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Dear Dr. Beard and Dr. Marsden, 

 

We are pleased to submit the revised version of our manuscript titled “Uncertainty 

quantification in cerebral circulation simulations focusing on the collateral flow: 

Surrogate model approach with machine learning” to PLOS Computational Biology. Please 

note that we have made minor revisions to the title of our manuscript for conciseness. 

 

We appreciate the time and effort the editors and reviewers have dedicated to providing their 

insightful feedback on ways to improve our manuscript. All comments have been carefully 

considered, and the manuscript has been revised accordingly. Please find below the revision 

note where we have provided point-by-point responses to the reviewer comments. We have 

attached two versions of the revised manuscript: one with tracked changes denoting where the 

text has been changed (highlighted version) and a clean version. 

 

We hope that our edits and responses satisfactorily address all reviewer concerns and that the 

revised manuscript is now suitable for publication in the journal. 

 

We look forward to hearing from you. 

 

Sincerely, 

Changyoung Yuhn, PhD 

 

 

 

Responses to reviewer comments 
 

We appreciate the reviewers’ valuable comments that have helped us improve the manuscript. 

Please find below our point-by-point responses to the comments (shown in italics). The 

corrections made in the revised manuscript are presented in red font. We have attached two 

versions of the revised manuscript: one with tracked changes denoting where the text has been 

changed (highlighted version) and the other a clean version. Note that page numbers, line 

numbers, and references in this document refer to the clean version of the revised manuscript. 

 

Please note that the title of our manuscript has been changed to “Uncertainty quantification in 

the cerebral circulation simulations focusing on the collateral flow: Surrogate model approach 

with machine learning” to remove unnecessary ‘the’ and shorten the title. 

 

 

 

 

---------------------------------------------- 

Response to Reviewer #1 
---------------------------------------------- 

 

The authors propose a ML algorithm based on neural networks to efficiently estimate the 

patient-specific risk of cerebral hyperperfusion (CH) using uncertainty quantification (UQ). 

Clinical intervention is sometimes required in the presence of stenoses affecting the right or left 

carotid arteries. Cerebral hyperperfusion occurs when an increase of more than 100% in the 

circle of Willis flow rate is observed post intervention. The authors train a neural network to 

map 60 parameters describing the geometry of cerebral arteries and stenoses to 45 time-
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averaged quantities (flow rate and pressures). The gain in runtime with respect to 0D-1D 

reduced order models is dramatic (milliseconds vs minutes) and the possibility of 

parallelization makes this method attractive for UQ in clinical settings. 

 

Overall, the methods discussed in this paper are scientifically sound and the 

strenght/limitations of the approach are clearly presented. Below are some minor remarks and 

observations that I believe should be addressed prior to publication. 

 

Response: We appreciate the time and effort you have dedicated to providing your thoughtful 

comments and suggestions. 

 

 

1) Fig. 1 could be improved by including a brief description of the inputs (¥mathbf{x}) and the 

outputs (¥mathbf{y}_{sim}) either in the figure itself or in the caption; "sampling inputs that 

represent the anatomical and physiological conditions and collecting the corresponding 

simulation outputs" is too general. 

 

Response: We agree with your suggestion and have therefore added a brief description of the 

inputs (𝒙) and the outputs (𝒚sim) to the figure caption. 

 

⚫ Page 7, lines 163–166 (Fig 1 caption): “The datasets were generated by randomly sampling 

60 inputs (column vector 𝒙 ∈ ℝ60 ) describing the geometry of cerebral arteries and 

stenoses, and collecting the corresponding 45 simulation outputs (column vector 𝒚sim ∈
ℝ45) of time-averaged flow rates and pressures.” 

 

 

2) Page 12, line 253: the authors mention that they use the Newton-Raphson method to enforce 

conservation of mass and total pressure at junctions. However, we use the Newton-Raphson to 

solve nonlinear equations, and these constraints are linear. I believe that the use of the Newton-

Raphson method is necessary due to the presence of stenoses models which are nonlinear. I 

recommend clarifying this point. 

