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Notes S1. Statistical analyses 

Hierarchical cluster analysis was performed using the R function hclust() of the STATS 

package on z-scores of δDi using Euclidean distances and Ward's fusion criterion for cluster 

formation (n=7*31). Mood’s median tests were performed using the R function median_test() 

of the COIN package. Batch change point analysis based on the non-parametric Mann-Whitney-

Wilcoxon test was performed using the R function detectChangePointBatch() of the CPM 

package (Ross, 2015). Multiple linear regression modelling was performed using the R function 

lm() of the STATS package. Change point regression modelling (step type) was performed 

using the R function chngptm() of the CHNGPT package (Fong et al., 2017). Statistical 

significances of the change point and the change point model were calculated using the R 

functions chngpt.test() of the CHNGPT package and lrtest() of the LMTEST package, 

respectively. 

 

Notes S2. Grouping of annual δDi patterns of tree-ring glucose by HCA 

Metabolic fractionations affect specific intramolecular H-C positions and thus introduce 

intramolecular δDi patterns (Figs. 1, 2b, and S2b). To identify annual patterns that were 

similarly/differently modified by metabolic fractionation, we performed a Hierarchical Cluster 

Analysis (HCA) on annual δDi patterns (Fig. S2a). We found two groups of δDi patterns: a 

high-value and a low-value group according to δD1 and δD2 values (Figs. 2b, and S2b). Please 

note that the population to which our data belong must be continuously distributed despite the 

apparent grouping and the gap in δD2
 in the ≈200 to 250‰ range (Figs. S2a, and S2b). This is 

because tree rings record ecophysiological information continuously over the course of growing 

seasons, i.e., the temporal impact of metabolic fractionations at H1 and H2 principally varies in 

a continuous way. Nevertheless, the apparent grouping in our data is convenient to investigate 

causes of high and low δD1 and δD2 values. Please note that if our dataset had been continuously 

distributed, we could still have arbitrarily separated it into low- and high-value groups and 

investigated underlying causes. However, in the present case, HCA separates the data for us. 
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Figure S2 (a) Grouping of annual δDi patterns by Hierarchical Cluster Analysis (HCA). (b) 

Annual δDi patterns. δDi denotes D abundances at intramolecular H-C positions in tree-ring 

glucose. Data were acquired for tree-ring glucose of Pinus nigra laid down from 1961 to 1995 

at a site in the Vienna basin (±SE=5.4‰, n≥3). Prior to HCA, outliers were replaced by 

timeseries averages. Data reference: Average D abundance of the methyl-group hydrogens of 

the glucose derivative used for NMR measurements. Figure S2b shows discrete data. Lines used 

to guide the eye. 

 

Notes S3. Histograms of εmet 

Figures S3a, and b show histograms of εmet including all data, 1961 to 1995, and data of 1983 

to 1995, respectively. The dataset including all data clearly does not follow a normal 

distribution. By contrast, there are no indications that the dataset including only years in which 

groundwater levels were low deviates from a normal distribution (1983 to 1995, Fig. 3a). 
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Figure S3 (a) Histogram of average metabolic fractionation at glucose H1 and H2, εmet, 

including all data, 1961 to 1995 (n=31). (b) Histogram of εmet including data of 1983 to 1995 

corresponding to years with low groundwater level (n=13, Fig. 3a). Data for the calculation of 

εmet were acquired for tree-ring glucose of Pinus nigra laid down from 1961 to 1995 at a site in 

the Vienna basin (±SE=3.5‰, n≥3). 

 

Notes S4. Bivariate relationships of εmet with precipitation and atmospheric CO2 

concentration  

Figures S4a, and b show bivariate relationships of εmet with March to July precipitation, PRE, 

and annual atmospheric CO2 concentrations, Ca, respectively, for two groups of data. While the 

first group includes data of 1961 to 1982 corresponding to high groundwater storage (black), 

the second group includes data of 1983 to 1995 corresponding to low groundwater storage 

(blue, Fig. 3a). Linear modelling shows that relationships of εmet with both environmental 

parameters are group specific. While the first group shows no significant relationships (εmet ~ 

PRE: R2=0.21, p>.05, n=18; εmet ~ Ca: R
2=0.01, p>.7, n=18), the second group shows significant 

negative relationships (εmet ~ PRE: R2=0.71, p<0.001, n=13; εmet ~ Ca: R
2=0.54, p<.01, n=13). 

