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S2 Appendix: Details on the uncertainty propagation 

As described in the “Uncertainty propagation” subsection in the paper, the probability distribution of ∆𝑄̅𝑖 

(𝑖 = 1, 2, …, 6) under uncertainty was evaluated using the Monte Carlo method, where ∆𝑄̅𝑖 indicates the 

percentage increase of the flow rate at the six outlets of the circle of Willis (CoW) due to the stenosis surgery. 

We considered the uncertainties in arterial diameters, stenosis parameters, and inflow and outflow 

measurements of the CoW, which were derived from the clinical data of the patient. In accordance with Fig 4, 

herein, we denote the uncertain inputs (22 arterial diameters and 8 stenosis parameters) by 𝒙u ∈ ℝ30, fixed 

inputs (22 arterial lengths and age) by 𝒙f ∈ ℝ23, and inputs to be iteratively adjusted (6 peripheral resistances 

of the CoW and scaling factor for the total peripheral resistance) by 𝒙PR ∈ ℝ7. Here, 𝒙u, 𝒙f, and 𝒙PR are 

column vectors whose concatenation is denoted by 𝒙 = [𝒙u
⊤, 𝒙f

⊤, 𝒙PR
⊤ ]⊤ ∈ ℝ60 , where the superscript ⊤ 

indicates the matrix transpose. Furthermore, the flow and pressure measurements (6 flow rates at the outlets 

of the CoW and mean arterial pressure), which were used to adjust 𝒙PR, are denoted by 𝒚target ∈ ℝ7. The 

procedure for evaluating the prediction uncertainty in ∆𝑄̅𝑖 is described as follows. 

Step 1: Monte Carlo sampling 

The first step in the Monte Carlo method involves the generation of sample values (called “realization”) of 

random variables 𝒙u  and 𝒚target  from the prescribed probability distributions. The sampling of 𝒙u
(𝑠)

  is 

straightforward; we generated random real numbers in the intervals shown in Table 2 by assuming a uniform 

distribution. Here, 𝒚target includes the target flow rates in the six outlets of the CoW, 𝑄̅𝑖
target

 (𝑖 = 1, 2, …, 

6), and target mean arterial pressure at the upper arm, 𝑃̅arm
target

 . Because the uncertainty associated with 

𝑃̅arm
target

 was not considered in this study, 𝑃̅arm
target(𝑠)

 is the measured value itself, i.e., 𝑃̅arm
target(𝑠)

 = 𝑃̅arm
target

. To 

sample 𝑄̅𝑖
target(𝑠)

, we initially sampled the flow measurements from uncertainty intervals depending on the 

modality. The flow rates in the six outlets of the CoW, 𝑄̅𝑖
out(𝑠)

, were sampled from the uncertainty intervals 

of single photon emission computed tomography, whereas the flow rates in the three inlets of the CoW, 𝑄̅𝑗
in(𝑠)

 

(𝑗 = 1, 2, 3), were sampled from the uncertainty intervals of phase contrast magnetic resonance imaging or 

ultrasound measurements. Subsequently, 𝑄̅𝑖
target(𝑠)

 was calculated in accordance with Equation (8): 

𝑄̅𝑖
target(𝑠)

= 𝑄̅𝑖
out(𝑠)

∙
∑ 𝑄̅𝑗

in(𝑠)3
𝑗=1

∑ 𝑄̅𝑘
out(𝑠)6

𝑘=1

. (A2) 

Thus, 𝒚target(𝑠) was sampled as [𝑄̅1
target(𝑠)

, 𝑄̅2
target(𝑠)

, …, 𝑄̅6
target(𝑠)

, 𝑃̅arm
target(𝑠)

]⊤. 