 

Response: Thank you for this insightful comment. As you pointed out, the Newton–Raphson 

method was used to solve nonlinear equations. Let us explain here that not only the coupling of 

the stenosis model but the constraints of the conservation of mass and total pressure at 

bifurcations are nonlinear as well. 

 

Let us consider bifurcating arteries as shown in Fig R1. The conservation of mass and total 

pressure at bifurcations are given as follows [41]: 
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where 𝑄𝑛, 𝐴𝑛, and 𝑃𝑛 denote the volumetric flow rate, cross-sectional area of the artery, and 

internal pressure at the 𝑛-th time step (i.e., at 𝑡 = 𝑛∆𝑡), respectively; the subscript ‘m’ denotes 

the quantities at the last grid point of mother artery; and ‘d1’ and ‘d2’ the quantities at the first   
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Fig R1. One-dimensional arteries at the bifurcation. 

 

 

grid point of two daughter arteries. In Equations (R1)–(R3), we have six unknowns: 𝑄m
𝑛 , 𝑄d1

𝑛 , 

𝑄d2
𝑛  , 𝐴m

𝑛  , 𝐴d1
𝑛  , and 𝐴d2

𝑛  . To close the system, we obtain three more equations from the 

conservation of mass between two grid points close to the bifurcation in each artery [41]: 
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where �̂�𝑛 and �̂�𝑛 denote the volumetric flow rate and cross-sectional area of the artery at the 

neighboring grid point of the bifurcation point (Fig R1). Substituting Equations (R4)–(R6) into 

Equations (R1)–(R3) yields the coupled nonlinear equations. To solve them, we used the 

Newton–Raphson method. 

 

We acknowledge that the original sentence was unclear regarding the use of the Newton–

Raphson method. For clarification, we have now explained in the manuscript that enforcing the 

conservation of mass and total pressure at bifurcations yields the coupled nonlinear equations. 

 

⚫ Page 11, lines 259–262: “Bifurcated 1D segments were coupled by enforcing the 

conservation of mass and total pressure at the bifurcations. As this yields the coupled 

nonlinear equations (see [41] for detailed formulas), we used the iterative Newton–

Raphson method to solve them [6, 41].” 

 

 

3) Page 12, line 294: "within a reasonable range": the authors could add here that this aspect 

will be discussed later on in the paper (in paragraph Design of experiments). The reader might 

be confused by the use of "reasonable" here without further explanation 

 

Response: We agree with your suggestion and have explained in the revised manuscript that 

the detailed aspect will be discussed later in the “Design of experiments” section.  
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⚫ Page 12, lines 301–303: “(…) and were reproduced by randomly sampling 60 input 

parameters within a reasonable range (as will be discussed later in the “Design of 

experiments” subsection).” 

 

 

4) Page 13, line 301: there's an unmatched "(" in this sentence. 

 

Response: We apologize for this typo. We have removed the unmatched left bracket before “in.” 

 

⚫ Page 12, line 310: “Diameters of 22 carotid and cerebral arteries in the 1D model (22 

parameters)” 

 

 

5) Page 13, lines 311-314: "The variation...as indicated in Equation (5)". These sentences are 

a bit unclear to me. Are the authors saying that Ls should also be varied because Rv depends 

on it, but they take it constant because the third term in Eq.(4) is negligible? If so, please 

rephrase to make this point clearer. 

 

Response: We apologize for this confusion, and the text has been revised accordingly. We hope 

this clarifies why we did not select the stenosis length 𝐿s as input. 

 

⚫ Page 13, lines 320–325: “Note that we do not select the stenosis length, 𝐿s, as an input. As 

shown in Equation (4), 𝐿s has two effects on ∆𝑃: one on the third term and the other on 

the first term via 𝑅v. The effect of 𝐿s on the third term can be ignored because the third 

term is negligible compared to the other terms. Furthermore, since we selected 𝑅v as the 

input representative of the stenosis geometry, encompassing the variations of 𝐷(𝑥) and 

𝐿s, it is unnecessary to select 𝐿s as a separate input to be varied.” 

 

 

6) Page 17, Eq.(9) does the last layer feature a ReLu activation function? Isn't this incompatible 

with the type of normalization used for the outputs (standard normalization, discussed at page 

19), meaning that negative values will never be predicted by the neural network? 

