Moreover, a linear relationship can be expressed between 𝐂 and 𝐆 via the matrix 𝐌 in which the 
electric permittivity and the magnetic permeability information are included: 

𝐂 = 𝐌𝐆. (3) 
By defining the time displacements of 𝐂 and 𝐆 as exp (𝑖𝜔𝑡), the following spatial wave equation 
can be obtained from Eqs. (2,3), 
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𝐓𝚪 =
𝑖𝜔

𝑐
𝐌𝚪, (4) 

where  𝜔  is the angular frequency of light and 𝚪   the spatial component of 𝐆  (supposing 𝚪  is 
composed of the spatial and time components).  
Considering that the light incidents on the xz plane as the plane of incidence, then the components 
of the 𝐓 are modified as follows: 

𝐓 =

(

 
 
 
 
 
 
 
 
0 0 0 0 −

𝜕

𝜕𝑧
0

0 0 0
𝜕

𝜕𝑧
0 −𝑖𝐾𝑥

0 0 0 0 𝑖𝐾𝑥 0

0
𝜕

𝜕𝑧
0 0 0 0

−
𝜕

𝜕𝑧
0 𝑖𝐾𝑥 0 0 0

0 −𝑖𝐾𝑥 0 0 0 0 )

 
 
 
 
 
 
 
 

. (5) 

The x component of the wavenumber vector for the incident light is 

𝐾𝑥 =
𝜔

𝑐
𝑛𝑖 sin 𝜃𝑖 , 

where 𝑛𝑖 is the refractive index of incident side medium and 𝜃𝑖 the angle between normal direction 
of medium surface and the direction of the light propagation. Finally, by eliminating components 

Γ3, Γ6 using Eqs. (4,5), the differential equation is written in the form of the 4×4 matrix, so-called 

the Berreman’s equation (Ref. (1)): 

𝜕

𝜕𝑧
(

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

) =
𝑖𝜔

𝑐
(

Δ11 Δ12 Δ13 Δ14
Δ21 Δ22 Δ23 Δ24
Δ31 Δ32 Δ33 Δ34
Δ41 Δ42 Δ43 Δ44

)(

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

) =
𝑖𝜔

𝑐
𝚫𝑩(

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

). 

 
𝜕𝚿𝐁

𝜕𝑧
= 𝑖

𝜔

𝑐
𝚫𝑩𝚿𝑩, (6) 

𝚿𝑩 = (

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

) , (7) 

where  𝚿𝑩  are the tangential components of the electric and magnetic fields projected to the 
incident plane of electromagnetic waves. 

When light propagates along z axis, 𝚫𝑩 is expressed as a 4×4 matrix： 

𝚫𝑩 =

(

 
 
 

−𝐾𝑥𝑥
𝜀𝑧𝑥

𝜀𝑧𝑧
−𝐾𝑥𝑥

𝜀𝑧𝑦

𝜀𝑧𝑧
0 1 −

𝐾𝑥𝑥
2

𝜀𝑧𝑧

0 0 −1 0

𝜀𝑦𝑧
𝜀𝑧𝑥

𝜀𝑧𝑧
− 𝜀𝑦𝑥 𝐾𝑥𝑥

2 − 𝜀𝑦𝑦 + 𝜀𝑦𝑧
𝜀𝑧𝑦

𝜀𝑧𝑧
0 𝐾𝑥𝑥

𝜀𝑦𝑧

𝜀𝑧𝑧

𝜀𝑥𝑥 − 𝜀𝑥𝑧
𝜀𝑧𝑥

𝜀𝑧𝑧
𝜀𝑥𝑦 − 𝜀𝑥𝑧

𝜀𝑧𝑦

𝜀𝑧𝑧
0 −𝐾𝑥𝑥

𝜀𝑥𝑧

𝜀𝑧𝑧)

 
 
 

. 

𝐾𝑥𝑥 in 𝚫𝑩 is defined as  

𝐾𝑥𝑥 =
𝑐

𝜔
𝐾𝑥 = 𝑛𝑖 sin 𝜃𝑖. 

