The Journal of **Physiology**

Statistical Summary Document

Manuscript Title:	Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation
Authors:	Ranieri F, Pellegrino G, Ciancio AL, Musumeci G, Noce E, Insola A, Diaz Balzani LA, Di Lazzaro V, Di Pino G
Animal model used, if applicable:	-
Underlying hypothesis:	Selective sensory fiber stimulation evokes a detectable activity in the primary somatosensory cortex and it produces a short-latency inhibitory effect on the output of the primary motor cortex
Definitions of 'n':	Question 1: n = number of tested stimulation sites Question 2: n = number of stimulation sites evoking sensory perceptions Question 3: n = number of stimulation sites evoking motor responses Question 4: n = number of recorded EEG sweeps after peripheral nerve stimulation Question 5: n = number of recorded EEG sweeps after peripheral nerve stimulation Question 6: n = number of recorded motor evoked potentials Question 7: n = number of recorded motor evoked potentials Question 8: n = number of recorded motor evoked potentials Question 9: n = number of recorded motor evoked potentials

Statistical summary table:

Experimental question number	Finding/ conclusion	Experimental location/variable	Measure of central tendency (Median)	Dispersion (IQR)	n	Exact P value	Figure/table in which data are	Units	Data comparisons	Statistical test	Any other experiment	Comments
							presenteu				anactors	
 To confirm activation of somatosensory and/or motor fibers by intraneural (IN) and perineural (PN) stimulation at different sites (i.e., electrode contacts) 	IN sites selectively activate sensory fibers at low stimulation intensity	Left median nerve - Threshold stimulus intensity for evoking sensory perception and CMAP	-	-	30	-	Table 1, Fig. 3A	μА	-			Observation
 To compare efficacy of IN and PN stimulation in activating somatosensory fibers 	PN stimulation requires higher charge to recruit somatosensory fibers	IM threshold CM threshold	25.60 80.00	16.00 - 48.00 75.00 - 100.00	15 12	<0.0001	Fig. 2	nC nC	IM vs CM threshold	Mann-Whitney		
 To determine efficacy of IN and PN stimulation in activating motor fibers 	PN stimulation requires higher charge to recruit motor fibers	CMAP recruitment curve with IM stim. CMAP recruitment curve with CM stim.	-	-	3 12	-	Fig. 3B	mV mV	-			Observation
 To confim evoked activity in the primary somatosensory cortex (S1) by transcutaneous whole nerve stimulation 	Presence of the first cortical potential at ~17 ms	Right central region on the scalp	-	-	>2000	-	Fig. 4A-C	μV	-			Observation
5. Detectable evoked activity in S1 by intraneural (IN) stimulation?	Presence of the first cortical potential at ~16 ms	Right central region on the scalp	-	-	>7000	-	Fig. 4D	μV	SEPs by IN vs transcutaneous stimulation			Observation