 

Response: We apologize for this confusion. The ReLu activation function was used, except for 

the connection between the hidden and output layers. Thus, the output from the neural network 

can take a negative value. We have corrected the explanation regarding DNN and Equation (11). 

 

⚫ Page 16 lines 385–386: “The DNN comprises a total of 𝑁layer + 2 layers: an input layer, a 

series of 𝑁layer hidden layers, and an output layer (S1 Fig).” 

⚫ Page 16, lines 391–393: “This process continues for each layer up to the last hidden layer. 

The nodes in the last hidden layer and the output layer are fully connected without ReLU 

activation.” 

⚫ Page 17, Equation (11): 

𝒚𝑙 = {

𝒙, (𝑙 = 1)

max(0, 𝑾𝑙𝒚𝑙−1 + 𝒃𝑙) , (2 ≤ 𝑙 ≤ 𝑁layer + 1)

𝑾𝑙𝒚𝑙−1 + 𝒃𝑙, (𝑙 = 𝑁layer + 2)

 (11) 
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7) Page 20, line 430: is Rv computed using Eq.(5)? If so, please refer to it for clarity. 

 

Response: Yes, the values of 𝑅v were computed using Equation (5). We have added reference 

to Equation (5) in the text. 

 

⚫ Page 19, line 455: “(…) and the corresponding 𝑅v values (evaluated using Equation (5)) 

were 0.5 mmHg s mL−1, (…).” 

 

 

8) Page 22, line 492: Please expand the title of the paragraph: SA -> Stability Analysis. 

 

Response: We agree that an acronym should be avoided in section headings unless it is very 

well-known. We have expanded all such acronyms across the paper. 

 

⚫ Page 16, line 384: “DNN” → “Deep neural network” 

⚫ Page 18, line 440: “UQ and SA” → “Uncertainty quantification and sensitivity analysis” 

⚫ Page 21, line 524: “SA” → “Sensitivity analysis” 

⚫ Page 24, line 610: “UQ and SA” → “Uncertainty quantification and sensitivity analysis” 

⚫ Page 28, line 722: “Surrogate modeling approach for the UQ” → “Surrogate modeling 

approach for uncertainty quantification” 

⚫ Page 31, line 800: “Biological implications: CH and collateral circulation” → “Biological 

implications: Cerebral hyperperfusion and collateral circulation” 

 

 

9) Page 23, Eq.(16): I am not sure that the upper bound in the sum is correct. If Nlayer = 1, the 

sum contains two terms as if the number of layers is actually two. Perhaps this is a problem of 

notation and Nlayer only refers to the hidden layers, whereas the authors consider the output 

layer a separate one. 

 

Response: We apologize for this confusion. As you mentioned, 𝑁layer refers to the number of 

hidden layers; the DNN thus has 𝑁layer  + 2 layers in total. Since the input layer has no 

parameters (it just passes inputs to the first hidden layer), the number of layers that contains 

parameters is 𝑁layer + 1. Therefore, the number of indices for the summation in Equation (18) 

should be 𝑁layer + 1, which is correct as it is. Nevertheless, we have revised the starting and 

ending indexes of the summation to avoid confusion. Please also see the revised Equation (11). 

 

⚫ Page 22, Equation (18): 

𝑁param = ∑ (𝑁node
𝑙 ∙ 𝑁node

𝑙−1 + 𝑁node
𝑙 )

𝑁layer+2

𝑙=2

, (18) 

⚫ Page 22, lines 548–549: “Note that the index of summation starts at 2 instead of 1 since the 

input layer (𝑙 = 1) has no parameters.” 

 

 

10) Page 26: when discussing the parallelization, the authors could say a few words on how 

this was implemented. Are they launching one "simulation" at the time but using the GPU to 
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optimize the matrix-matrix multiplications? Or are they launching multiple threads each 

performing a single simulation by exploiting the fact that the simulations are independent? In 

the latter case, it might be worth noting that the same could be done for the 1D-0D, provided 

that each process/thread have access to sufficient memory. 