The general solution of the Berreman’s equation is given by 

𝚿𝐁(𝐷) = exp (𝑖
𝜔

𝑐
𝚫𝑩𝐷)𝚿𝑩(0), 

∴ 𝚿𝐁(0) = exp (𝑖
𝜔

𝑐
𝚫𝑩(−𝐷))𝚿𝑩(𝐷), 

where D is the propagation length in the medium. Introducing two matrices 𝑳𝒊 and 𝑳𝒕 to satisfy the 
following formula, 

 𝚿𝑩(0) = 𝑳𝒊(

𝐸𝑖𝑠
𝐸𝑟𝑠
𝐸𝑖𝑝
𝐸𝑟𝑝

), (8) 
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 𝚿𝑩(𝑑) = 𝑳𝒕(

𝐸𝑡𝑠
0
𝐸𝑡𝑝
0

). (9) 

We also introduce the partial transfer matrix: 𝑻𝒑(−𝐷) = exp (𝑖
𝜔

𝑐
𝚫𝑩(−𝐷)). 

By using these quantities, the relationship linking the involved electric field is: 

(

𝐸𝑖𝑠
𝐸𝑟𝑠
𝐸𝑖𝑝
𝐸𝑟𝑝

) = 𝑳𝒊
−1𝑻𝒑(−𝐷)𝑳𝒕(

𝐸𝑡𝑠
0
𝐸𝑡𝑝
0

). 

The electric field of incident light is represented by 𝐸𝑖𝑠 and 𝐸𝑖𝑠, the electric field of transmitted light 
by 𝐸𝑡𝑠 and 𝐸𝑡𝑠, and the electric field of reflected light as 𝐸𝑟𝑠 and 𝐸𝑟𝑠. 
 
According to Eqs. (7-9), the following relationships are derived: 

𝚿𝑩(𝐷) = (

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

)

𝑧=𝐷

= 𝑳𝒕(

𝐸𝑡𝑠
0
𝐸𝑡𝑝
0

) = (

𝐸𝑡𝑝 cos 𝜃𝑡
𝐸𝑡𝑠

−𝑛𝑡𝐸𝑡𝑠 cos 𝜃𝑡
𝑛𝑡𝐸𝑡𝑝

), 

𝚿𝑩(0) = (

𝐸𝑥
𝐸𝑦
𝐻𝑥
𝐻𝑦

)

𝑧=0

= 𝑳𝒊(

𝐸𝑖𝑠
𝐸𝑟𝑠
𝐸𝑖𝑝
𝐸𝑟𝑝

) = (

𝐸𝑖𝑝 cos 𝜃𝑖 − 𝐸𝑟𝑝 cos 𝜃𝑖
𝐸𝑖𝑠 + 𝐸𝑟𝑠

−𝑛𝑖𝐸𝑖𝑠 cos 𝜃𝑖 +𝑛𝑖𝐸𝑟𝑠 cos 𝜃𝑖
𝑛𝑖𝐸𝑖𝑝 + 𝑛𝑖𝐸𝑟𝑝

), 

cos 𝜃𝒕 = {1 − (
𝑛𝑖

𝑛𝑡
)
2

sin2 𝜃𝑖}

1

2
, 

where 𝜃𝑡  is the angle between the normal direction of medium surface and the propagation direction 
of the transmitted light, and 𝑛𝑡 the refractive index of the transmitted-side medium. Therefore, 𝑳𝒕 
and 𝑳𝒊

−1 matrices are given as: 

𝑳𝒕 = (

0 0 cos 𝜃𝑡 0
1 0 0 0

−𝑛𝑡 cos 𝜃𝑡 0 0 0
0 0 𝑛𝑡 0

), 

𝑳𝒊
−1 =

1

2

(

 
 
 
 

0 1 −
1

𝑛𝑖 cos𝜃𝑖
0

0 1
1

𝑛𝑖 cos𝜃𝑖
0

1

cos 𝜃𝑖
0 0

1

𝑛𝑖

−
1

cos 𝜃𝑖
0 0

1

𝑛𝑖)

 
 
 
 

. 

When 𝑞𝑗 (𝑗 = 1 − 4) corresponds to the eigenvalues of 𝚫𝑩, the solution of Eq. (6) is expressed as: 

 ΨBj(𝐷) = exp (𝑖
𝜔

𝑐
𝑞𝑗𝐷)ΨB𝑗(0)    (𝑗 = 1,2,3,4). (10) 

IBy Eqs. (6,10), we obtain the following relationship: 

𝑖
𝜔

𝑐
𝚫𝑩Ψ𝐵𝑗(𝐷) = 𝑖

𝜔

𝑐
𝑞𝑗Ψ𝐵𝑗(𝐷) , 

∴ 𝚫𝑩Ψ𝐵𝑗(𝐷) = 𝑞𝑗Ψ𝐵𝑗(𝐷). 

Using 𝑞𝑗 calculated above, 𝑻𝒑 is determined. 