6 Short-latency afferent inhibition	MFP inhibited by	Site: all IN and PN					Fig 5				Pooled	Individual neak-to-neak MEP
(SAI) of MEPs by invasive perve	IN/PN afferent	MER uncond	0 9/80	0 7332 - 1 2463	72		118.5	ratio			stimulation sites	amplitudes (mV) pormalized to
(SAI) OF MEP'S by Invasive herve	stimulation		0.3400	0.7332 - 1.2403	246	<0.0001		Tatio	us MED unsound	Mann Whitnow	and ICIa	amplitudes (IIIV) normalized to
sumulation	CAL high and	NIEF_13113=21	0.7155	0.4263 - 0.9007	240	\0.0001			vs wier_unconu	Ivianii-vvinciiey	anu isis	awalituda (m)()
	SAI nigh anu	Site: IIVI12	1.05.42	0.0156 1.1017	12							amplitude (mv)
	consistent with	IVIEP_uncond	1.0543	0.8156 - 1.1817	12			ratio				
	IM12 conditioning	; MEP_ISI15-16	0.5216	0.3185 - 0.7512	12	0.0056			vs MEP_uncond	Mann-Whitney		
	SAI variable from	MEP_ISI17-19	0.5189	0.2459 - 0.6702	18	0.0005			vs MEP_uncond	Mann-Whitney		
	other sites and	MEP_ISI20-21	0.5216	0.3185 - 0.7512	12	<0.0001			vs MEP_uncond	Mann-Whitney		
	higher at shorter	► Site: IM16	_									
	ISIs	MEP_uncond	0.9766	0.6244 - 1.1761	12			ratio				
		MEP_ISI15-16	0.3409	0.3024 - 0.4847	11	0.0003			vs MEP_uncond	Mann-Whitney		
		MEP ISI17-19	0.9608	0.4310 - 1.2687	18	0.6615			vs MEP uncond	Mann-Whitney		
		MEP ISI20-21	0.8623	0.5800 - 1.2833	11	0.7399			vs MEP_uncond	Mann-Whitney		
		► Site: CM5								,		
		MEP uncond	0 9399	0 5543 - 1 4602	12			ratio				
		MED ISI15-16	0.5335	0.4302 - 0.7747	10	0.0804		Tutio	vs MER uncond	Mann-Whitney		
		MED 10117-10	0.9090	0.4302 - 0.7747	10	0.0004			vs MEP_uncond	Mann-Whitney		
		IVIEP_ISI17-19	0.8080	0.6734 - 1.2903	18	0.8187			vs WEP_uncond	iviann-whitney		
		MEP_ISI20-21	0.7766	0.5497 - 1.0217	11	0.6505	-		vs MEP_uncond	Mann-Whitney		-
		Site: CM5+14	-									
		MEP_uncond	0.9238	0.7281 - 1.3236	12			ratio				
		MEP_ISI15-16	0.4691	0.2912 - 0.8016	12	0.0145			vs MEP_uncond	Mann-Whitney		
		MEP_ISI17-19	0.8294	0.6155 - 0.8890	18	0.2486			vs MEP_uncond	Mann-Whitney		
		MEP ISI20-21	0.7199	0.4226 - 1.3788	12	0.4428			vs MEP uncond	Mann-Whitney		
		► Site: CU5										1
		MEP uncond	1.0070	0.7925 - 1.1718	12			ratio				
		MEP_ISI15-16	0 5930	0 4705 - 0 8073	12	0.0045			vs MFP_uncond	Mann-Whitney		
		MEP_ISI17-19	0.7285	0.5830 - 0.8265	18	0.0014			vs MEP_uncond	Mann-Whitney		
		MED 19120 21	0.0220	0.6540 1.2205	11	0.0014			vs MED_uncond	Mann Whitney		
		NIEF_13120-21	0.9220	0.0340 = 1.3393	11	0.0001			vs wier_unconu	wiann-winney		-
		Sile: COS+14	0.0010	0.7476 4.2026	12							
		MEP_uncond	0.8810	0.7476 - 1.2036	12			ratio				
		MEP_ISI15-16	0.8925	0.8124 - 1.0975	12	0.9774			vs MEP_uncond	Mann-Whitney		
		MEP_ISI17-19	0.6819	0.5788 - 0.9856	18	0.1038			vs MEP_uncond	Mann-Whitney		
		MEP_ISI20-21	0.8344	0.6683 - 0.8965	12	0.2189			vs MEP_uncond	Mann-Whitney		
	Control condit.: no	► Site: IM12	_									
	MEP inhibition at	MEP_uncond	0.9360	0.5368 - 1.2820	14			ratio				
	an ISI shorter than	MEP_ISI8	1.1450	0.6937 - 1.4997	12	0.4940			vs MEP_uncond	Mann-Whitney		
	the physiological											
	range											
7 SAI magnitude at different IN and	SAL is different	SAL IM12	0.3830	0.2506 - 0.6523	42	<0,0001	Fig 6A	ratio	SAL IM12 vs	Kruskal-Wallis	1	
PN stimulation sites?	hetween		0 7010	0.3640 - 1.2173	40				SAL IM16 vs	askar wunis		
FIN Scillulation sites?	between	SAL_INITO	0.7019	0.5040 - 1.2175	40				SAL_INITO VS			
	stimulation sites	SAI_CIVI5	0.7441	0.5577 - 1.0250	59				SAI_CIVIS VS			
		SAI_CM5+14	0.7277	0.4155 - 1.0525	42				SAI_CIVI5+14 vs			
		SAI_CU5	0.7110	0.5440 - 0.9090	41				SAI_CU5 vs			
		SAI_CU5+14	0.8406	0.6206 - 0.9917	42				SAI_CU5+14			
	SAI_IM12 >	SAI_IM12				0.0010		ratio	SAI_IM12 vs	Mann-Whitney		
	SAI_IM16	SAI_IM16							SAI_IM16			
	SAI_IM12 >	SAI_IM12				<0.0001		ratio	SAI_IM12 vs	Mann-Whitney		
	SAI CM5	SAI CM5							SAI CM5			
	SAI IM12 >	SAI IM12				0.0007		ratio	SAI IM12 vs	Mann-Whitney		
	SAL CM5+14	SAL CM5+14							SAL CM5+14	,		
	SAL IM12 >	SAL IM12				<0.0001		ratio	SAL IM12 vs	Mann-Whitney		
						0.0001		Tutio				
						<0.0001		ratio	SAL 18412 vc	Mann Whitney		
	SAL CUE 114					<0.0001		ratio	SAL CUE 144	wann-wnitney		
	SAI_CU5+14	SAI_CUS+14							SAI_CU5+14			