Step 2: Preoperative adjustment 

The surrogate model predicts outputs 𝒚(𝑠) ∈ ℝ45  based on the given inputs 𝒙(𝑠) = [𝒙u
(𝑠)⊤

, 𝒙f
⊤, 𝒙PR

(𝑠)⊤
]⊤ ∈

ℝ60. The outputs include the flow rates at the six outlets of the CoW, 𝑄̅𝑖
(𝑠)

, and the mean arterial pressure, 

𝑃̅arm
(𝑠)

. The purpose of this step is to evaluate the values of 𝒙PR
∗(𝑠)

 = [𝑃𝑅1
∗(𝑠)

, 𝑃𝑅2
∗(𝑠)

, …, 𝑃𝑅6
∗(𝑠)

, 𝛼PR
∗(𝑠)

]⊤ that 

minimize the difference between 𝑄̅𝑖
(𝑠)

  and 𝑄̅𝑖
target(𝑠)

  and between 𝑃̅arm
(𝑠)

  and 𝑃̅arm
target(𝑠)

 . Herein, 𝑃𝑅𝑖
(𝑠)

 

(𝑖 = 1, 2, …, 6) are the peripheral resistances (PRs) at the six outlets of the CoW, and 𝛼PR
(𝑠)

 is the scaling 

factor for the total PR. To obtain 𝒙PR
∗(𝑠)

, we iteratively adjusted 𝒙PR
(𝑠)

 based on the difference between the 

predicted and target quantities of the flow rate and pressure [1, 2]: 

[𝑃𝑅𝑖
(𝑠)

]𝑛+1 = [𝑃𝑅𝑖
(𝑠)

]𝑛 (1 + 𝑐 ∙
[𝑄̅𝑖

(𝑠)
]𝑛 − 𝑄̅𝑖

target(𝑠)

𝑄̅𝑖
target(𝑠)

) , (A3) 

[𝛼PR
(𝑠)

]𝑛+1 = [𝛼PR
(𝑠)

]𝑛 (1 − 𝑐 ∙
[𝑃̅arm

(𝑠)
]𝑛 − 𝑃̅arm

target(𝑠)

𝑃̅arm
target(𝑠)

) , (A4) 
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where [∙]𝑛 denotes the values at the 𝑛-th iteration, and 𝑐 is the relaxation coefficient (taken to be 0.9). The 

initial values for 𝑃𝑅𝑖
(𝑠)

 were considered as the values reported in the literature [3], and the initial value for 

𝛼PR
(𝑠)

 was set to 1. The iterations were continued until the following convergence criteria were met: 

|
[𝑄̅𝑖

(𝑠)
]𝑛 − 𝑄̅𝑖

target(𝑠)

𝑄̅𝑖
target(𝑠)

| < 𝜀, (A5) 

|
[𝑃̅arm

(𝑠)
]𝑛 − 𝑃̅arm

target(𝑠)

𝑃̅arm
target(𝑠)

| < 𝜀, (A6) 

where 𝜀 is the tolerance error, which was set to 0.005 in this study. The converged solution of 𝒙PR
∗(𝑠)

 was 

regarded as the patient’s preoperative PRs, and the preoperative flow rates and pressures, 𝒚pre(𝑠) , were 

obtained using the inputs 𝒙(𝑠) = [𝒙u
(𝑠)⊤

, 𝒙f
⊤, 𝒙PR

∗(𝑠)⊤
]⊤. 

Note that Equations (A5) and (A6) may not be satisfied for certain samples, as we consider a wide 

uncertainty interval. For example, the combination of 𝒙u
(𝑠)

 , representing extremely severe stenosis, and 

𝒚target(𝑠) , indicating a much larger flow rate in the stenosis side than the normal side, is physically 

unrealizable. Therefore, we set the maximum number of iterations as 𝑛 = 400; samples that did not satisfy 

the criteria within these iterations were rejected. 