Note that low εmet values can occur under low groundwater storage (Fig. 3b, 1987, 1991, 1994, 

and 1995). This is explained by high precipitation during spring and summer and high 

atmospheric CO2 concentrations (Figs. S4a, and b, filled circles). 
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Figure S4 (a) Relationship between average metabolic fractionation at glucose H1 and H2, εmet, 

and March to July precipitation. (b) Relationship between εmet and annual atmospheric CO2 

concentration, Ca. Black and blue circles: Data of years with high groundwater storage, 1961 to 

1982, and low groundwater storage, 1983 to 1995, respectively (Fig. 3a). Filled circles: Data of 

1987, 1991, 1994, and 1995. Dotted black and blue lines: Trendlines pertaining to datasets of 

the same colour. Data for the calculation of εmet were acquired for tree-ring glucose of Pinus 

nigra laid down from 1961 to 1995 at a site in the Vienna basin (±SE=3.5‰, n≥3). 

 

Notes S5. Contributions of δDi to the variance in δDg after excluding data not affected by 

the fractionating metabolic processes 

Metabolic fractionations in δD1 and δD2 have a strong weight on whole-molecule D variability, 

δDg. To assess this weight exclusively for years with upregulated fractionating metabolic 

processes, we repeated the variance partitioning on corresponding data but exclude 1988 and 

1990 because of data gaps as result of the outlier analysis (1983-1986, 1989, 1992, and 1993; 

Fig. 2c). We found that δD1 and δD2 together account for 86.8% of the variance in δDg. By 

contrast, δD3 to δD5 each account for 6.3% on average. Interestingly, δD6S and δD6R reduce the 

variability of δDg by -2.8% on average. Assuming the variability in δD3 to δD5 reflects the 

combined influence of known fractionation processes affecting all δDi, such as leaf water D 

enrichment, metabolic fractionations in δD1 and δD2 together account for 74.2% of the variance 

in δDg (86.8%-2*6.3%). 
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Notes S6. Contributions of δDi to the variance in δDg after excluding data affected by the 

fractionating metabolic processes 

Metabolic processes have strong effects on δD1, δD2, and δDg (Figs. 1, and 2). After excluding 

years affected by these processes from the variance partitioning analysis (1983 to 1995), all δDi 

exhibit similar degrees of variance and contribute similarly to δDg (Fig. S6).

 

Figure S6 Percentage contributions of δDi to the variance of δDg. δDi and δDg denote timeseries 

of D abundances at intramolecular H-C positions in glucose and of the whole molecule, 

respectively. Data were acquired for tree-ring glucose of Pinus nigra laid down from 1961 to 

1982 at a site in the Vienna basin (δDi: ±SE=5.5‰, n≥3; δDg: ±SE=3.7‰, n≥3). Outliers were 

removed prior to analysis. The analysis is based on years without missing data (n=8*14). Data 

reference: Average D abundance of the methyl-group hydrogens of the glucose derivative used 

for NMR measurements. 

 

Notes S7. Metabolic fractionation at the whole-molecule level 

Within this paragraph, the term ‘metabolic fractionation’ refers to metabolic fractionation at 

glucose H1 and H2. 

 

Variability in δDg is predominantly controlled by metabolic fractionation (Fig. 2d). Since δDg 

can be measured by high-throughput isotope ratio mass spectrometry (a technique accessible to 

numerous laboratories), we will now investigate possibilities to (i) identify δDg datasets affected 
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by metabolic fractionation, (ii) separate δDg datapoints affected by metabolic fractionation from 

other datapoints, and (iii) retrieve information from δDg about metabolic fractionation. 

 

(i) Metabolic fractionation caused occasional δDg increases above normal δDg values but never 

δDg decreases (green dots in Fig. S7a). Consequently, the δDg distribution is asymmetrical with 

a moderate positive skew, has increased variability, and is nearly significantly different from 

normality (Fig. S7c; skewness=0.55, range=83.2‰, SD=23.8‰; Shapiro-Wilk normality test: 

W=0.93616, p=0.12). After excluding data affected by metabolic fractionation, the δDg 

distribution is approximately symmetrical, has lower variability, and is not significantly 

different from normality (Fig. S7d; skewness=0.32, range=47.6‰, SD=13.5‰; Shapiro-Wilk 

normality test: W=0.95866, p=0.58). Furthermore, we found a change point in the complete δDg 

timeseries (non-parametric Mann-Whitney-Wilcoxon test: p<.001, n=25) which corresponds to 

the change point in εmet and marks the onset of a period with conditions favourable for 

upregulations of the fractionating metabolic processes (main text, ‘Step 1’). Thus, both visual 

inspection of the δDg distribution and statistical tests indicate effects by metabolic fractionation. 

