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H. Supplementary Figures

Figure 26: Comparison of different techniques to estimate Ãkij on a Swiss Roll with no
noise, where i = 5 and j = 7. (first row) Analytical eigenfunctions and the
obtained discrete eigenvectors are shown. (second row) Analytical value of |Ãkij |
is shown. Note that LDLE depends on the absolute values of Ãkij . (third row)

Estimation of |Ãkij | are shown due to Local Linear Regression based approach
(Cheng and Wu, 2013), finite sum approximation and Feynman-Kac formula
based approaches as described in Section 3.2 and a variant of the latter which
uses low rank (of 100) approximation of the graph Laplacian in Eq. (29). (fourth
row) Absolute difference between the estimates and the analytical value. LLR,
finite sum approx. and Feynman-Kac formula based approaches seem to perform
slightly better.
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Figure 27: Comparison of different techniques to estimate Ãkij on a Swiss Roll with no
noise, where i = 5 and j = 23. (first row) Analytical eigenfunctions and the
obtained discrete eigenvectors are shown. (second row) Analytical value of |Ãkij |
is shown. Note that LDLE depends on the absolute values of Ãkij . (third row)

Estimation of |Ãkij | are shown due to Local Linear Regression based approach
(Cheng and Wu, 2013), finite sum approximation and Feynman-Kac formula
based approaches as described in Section 3.2 and a variant of the latter which
uses low rank (of 100) approximation of the graph Laplacian in Eq. (29). (fourth
row) Absolute difference between the estimates and the analytical value. LLR,
finite sum approx. and Feynman-Kac formula based approaches seem to perform
slightly better.
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Figure 28: Comparison of different techniques to estimate Ãkij on a Swiss Roll with Gaus-
sian noise of variance 10−4, where i = 5 and j = 7. (first row) Analytical
eigenfunctions obtained for the noiseless version of the Swiss Roll, and the ob-
tained discrete eigenvectors are shown. (second row) Analytical value of |Ãkij |
is shown. Note that LDLE depends on the absolute values of Ãkij . (third row)

Estimation of |Ãkij | are shown due to Local Linear Regression based approach
(Cheng and Wu, 2013), finite sum approximation and Feynman-Kac formula
based approaches as described in Section 3.2 and a variant of the latter which
uses low rank (of 100) approximation of the graph Laplacian in Eq. (29). (fourth
row) Absolute difference between the estimates and the analytical value. The
Feynman-Kac formula based approach which uses low rank approximation of L
seem to perform the best while the LLR based approach produced high error.
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Figure 29: Comparison of different techniques to estimate Ãkij on a Swiss Roll with Gaus-
sian noise of variance 10−4, where i = 5 and j = 23. (first row) Analytical
eigenfunctions obtained for the noiseless version of the Swiss Roll, and the ob-
tained discrete eigenvectors are shown. (second row) Analytical value of |Ãkij |
is shown. Note that LDLE depends on the absolute values of Ãkij . (third row)

Estimation of |Ãkij | are shown due to Local Linear Regression based approach
(Cheng and Wu, 2013), finite sum approximation and Feynman-Kac formula
based approaches as described in Section 3.2 and a variant of the latter which
uses low rank (of 100) approximation of the graph Laplacian in Eq. (29). (fourth
row) Absolute difference between the estimates and the analytical value. The
Feynman-Kac formula based approach which uses low rank approximation of
L seem to perform the best while the errors due to other three approaches are
somewhat similar.
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Figure 30: Visualization of the local views in the embedding space. (first column) Input
square grid is shown. The points xk are colored by the distortion ζkk of the
obtained local parameterizations Φk on the neighborhood Uk surrounding them.
A local view Uk0 around xk0 for a fixed k0 is also shown in black. (second
column) The corresponding local view in the embedding space Φk0(Uk0) is shown
in black. Although of no significance to our algorithm, for visualization purpose,
the embedding of the square due to Φk0 , Φk0(M), is shown in red. (third and
fourth columns) The eigenvectors φi1 and φi2 chosen for the construction of Φk0

are shown. Points in Uk0 are again colored in black. Note that the gradient
of these eigenvectors are close to being orthogonal in the vicinity of Uk0 and in
particular, at xk0 .
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LDLE with arrows Derived cut and paste diagrams
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Figure 31: (Left) LDLE embedding with arrows drawn by tracing the colored boundary.
(Right) Derived cut and paste diagrams to prove the correctness of the embed-
ding. Pieces of the boundary represented by filled arrows of the same color are
to be stitched together. Pieces of the boundary represented by black dashed
lines are not to be stitched. Dotted lines and shallow arrows represent cut and
paste instructions, respectively.
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Figure 32: In Figure 18, for the case when RES = 10, certain points on the opposite sides
of the gap between the Swiss Roll are neighbors in the ambient space. These
points are shown in red.
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