 

Response: Thank you for the suggestion. The parallelization we discuss on page 24, lines 598–

602 refers to the former method and not the latter (“data-parallel method”). For parallelization, 

we used the method of launching a single process and performing CUDA-based parallel matrix 

operations on a GPU. We used the built-in backend of Chainer [61] to implement parallelization 

on a GPU. The latest deep learning libraries, including TensorFlow, Keras, PyTorch, and 

Chainer, support GPU backends and have extensive documentation. As suggested, we have 

added a brief explanation regarding GPU execution (parallelization). 

 

⚫ Page 24, lines 602–606: “Parallelization on the GPU was performed using the built-in 

backend of Chainer [61] for CUDA-based parallel matrix operations. The latest deep 

learning libraries, including TensorFlow, Keras, PyTorch, and Chainer, support GPU 

execution using their built-in backends, allowing easy parallelization of matrix operations 

in training and predictions.” 

 

 

11) Fig. 8: what is the meaning of negative ¥Delta ¥overbar Q in each of the distributions? 

Should negative values be considered not physiological? Please clarify in text when discussing 

this plot. 

 

Response: Thank you for bringing this up. A negative ∆�̅� (observed in 1.3%, 0.9%, and 0.1% 

of the Monte Carlo samples of Patients 1, 2, and 3, respectively) indicates that the flow rate in 

the middle cerebral artery on the stenosis side decreased immediately after the dilation of 
stenosis compared to the preoperative value, as per definition (page 19, Equation (15)). This 

situation may be rare in actual patients with severe stenosis; nonetheless, it is not non-

physiological, as observed in some clinical cases (Fig 1 in [36]). 

 

In accordance with your comment, we have clarified the meaning of negative ∆�̅�  in the 

revised manuscript. 

 

⚫ Page 25, lines 623–625: “A negative ∆�̅� indicates a decrease in the flow rate following 

the surgery. This situation may be rare in actual patients with severe stenosis; nonetheless, 

it is not non-physiological, as observed in certain clinical cases [36].” 

⚫ Fig 9: Axis values “0” and “>100” of the color bar have been corrected to “≤0” and “≥100,” 

respectively. 

 

 

12) Page 28, line 598: "The distribution of ¥Delta ¥overbar Q..." are the authors suggesting 

that more severe stenoses are associated with more uncertainty? Can they give an explanation 

of why this is the case? 

 

Response: You have raised an important question. As you pointed out, more severe stenoses 

were associated with more uncertainty (larger variation) in ∆�̅� (Fig 8). This trend is attributed 

to the 2-pixel uncertainty (page 19, lines 470–476) considered for the stenosis geometry. As 

indicated by Equation (5), the viscous resistance of the stenosis (𝑅v) is inversely proportional 

to the fourth power of the diameter. This means that the uncertainty of 𝑅v increases with a   
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Fig R2. Relationship between viscous resistance ( 𝑅v   and arterial diameter. The 

relationship given by Equation (5) is depicted assuming geometry with a constant diameter and 

a unit length. 

 

 

smaller diameter, given the same variation width of diameter (Fig R2). Similarly, the stenosis 

ratio (𝑆𝑅 ) exhibits a wider range of variation as the stenosis is more severe. The large 

uncertainty in 𝑅v and 𝑆𝑅 would have resulted in large uncertainty in the ∆�̅� prediction. 

 

However, a comparison of Patients 2 and 3 shows that whether ∆�̅� exceeds 100% is a separate 

issue from the amount of uncertainty in ∆�̅�. This is the reason why we proceeded to investigate 

(i) the conditions that resulted in ∆�̅� > 100% and (ii) parameter sensitivities to ∆�̅�  in the 

subsections “Patient conditions causing cerebral hyperperfusion” and “Sensitivity of uncertain 

parameters.” 

 

We have revised the text to reflect the above information and to improve the information flow. 

 

⚫ Page 25, lines 635–645: “The increase in the prediction uncertainty in ∆�̅�  with higher 

stenosis severity is attributed to the 2-pixel uncertainty considered for the arterial diameter. 