 

Our δDg dataset is relatively small (n=25) and, therefore, not an ideal approximation of the 

underlying probability distribution. Theoretically, we would expect a bimodal distribution. Data 

not affected by metabolic fractionation (black dots in Fig. S7a) would be represented by a low-

value peak in the histogram. Data affected by metabolic fractionation (green dots in Fig. S7a) 

would be represented by a high-value peak adjacent to the low-value peak. The relative height 

of these peaks would depend on the relative frequency of long-term drought events 

(groundwater depletions below the critical level). 

  



7 
 

 

Figure S7 (a) Timeseries of whole-molecule deuterium abundance, δDg. Green and black dots, 

data affected and not affected by metabolic fractionation at glucose H1 and H2, respectively 

(n=7, and n=18). (b) δDg ranked according to value from low to high. Green and black lines, 

trendlines pertaining to data affected and not affected by metabolic fractionation at glucose H1 

and H2, respectively. (c) Histogram of δDg including all data (n=25, black and green dots in 

Fig. S7a). (d) Histogram of δDg excluding data affected by metabolic fractionations at glucose 

H1 and H2 (n=18, black dots in Fig. S7a). Data were acquired for tree-ring glucose of Pinus 

nigra laid down from 1961 to 1995 at a site in the Vienna basin (±SE=3.4‰, n≥3). Outliers 

were removed prior to analysis. Data reference: Average D abundance of the methyl-group 

hydrogens of the glucose derivative used for NMR measurements. 
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(ii) Figure S7a shows δDg as function of time with green dots representing data affected by 

metabolic fractionation (cf. Fig. 2c). Without colour coding, a clear separation between 

datapoints affected by metabolic fractionation and other datapoints is not feasible. Figure S7b 

shows the same data ranked by value from low to high. Data affected by metabolic fractionation 

have the highest ranks and are sitting neatly on a line (green line, R2=0.99, n=7). The slope of 

this line is 2.4 times steeper than the slope of the line pertaining to data not affected by metabolic 

fractionation (black line, R2=0.94, n=18). This may enable δDg data separation yet not with high 

confidence. For instance, without colour coding, it is unclear whether the four datapoints before 

the green datapoints were also affected by metabolic fractionation. Furthermore, if the number 

of data affected by metabolic fractionation was 2.4 times higher (n≈17), both lines would have 

the same slope. 

 

(iii) A change point model explains most of the variance in εmet (main text, ‘Model 2’, R2=0.94, 

p<10-15, n=31, Eq. 7), and all explanatory variables contribute significantly to this model (Table 

3). While the same change point model explains a significant fraction of the variance in δDg 

(R2=0.76, p<10-5, n=25, Eq. 7), most explanatory variables do not contribute significantly 

(Table S7). Thus, at the level of δDg, the environmental dependences of the fractionating 

metabolic processes are insufficiently constraint for interpretation. 

 

Table S7 Estimated coefficients of the δDg change point model. 

Coefficient Estimate SE* Lower 95% CI Upper 95% CI p-value* 

β1 638.12 328.99 -246.67 1042.99 0.05 

β2 -0.21463 0.09973 -0.40477 -0.01382 <.05 

β3 -1.2620 0.9331 -2.4785 1.1794 0.2 

β4 -562.80 730.68 -2260.27 604.01 0.4 

β5 0.18721 0.13934 -0.07207 0.47415 0.2 

β6 1.3598 2.3345 -2.0441 7.1071 0.6 

e -0.70310 0.23832 -0.85880 0.07540 <.001 

A change point model was fitted to measured whole-molecule deuterium abundances, δDg 

(R2=0.76, p<10-5, n=25, Eq. 7) (Fong et al., 2017). Data were acquired for tree-ring glucose of 

Pinus nigra laid down from 1961 to 1995 at a site in the Vienna basin (±SE=3.4‰, n≥3). β1 to 

β6, and e denote model coefficients (Eq. 7). SE and CI denote the standard error and confidence 

interval, respectively. Asterisks mark estimations which assume that bootstrap sampling 

followed a normal distribution. 
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