Supplementary Information

Probing the mesoscopic size limit of quantum anomalous Hall insulators

Peng Deng^{1*}, Christopher Eckberg^{2,3,4*}, Peng Zhang¹, Gang Qiu¹, Eve Emmanouilidou⁵, Gen Yin¹,

Su Kong Chong¹, Lixuan Tai¹, Ni Ni⁵, and Kang L. Wang^{1,5*}

¹Department of Electrical and Computer Engineering, University of California Los Angeles,

Los Angeles, California 90095, USA

² Fibertek Inc., Herndon, VA 20171

³ US Army Research Laboratory, Adelphi, MD 20783

⁴US Army Research Laboratory, Playa Vista, CA 90094

⁵Department of Physics and Astronomy, University of California Los Angeles,

Los Angeles, California 90095, USA

*Corresponding authors: dengpeng@g.ucla.edu (P. D.), chris.eckberg@fibertek.com (C. E.), wang@ee.ucla.edu (K. L. W.)

1. Transport behavior in the $T \rightarrow 0$ limit.

Supplementary Figure 1. The limiting transport behavior of ρ_{yx} , σ_{xy} , and σ_{xy} in the $T \rightarrow 0$ limit under different B^* . The red, purple (denoted by B_c^*), and blue data represent the QAH, quantum

critical, and insulating regimes, respectively.

2. Current dependence of ρ_{yx} in the QAH regime.

Supplementary Figure 2. Current dependence of ρ_{yx} under different temperatures in the QAH regime. All data are measured under a 1 T magnetic field.

3. Temperature dependence of ρ_{xx} in the QAH regime.

Supplementary Figure 3. Temperature dependence of ρ_{xx} under 1 T magnetic field. The curve was measured using a 10 nA excitation current.

4. Field dependence of ρ_{xx} .

Supplementary Figure 4. a, Field dependence of ρ_{xx} under different temperatures. The field sweeping direction is from negative to positive. All curves are measured under a 10 nA current. b, Field dependence of ρ_{xx} under different currents. All curves are measured at 200 mK.

5. Inelastic scattering exponent *p* in another sample

Supplementary Figure 5. Inelastic scattering exponent p obtained in the **a**, QAH, **b**, quantum critical, and **c**, insulating regimes. Although the values are slightly larger than that examined in the main text, the values are comparable for different regimes in this sample.

6. Current dependence of $(\partial \sigma_{xy}/\partial B)_{max}$ in the quantum critical regime for the 5-µm-sample

Supplementary Figure 6. Current dependence of $(\partial \sigma_{xy}/\partial B)_{max}$. All data are measured at 100 mK. The current heating effect is neglectable when *I* is no larger than 0.5 nA.

7. Finite-size effect in another 5-µm-sample.

Supplementary Figure 7. a, Field dependence of σ_{xy} at different temperatures. **b,** Temperature dependence of $(\partial \sigma_{xy}/\partial B)_{max}$. For this sample, the saturation temperature is also around 190 mK.