With the same variation width of diameter, the uncertainty in 𝑅v (Equation (5)) and 𝑆𝑅 

(= 1 − 𝐷s/𝐷n) increases with a smaller diameter, leading to a larger uncertainty in ∆�̅�. 

However, the comparison of Patients 2 and 3 indicated that CH (∆�̅� > 100%) is not caused 

solely by the severity of stenosis. Patient 2 exhibited a 3.8% chance of CH, whereas the 

corresponding estimates for Patients 1 and 3 were 0% and 0.001% (only one sample out of 

100 000 samples), respectively. In Patient 2, who was assumed to have a possible missing 

ACoA, the variability of ∆�̅� to values above 100% was prominent compared to Patient 3, 

implying that ∆�̅� was significantly affected by this artery.” 

 

 

13) Page 31, line 633: Can the authors explain more clearly what they mean by vertical and 

horizontal variations? 

 

Response: We have rewritten the paragraph and hope that the revised text clarifies the meaning 

of vertical and horizontal variations of flow rates in Fig 10.  
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⚫ Page 26, lines 671–682: “Fig 10 depicts the variation in the preoperative flow rate in the 

ACoA (left column) and PCoA (right column) with respect to the diameter. Note that the 

flow rate shown in Fig 10 varies both horizontally and vertically. As indicated by the 

relationship between ∆𝑃  and 𝑅v𝑄  in Equation (4), the flow rate in an artery is 

proportional to the pressure difference between the two ends and is inversely proportional 

to the fourth power of the diameter. The horizontal variation in flow rate shown in Fig 10 

is attributed to the diameter variation of the communicating artery within the uncertainty 

range. On the contrary, the vertical variation is caused by variations in the pressure 

difference between the ends (i.e., the pressure difference between arteries on the normal 

and stenosis sides) resulting from uncertainties in the diameter of other arteries, stenosis 

severity, and flow measurements. As seen from the large vertical variations, the flow rate 

of the communicating artery is strongly influenced not only by the diameter uncertainty of 

this artery but also by other uncertainties.” 

 

 

We wish to thank you again for your valuable comments on our manuscript. We hope that we 

have satisfactorily addressed all your issues and concerns. 

 

 

 

 

---------------------------------------------- 

Response to Reviewer #2 

---------------------------------------------- 

 

General comments: 

 

This paper presents a novel systematic framework to evaluate collateral circulation in the circle 

of Willis (CoW) using a machine-learning-based surrogate model for blood circulation. The 

hemodynamic data in the surrogate model show reasonable correspondences with those in an 

original 0D-1D hemodynamic model, and the computational cost of the surrogate model is 

much less than that of the original hemodynamic model. This enables to reasonably perform 

uncertainty quantification (UQ) and sensitivity analysis (SA) focusing on some uncertainly 

geometrical and functional parameters in the analyses. Three patient-specific data are used for 

the UQ and SA, and risks of cerebral hyperperfusion are discussed with features of collateral 

flows in the CoW. 

 

Since the approach is excellent and the obtained results and discussion are reasonable, I think 

the paper is worth being published in this journal. I nonetheless have a few unclear points listed 

below, so I would appreciate it if the authors clarify and discuss them. 

 

Response: We appreciate the time and effort you have dedicated to providing your constructive 

comments and suggestions. 

 

 

Specific comments: 

 

Page 14 – The authors state that the variation of stenosis length Ls is ignored, but also state 

that the effect of Ls is reflected in Rv in equation (5). This confuses me because the changing 

Rv is attributed to the change of Ls. Why did the authors directly vary Rv instead of Ls?  
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Response: We apologize for this confusion, and the text has been revised accordingly. We hope 

this clarifies why we did not select the stenosis length 𝐿s as input. 

 

⚫ Page 13, lines 320–325: “Note that we do not select the stenosis length, 𝐿s, as an input. As 

shown in Equation (4), 𝐿s has two effects on ∆𝑃: one on the third term and the other on 

the first term via 𝑅v. The effect of 𝐿s on the third term can be ignored because the third 

term is negligible compared to the other terms. Furthermore, since we selected 𝑅v as the 

input representative of the stenosis geometry, encompassing the variations of 𝐷(𝑥) and 

𝐿s, it is unnecessary to select 𝐿s as a separate input to be varied.” 