8. SAI magnitude at different ISIs by	SAI depends on ISI	SAI_ISI15-16	0.6388	0.3591 - 0.8373	69	0.0374	Fig. 6B	ratio	SAI_ISI15-16 vs	Kruskal-Wallis	
invasive (IN and PN) afferent		SAI_ISI17-19	0.7766	0.4960 - 0.9639	108				SAI_ISI17-19 vs		
stimulation?		SAI_ISI20-21	0.8068	0.4276 - 1.0353	69				SAI_ISI20-21		
	SAI_ISI15-16 >	SAI_ISI15-16				0.0171		ratio	SAI_ISI15-16 vs	Mann-Whitney	
	SAI_ISI17-19	SAI_ISI17-19							SAI_ISI17-19		
	SAI_ISI15-16 >	SAI_ISI15-16				0.0362		ratio	SAI_ISI15-16 vs	Mann-Whitney	
	SAI_ISI20-21	SAI_ISI20-21							SAI_ISI20-21		
9. SAI magnitude at different muscle	SAI is lower in the	SAI_BB.R+MFM.R	0.4341	0.3189 - 0.5359	60	<0.0001	Fig. 7	ratio	SAI.R vs SAI.L	Kruskal-Wallis	
targets by transcutaneous whole-	amputated side	SAI_BB.L+MFM.L	0.6724	0.6100 - 0.7288	60						
nerve stimulation?											
	SAI_BB.R >	SAI_BB.R	0.4837	0.4238 - 0.6526	30	0.0005		ratio	SAI_BB.R vs	Mann-Whitney	
	SAI_BB.L	SAI_BB.L	0.6517	0.6039 - 0.7106	30				SAI_BB.L		
	SAI_MFM.R >	SAI_MFM.R	0.3893	0.2955 - 0.4854	30	<0.0001		ratio	SAI_MFM.R vs	Mann-Whitney	
	SAI_MFM.L	SAI_MFM.L	0.6860	0.6258 - 0.7386	30				SAI_MFM.L		
	SAI not	SAI_BB.R+L	0.6097	0.4874 - 0.7053	60	0.3611		ratio	SAI_BB vs	Kruskal-Wallis	
	significantly	SAI_MFM.R+L	0.5609	0.3940 - 0.6997	60				SAI_MFM		
	different between										
	arm and forearm										
	muscles										
	SAI not	SAI_BB.R	0.4837	0.4238 - 0.6526	30	0.0816		ratio	SAI_BB.R vs	Kruskal-Wallis	
	significantly	SAI_MFM.R	0.3893	0.2955 - 0.4854	30				SAI_BB.L		
	different between	SAI_OP.R	0.4460	0.2835 - 0.5934	30						
	arm, forearm, and										
	hand muscles of										
	the intact side										