By series expansion of 𝚫𝑩, 𝑻𝒑 can be represented as: 

𝑻𝒑(−𝑑) = 𝛽0𝑰 + 𝛽1𝚫𝑩 + 𝛽2𝚫𝑩
𝟐 + 𝛽3𝚫𝑩

𝟑 , 

𝛽0 = ∑ 𝑞𝑘𝑞𝑙𝑞𝑚
exp(𝑖𝜔𝑞𝑗(−𝐷)/𝑐)

(𝑞𝑗−𝑞𝑘)(𝑞𝑗−𝑞𝑙)(𝑞𝑗−𝑞𝑚)

4
𝑗=1    , 

𝛽1 = ∑ (𝑞𝑘𝑞𝑙 + 𝑞𝑙𝑞𝑚 + 𝑞𝑙𝑞𝑚)
exp(𝑖𝜔𝑞𝑗(−𝐷)/𝑐)

(𝑞𝑗−𝑞𝑘)(𝑞𝑗−𝑞𝑙)(𝑞𝑗−𝑞𝑚)

4
𝑗=1  , 

𝛽2 = ∑ (𝑞𝑘 + 𝑞𝑙 + 𝑞𝑚)
exp(𝑖𝜔𝑞𝑗(−𝐷)/𝑐)

(𝑞𝑗−𝑞𝑘)(𝑞𝑗−𝑞𝑙)(𝑞𝑗−𝑞𝑚)

4
𝑗=1 , 
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𝛽3 = ∑
exp(𝑖𝜔𝑞𝑗(−𝐷)/𝑐)

(𝑞𝑗−𝑞𝑘)(𝑞𝑗−𝑞𝑙)(𝑞𝑗−𝑞𝑚)
 4

𝑗=1 , 

𝑗 = 1 ∶ (𝑘, 𝑙, 𝑚) = (2,3,4), 
𝑗 = 2 ∶ (𝑘, 𝑙, 𝑚) = (1,3,4), 

𝑗 = 3 ∶ (𝑘, 𝑙, 𝑚) = (1,2,4), 

𝑗 = 4 ∶ (𝑘, 𝑙, 𝑚) = (1,2,3). 

The coefficients 𝛽𝑘(k=0 - 3) are expressed by the eigenvalues of 𝑞𝑗. 

Consider light propagation in a single uniform optical layer, the transfer matrix, 𝑻 is defined as 
follows. 

𝑻 ≡ 𝑳𝒊
−1𝑻𝒑(−𝐷)𝑳𝒕. 

Then, for multi-layer structure, 𝑻 is calculated as:  

𝑻 = 𝑳𝒊
−1∏ {𝑻𝒋𝒑(−𝐷𝑗)}

𝑁
𝑗=1 𝑳𝒕, 

where 𝑁 is the total number of the layers and 𝑗 the index of the layers. 

Using 𝑻, the relationship between incident, reflected and transmitted light reads: 

(

𝐸𝑖𝑠
𝐸𝑟𝑠
𝐸𝑖𝑝
𝐸𝑟𝑝

) = 𝑻(

𝐸𝑡𝑠
0
𝐸𝑡𝑝
0

), 

= (

𝑇11 𝑇12 𝑇13 𝑇14
𝑇21 𝑇22 𝑇23 𝑇24
𝑇31 𝑇32 𝑇33 𝑇34
𝑇41 𝑇42 𝑇43 𝑇44

)(

𝐸𝑡𝑠
0
𝐸𝑡𝑝
0

). 

The amplitude ratio of the transmitted to incident light for each polarization condition can be 
expressed by the following relationship. 

𝑡𝑝𝑝 =
𝑇11

𝑇11𝑇33−𝑇13𝑇31
, 

𝑡𝑠𝑝 =
−𝑇13

𝑇11𝑇33−𝑇13𝑇31
, 

𝑡𝑠𝑠 =
𝑇33

𝑇11𝑇33−𝑇13𝑇31
, 

𝑡𝑝𝑠 =
−𝑇31

𝑇11𝑇33−𝑇13𝑇31
, 

The first and second indices in the subscript mean the polarizations of transmitted and incident 
light. 
By obtaining 𝑻 at each position in the numerical simulation, the Jones matrix is taken as  

(
𝐸𝑡𝑝
𝐸𝑡𝑠
) = (

𝑡𝑝𝑝 𝑡𝑝𝑠
𝑡𝑠𝑝 𝑡𝑠𝑠

) (
𝐸𝑖𝑝
𝐸𝑖𝑠
). 

By specifying the incident light condition, the polarization and phase condition of the light at each 
position in the medium can be determined. As a result, the propagation of fundamental light and 
second harmonic light is calculated. 
 