 

 

Page 14 – The surrogate model predicts cycle-averaged hemodynamic quantities, whereas the 

original 1D model provides a spatial profile in each vessel. Is the cycle-averaged in the 

surrogate model also indicate the spatial average in each vessel? 

 

Response: Yes, the cycle-averaged flow rate and pressure predicted by the surrogate model can 

be viewed as axially averaged quantities in each artery. Based on the 1D–0D simulation, we 

can obtain 𝐴(𝑡, 𝑥), 𝑄(𝑡, 𝑥), and 𝑃(𝑡, 𝑥) at each axially aligned grid point of the 1D artery. In 

other words, the 1D model provides axial profiles of 𝐴 , 𝑄 , and 𝑃  as well as their time 

variation. Since we are interested in the time-averaged quantities of flow rate and pressure, we 

take the average of 𝑄(𝑡, 𝑥) and 𝑃(𝑡, 𝑥) with time over the cardiac cycle duration, which we 

refer to as cycle-averaged flow rate and pressure: 

�̅�(𝑥) =
1

𝑇c
∫ 𝑄(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (R7) 

�̅�(𝑥) =
1

𝑇c
∫ 𝑃(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (R8) 

where 𝑡s and 𝑇c respectively denote the time to start averaging and the cardiac cycle duration 

(fixed at 1 s). By linearizing Equations (1)–(3) and integrating with 𝑥  and 𝑡  (consider 

integrating Equations (6) and (7) with 𝑡 over a cardiac duration, we can obtain a simplified 

relation of �̅� and �̅� at adjacent 𝑖-th and (𝑖 + 1)-th grid points: 

�̅�𝑖+1 − �̅�𝑖 = 0, (R9) 

�̅�𝑖+1 − �̅�𝑖 = −
22𝜋𝜇∆𝑥

𝐴̅
𝑖+1
2 , (R10) 

where ∆𝑥 is the grid spacing. From Equations (R9) and (R10), we see that (i) �̅� is constant 

in the axial direction and (ii) �̅� decreases almost linearly (unless there is a significant change 

in 𝐴̅) in the axial direction. As we considered �̅� and �̅� at the grid point in the middle of each 

artery as the outputs, �̅� and �̅� predicted by the surrogate model can be viewed as axially 

averaged quantities in each artery. 

 

For clarity, we have revised the corresponding text in the manuscript as follows: 

 

⚫ Page 13, lines 326–327: “Based on the 1D–0D simulation, 𝐴(𝑡, 𝑥), 𝑄(𝑡, 𝑥), and 𝑃(𝑡, 𝑥) 

at each axially aligned grid point of the 1D artery can be obtained as the output.” 

⚫ Page 13, lines 338–343: “Here, cycle-averaged flow rate and pressure refer to 𝑄 and 𝑃 

averaged over a cardiac cycle duration: 



10 

�̅�(𝑥) =
1

𝑇c
∫ 𝑄(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (9) 

�̅�(𝑥) =
1

𝑇c
∫ 𝑃(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (10) 

where 𝑡s  and 𝑇c  respectively denote the time to start averaging and cardiac cycle 

duration (fixed as 1 s). In the axial direction, �̅�  is constant and �̅�  decreases almost 

linearly unless there is a significant axial change in 𝐴̅. Therefore, �̅� and �̅� at the middle 

grid point of each artery can be regarded as the axially averaged quantities in each artery.” 

 

 

Table 2 – It is not clear to me what the boundary condition is imposed on the 0D-1D and 

surrogate model and how the value is varied in the UQ (what quantity does in Table 2 reflects 

the boundary condition?). 
 

Response: Thank you for bringing this up. Peripheral resistances (peripheral resistances at the 

six outlets of the circle of Willis and scaling factor for the total peripheral resistance) in Table 2 

reflect the boundary condition to the 1D arterial network. 

 

In the 1D–0D simulation, we coupled the 1D model with the 0D closed-loop model to set 

boundary conditions for the starting and terminal grid points of the 1D arterial network. The 0D 

closed-loop model comprises the peripheral artery, upper and lower body blocks, and heart. 