Step 3: Postoperative prediction 

Following parameter adjustment for reproducing the patient’s preoperative cerebral circulation, this step 

simulated the surgical dilation of the stenosis and predicted the cerebral circulation immediately after the 

surgery. All inputs for the prediction are the same as those in the previous step, except the stenosis parameters 

in 𝒙u
(𝑠)

, which were modified to 𝑅v = 0, 𝐷n = 𝐷ICA (diameter of the internal carotid artery), 𝑆𝑅 = 0, and 

𝐾t = 0 to reflect the complete dilation of the stenosis. As depicted in Fig 4, the inputs used for postoperative 

prediction can be written as 𝒙(𝑠)  = [𝒙u
∗(𝑠)⊤

, 𝒙f
⊤, 𝒙PR

∗(𝑠)⊤
]⊤ , where 𝒙u

∗(𝑠)
  denotes the sampled inputs with 

modified stenosis parameters. According to these inputs, the surrogate model predicted the patient’s 

postoperative flow rates and pressures, 𝒚post(𝑠). 

In the postoperative prediction, it was assumed that the surgery did not alter the arterial geometry (except 

for stenosis) and PRs. This assumption is justified because we aim to predict the cerebral circulation 

“immediately after” the surgery. Additionally, autoregulation and remodeling of the cerebral arteries 

generally prevent an abrupt change in blood flow. Therefore, our assumption is appropriate for predicting the 

maximum possible ∆𝑄̅𝑖, which is the most dangerous surgical outcome in terms of cerebral hyperperfusion. 

Step 4: Statistics evaluation and sample addition 

Finally, ∆𝑄̅𝑖
(𝑠)

 was calculated based on 𝒚pre(𝑠) and 𝒚post(𝑠), as follows: 

∆𝑄̅𝑖
(𝑠)

=
𝑄̅𝑖

post(𝑠)
− 𝑄̅𝑖

pre(𝑠)

𝑄̅𝑖
pre(𝑠)

× 100%, 𝑖 = 1, 2, …, 6, (A7) 

where 𝑄̅𝑖
pre(𝑠)

  and 𝑄̅𝑖
post(𝑠)

  are the flow rates in the six outlets of the CoW in 𝒚pre(𝑠)  and 𝒚post(𝑠) , 

respectively. By repeating Step 1 through Step 3 for 𝑁MC times, the Monte Carlo samples of ∆𝑄̅𝑖
(𝑠)

 (𝑠 = 1, 

2, …, 𝑁MC) were obtained. The statistics of ∆𝑄̅𝑖 under uncertainties were estimated using the collected 

samples. For example, the mean of ∆𝑄̅𝑖 was calculated as follows: 

𝔼[∆𝑄̅𝑖] ≈ 𝔼MC[∆𝑄̅𝑖] =
1

𝑁MC
∑ ∆𝑄̅𝑖

(𝑠)

𝑁MC

𝑠=1

, (A8) 
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and the variance of ∆𝑄̅𝑖 was calculated as follows: 

𝕍[∆𝑄̅𝑖] ≈ 𝕍MC[∆𝑄̅𝑖] =
1

𝑁MC
∑ (∆𝑄̅𝑖

(𝑠)
− 𝔼MC[∆𝑄̅𝑖])

𝑁MC

𝑠=1

. (A9) 

Furthermore, the probability distribution of ∆𝑄̅𝑖 can be written as follows: 

𝜌(∆𝑄̅𝑖) ≈ 𝜌MC(∆𝑄̅𝑖) =
1

𝑁MC
∑ 𝛿 (∆𝑄̅𝑖 − ∆𝑄̅𝑖

(𝑠)
)

𝑁MC

𝑠=1

, (A10) 

where 𝛿  is the Dirac delta function. Equation (A10) corresponds to a histogram, which depicts the 

frequencies of ∆𝑄̅𝑖
(𝑠)

 normalized by the total sample size. 

The number of Monte Carlo samples, 𝑁MC , was increased sequentially until the statistics of ∆𝑄̅𝑖 

converged. As a basic policy, we increased 𝑁MC by 10 000 and ensured that the change in mean and variance 

of ∆𝑄̅𝑖  was within 0.1%. We also confirmed that there was no significant change in the probability of 

∆𝑄̅𝑖 > 100% when 𝑁MC was increased. 
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