 
Supplementary Discussion 2. The doping effect of chiral generators on SH signal  
In our previous experiment, we found that the SH signal decreases very fast with doping the chiral 
dopant (Ref.). Two potential effects might coexist here. The first is the diminish of the real polarity 
of the materials upon the doping of less-polar chiral dopants. The second is the reduction of the 
effective polarity probed by SHG. Second possibility should be mainly attributed to the decrease of 
the helical pitch. When the pitch is approaching to wavelength of the input fundamental light, the 
SH signal should decrease because light “sees” a cancelled polarization field. To test this, we have 
conducted the SH signal as a function of concentration of chiral dopants by using chiral dopants 
with distinct chiral strength. Here we compare chiral dopants R5011 and S1. R5011 have much 
stronger helical twisting power than S1. Figure S5 shows that the concentration dependences of 
SH signal in both RM734/R5011 and RM734/S1 systems (data of RM734/S1 reproduced from Ref. 
(2)). As seen, when doping of R5011 is less than 1 wt%, the SH signal almost vanishes, where the 
polarity of the system is almost same to that of RM734 because the doping ratio is very small. On 
the other hand, S1-doped system show a much slower decrease of SH signal. When plotting the 
helical pitch dependences of the SH signal, the results from the two systems are well-consistent: 
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the SH signal shows almost same helical pitch dependence. It means the observed SH signal 
reduction should mainly come from the second effect, i.e., the reduction of the effective polarity 
probed by SHG reduces. When the doping is small, the system polarity remains almost unchanged 
with the neat ferroelectric nematic phase. Especially, a clear SHG enhancement was also observed 
in RM734/R5011 system when the helical pitch is close to the SH wavelength of 532nm. This is 
also consistent with our previous results in RM734/S1 systems. 
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Figures 

 
Fig. S1. Coherence length measurement of RM734 at 110 °C in a syn-parallel rubbed wedge cell. 
The incident polarization of the fundamental beam is parallel to the polarization. The coherence 
length and 𝚫𝒏𝒆 are obtained by fitting.  
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Fig. S2. The medium thickness dependence of z axis component of 𝑑𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (red, left axis) and the 

intensity of the SH signal (blue, right axis) calculated by numerical simulations for (A) PP and (B) 
HN* structures under enhanced condition, respectively. The period of poling domains for (A) and 
the helical pitch for (B) are 9.28 μm and 7.55 μm , respectively. 
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Fig. S3. The numerical calculation results of the SH intensity variations functions of (A) the medium 
thickness and (B) the coherence length without considering the birefringence, optical rotation and 

polarization rotation. Only a sine-function of the phase factor of 𝒆𝒊𝜽 is considered. In (A) and inset, 
the dashed red, green dashed and blue dashed lines correspond to the traditional quasi-matching 
condition for the periodic poled structure with m=1, 2, 3, respectively. The red solid line corresponds 
to the present quasi-matching condition for the helielectric structure with m=1. The blue solid and 
green solid lines correspond to the helielectric structures with m=2, 3 (Inset). In (B), the expanded 
views of specific area of the curves are shown in the corresponding insets. Such a situation in HN* 
state never happen in the experiment. 
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Fig. S4. The SH intensity as a function of the concentration of R811. The pitches for different 
concentration of R811 measured at 120 °C are shown as reference. 

  



 

 

11 

 

 

 

Fig. S5. (A) The schematic of generation of the helielectric structure by mixing chiral dopant to 
ferroelectric nematic materials. (B) The materials used for the preparation of the helielectrics. (C) 
The phase diagram for the RM734/R811 mixtures. 
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Fig. S6. The Reciprocal of helical pitch as a function of the concentration of R811. 
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Fig. S7. The concentration (A) and helical pitch (B) dependencies of SH signal in both 
RM734/R5011 and RM734/S1 systems (data of RM734/S1 reproduced from Ref. (2)). R5011 is a 
commercial chiral dopant. The SH efficiency is defined a s the intensity ratio of sample SH signal 
to the SH signal of a reference Y-cut quartz. 
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Fig. S8. Molecular structures: RM734, A2 and R811. 

 
 
 
 
 
 
 
 
SI References 
 
 

1. D. W. Berremann, Optics in Stratified and Anisotropic Media: 4×4- Matrix Formulation J 

Opt Soc Am 62 (1972) 502-510 
2. X. Zhao et al., Spontaneous helielectric nematic liquid crystals: Electric analog to 

helimagnets. Proc Natl Acad Sci U S A 118 (2021). 
 