 

 Page 9, lines 207–209: “The inlet and outlet boundary conditions for the 1D network were 

obtained by coupling the network with the 0D closed-loop model, which represents the 

peripheral circulation and heart as lumped parameter networks.” 

 

 Page 10, lines 247–252: “The 0D closed-loop model comprises the peripheral artery, upper 

and lower body blocks, and heart (Fig 2). The peripheral arteries distal to the 1D terminal 

arteries are represented by the three-element Windkessel model (RCR circuit). In each 

upper or lower body block, the capillaries, venules, and veins are modeled as RLC circuits 

in series. The heart is modeled based on the time-varying elastance method, which provides 

the inlet boundary condition to the 1D network, generating a closed-loop system.” 

 

⚫ Page 9, lines 217–219 (Fig 2 caption): “The inlet and outlet boundary conditions for the 

1D network are obtained by coupling with the 0D closed-loop model, which represents the 

peripheral circulation and heart.” 

 

Although the 0D model includes a large number of parameters, only some have a significant 

effect on the cycle-averaged flow rates and pressures in the cerebral arteries, and those are 

peripheral resistances in Table 2. 

 

⚫ Page 12, lines 306–309: “Although the 1D–0D model includes a large number of 

parameters, only some have a significant impact on cerebral circulation. As described in 

the “Patient-specific modeling” subsection, we set those parameters in a patient-specific 

manner based on the patients’ clinical data. The parameters include (…)” 

 

In the 1D–0D simulation, we set peripheral resistances in a patient-specific manner based on 

the measured flow rate and pressure data, as described in the “Patient-specific modeling” 
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subsection. The concept of “boundary condition” does not apply to the surrogate model because 

it only relates inputs to outputs rather than solving governing equations given boundary 

conditions. The surrogate model directly relates the inputs in Table 2 (including peripheral 

resistances) to the cycle-averaged flow rates and pressures in the cerebral arteries, as shown in 

Equation (11). 

 

In the uncertainty quantification, we calibrated the peripheral resistances fed to the surrogate 

model as we did in the 1D–0D simulation. That is, in the “preoperative adjustment” process 

(Fig 4), the surrogate model initially predicts the flow rate given literature values of peripheral 

resistances, the predicted flow rates are compared to the measured flow rates (which are varied 

considering the uncertainty), and peripheral resistances are updated based on the flow rate 

differences, and so on until the predicted flow rates and measured flow rates match. 

 

 Page 20, lines 495–499: “In each realization, uncertain inputs and targets were sampled 

from a specified probability distribution, and ∆�̅�𝑖 was predicted through successive steps 

of “preoperative adjustment” and “postoperative prediction” (Fig 4). In the first step, the 

PRs of the CoW and scaling factor for the total PR were adjusted to match the predicted 

outputs to the targets. The samples were rejected if target convergence was not attained.” 

 

We have added supporting information “S2 Appendix” for a detailed explanation of the 

uncertainty propagation method. 

 

⚫ Page 21, lines 508–509: “A detailed description of the algorithm for uncertainty 

propagation is provided in S2 Appendix.” 

⚫ Page 21, lines 516–517 (Fig 4 caption): “Additional details regarding the algorithm are 

provided in S2 Appendix.” 

⚫ Added S2 Appendix “Details on the uncertainty propagation.” 
 

We hope that the edited text answers your question clearly. 

 

 

Page 19 – The authors normalize the training data being [-1,1] to improve the model 

performance. Is this a standard process for the DNN used in this study? I would appreciate it if 

the authors more clarify this point. 

 

Response: We appreciate your comment on this point. The min-max normalization applied to 

the inputs and the standardization (or z-score normalization) applied to the outputs are standard 

preprocessing in supervised learning. In min-max normalization, both [0, 1] and [−1, 1] are 

used as typical final intervals. We have added an explanation and a new reference [62] to the 

text. 

 

⚫ Page 18, lines 429–431: “The normalization and standardization (also known as z-score 

normalization) applied to the data herein constitute standard preprocessing in supervised 

learning [62].” 

⚫ 62. García S, Luengo J, Herrera F. Data preparation basic models. In: Data preprocessing 

in data mining. Cham: Springer; 2015. pp. 39–57. https://doi.org/10.1007/978-3-319-

10247-4_3 
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Fig. 4 – I could not understand the meaning of the “statistics converged” process in the 

“postoperative prediction” and the necessity for going back to the “Monte Carlo sampling” 

process under un-converged. Why does the post(-operative) process affect the pre(-operative) 

one? 

 

Response: We apologize for the lack of explanation. The Monte Carlo method requires as many 

samples as the probability distribution converges (i.e., increasing the number of samples does 

not change the distribution). Since the appropriate number of samples depends on the case, the 

number of samples should be determined based on the arbitrary convergence criterion. In Fig 4, 

the “statistics converged” process indicates a convergence check, and going back to the “Monte 

Carlo sampling” indicates adding the number of samples. We have revised the text, figure, and 

figure caption as follows. 

 

⚫ Page 20, lines 505–508: “ 𝑁MC  was increased sequentially until the statistics of ∆�̅�𝑖 

converged. As a basic policy, we increased 𝑁MC by 10 000 and ensured that the change in 

mean and variance of ∆�̅�𝑖  was within 0.1%. We also confirmed that there was no 

significant change in the probability of ∆�̅�𝑖 > 100% when 𝑁MC was increased.” 

⚫ Page 21, line 514 (Fig 4 caption): “The number of samples was increased sequentially until 

the statistics converged.” 

⚫ Fig 4: Added “Add samples” to the figure. 

 

 

We wish to thank you again for your comments and trust that the revised manuscript is now 

suitable for publication. 

 

 

 

 

---------------------------------------------- 

Other minor changes 

---------------------------------------------- 

 

Although not requested by the reviewers, we have made the following corrections. 

 

⚫ Page 8, lines 188–193: The full names of the Ethics Committees have been provided in the 

ethics statement. 

Original “Patient data were collected and provided by the Rakuwakai Otowa Hospital 

(Kyoto, Japan) and Fujita Health University Hospital (Aichi, Japan), with written informed 

consent from the patients and approval from the ethics committee.” 

Corrected “Patient data were collected and provided in an anonymized form by the 

Rakuwakai Otowa Hospital (Kyoto, Japan) and Fujita Health University Hospital (Aichi, 

Japan), with written informed consent from the patients. Ethical approval for this study was 

granted by the Research Ethics Committee of The University of Tokyo, the Ethics 

Committees for Human Research of Rakuwakai Otowa Hospital, and the Ethics Review 

Committee of Fujita Health University.” 

⚫ Page 19, lines 476–481: The original text could be confusing and therefore has been 

corrected. 
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Original “However, an exception was made for Patient 2, whose left and right anterior 

cerebral arteries were extremely close, as depicted in Fig 3. As it was impossible to 

recognize the ACoA on CT images, we assumed uncertainty of 0.1–2.6 mm in its diameters, 

which includes the possibility that the artery is absent.” 

Corrected “However, an exception was made for Patient 2, as the ACoA was not recognized 

on CT images of this patient, suggesting hypoplasia of the ACoA. Nevertheless, we could 

not rule out the possibility that the ACoA, hidden between the extremely close presence of 

the left and right anterior cerebral arteries, might have failed to resolve on the images 

(Fig 3). Therefore, we assumed uncertainty of 0.1–2.6 mm in the ACoA diameter, thereby 

including the possibility of its absence as well as presence.” 

⚫ Some minor edits have been made throughout the manuscript to improve clarity. All 

changes have been tracked in the highlighted version of the revised manuscript. 

⚫ To conform to the journal policy related to the file size limit, S1 File (originally attached 

as ZIP file) has been made available on Zenodo, and a link to the file has been provided in 

the manuscript. Data and Code Availability now states: 

“All relevant data are available on Zenodo (https://doi.org/10.5281/zenodo.6557448), 

except for medical images that could potentially identify or reveal sensitive patient 

information.” 

⚫ Per the journal policy on revised manuscripts, figures have been removed from the 

manuscript file (except for captions) and attached as separate files. 

 


