

Supplementary Figure 1. Density maps of the apo- $\alpha$ -syn fibril and  $\alpha$ -syn fibril polymorph 1a.

Cross-section view of the density maps of the apo- $\alpha$ -syn fibril (left) and  $\alpha$ -syn fibril polymorph 1a (PDB ID: 6A6B, EMDB ID: EMD-6988).



Supplementary Figure 2. Immunoglod labeling TEM of α-syn in fibrils.

Representative immunogold labeling TEM imaging of heparin- and apo- $\alpha$ -syn fibrils. The fibrils were incubated with  $\alpha$ -syn antibodies Syn303 (recognizing residues 1-5) and ab138501 (recognizing residues 118-123) from three biologically independent experiments. Scale bar, 200 nm. Hep-P4 in the heparin- $\alpha$ -syn fibrils is enlarged. White arrows indicate the helical half pitches of Hep-P4.



## Supplementary Figure 3. Resolution estimation of the cryo-EM structures of Hep-P1, Hep-P3 and Hep-P4.

Left: Gold standard Fourier shell correction curves for the Hep-P1 (A), Hep-P3 (B), and Hep-P4 (C). The overall resolution of Hep-P1, Hep-P3, and Hep-P4 is 3.2 Å, 3.1 Å, and 3.4 Å, respectively.

Right: Local resolution estimation for the Hep-P1 (A), Hep-P3 (B), and Hep-P4 (C).



Supplementary Figure 4. Sharpening for heparin-α-syn fibril maps.

Unsharpened maps are shown on the left with initial binarization threshold of 0.0049 for unsharpened Hep-P1 map, 0.00214 for unsharpened Hep-P3 map, and 0.00578 for unsharpened Hep-P4 map, respectively. The masks used for post-processing are shown in gray.

After post-processing, sharpened maps are shown on the right with threshold of 0.0125 for sharpened Hep-P1 map, 0.008 for sharpened Hep-P3 map, and 0.0095 for sharpened Hep-P4 map, respectively. The extra densities corresponding to heparin are indicated by arrows.



## Supplementary Figure 5. Structural comparison of Hep-P1 with Hep-P3, $\alpha$ -syn fibril polymorphs 2a and 2b.

A. Alignment of the  $\alpha$ -syn structures in one layer of the fibrils including Hep-P1 (yellow, monomer), Hep-P3 (blue, dimer), polymorph 2a (purple, dimer) and polymorph 2b (green, dimer). The root mean square deviations (RMSD) between Hep-P1 and Hep-P3 is 0.972 Å over 62 C- $\alpha$  atoms. The RMSD between Hep-P1 and polymorph 2a (PDB ID: 6SSX) is 0.961 Å over 63 C- $\alpha$  atoms. The RMSD between Hep-P1 and polymorph 2b (PDB ID: 6SST) is 0.688 Å over 60 C- $\alpha$  atoms.

**B.** Zoom-in views of the protofilamental interfaces of polymorph 2a, polymorph 2b and Hep-P3. Residues involved in the interfaces are highlighted and the side chains are shown as sticks. The pink meshes in Hep-P3 represent the densities of heparin.



## Supplementary Figure 6. Heparin binding with K80 drives the new fold generation in Hep-P4.

A. Overlay of the  $\alpha$ -syn structures of Hep-P1 (brown) with Hep-P4 (yellow). The V-shaped structural motif formed by residues 68-79 are colored in orange (Hep-P1) and red (Hep-P4), respectively. The additional density adjacent to K80 in Hep-P4 is shown by mesh.

**B.** Zoom-in views of the local conformation of the V-shaped structural motif in Hep-P1 (left) and Hep-P4 (right). The side chains are shown as sticks.



Supplementary Figure 7. Hep-P4 is a hybrid structure of two common  $\alpha$ -syn structural motifs.

A. Structural comparison of the C-terminal half (residue 73-98) of Hep-P4 with CSF seeded type 3 polymorph (PDB ID: 7V49, RMSD 2.766 Å over 22 C- $\alpha$  atoms), polymorph 1a (PDB ID: 6A6B, RMSD 3.506 Å over 22 C- $\alpha$  atoms), and MSA PF-IA (PDB ID: 6XYO, RMSD 2.942 Å over 22 C- $\alpha$  atoms).

**B.** Structural comparison of the N-terminal half (residue 37-72) of Hep-P4 with Hep-P1 (RMSD 2.911 Å over 32 C- $\alpha$  atoms), polymorph 2a (PDB ID: 6SSX, RMSD 2.882 Å over 32 C- $\alpha$  atoms), and polymorph 2b (PDB ID: 6SST, RMSD 2.864 Å over 32 C- $\alpha$  atoms).



Supplementary Figure 8. Characterization and quantification of apo- $\alpha$ -syn PFFs and heparin- $\alpha$ -syn PFFs used in the cell assay.

A. Representative negative-staining TEM images of the apo- $\alpha$ -syn and the heparin- $\alpha$ -syn fibrils (top) and PFFs after sonication (bottom) from three biologically independent experiments. Images are shown with two magnifications for each sample. Scale bars are 200 nm.

**B.** Size distribution of apo- $\alpha$ -syn PFFs (592 particles) and heparin- $\alpha$ -syn fibrils PFFs (611 particles). The percentages for PFFs length were analyzed with Frequency distribution in GraphPad Prism 8.

C. PFFs length of apo-a-syn PFFs (592 particles) and heparin-a-syn PFFs (611

particles). Data are shown as mean  $\pm$  s.d. The length of PFFs were measured from 3 independent reproducible TEM images. P=0.3723, unpaired, two-tailed Student's t test. **D.** Amounts of apo- $\alpha$ -syn PFFs and heparin- $\alpha$ -syn PFFs. The amounts were counted in 3 independent reproducible TEM images and shown as mean  $\pm$  s.d. P=0.1605, unpaired, two-tailed Student's t test.



## Supplementary Figure 9. Heparin- $\alpha$ -syn complex fibrils show attenuated neuropathology.

A. Left: Representative immunofluorescence images of rat primary cortical neurons treated with PBS, 200 nM  $\alpha$ -syn monomer, 200 nM apo- $\alpha$ -syn PFFs, 200 nM heparin- $\alpha$ -syn PFFs, and 200 nM apo- $\alpha$ -syn PFFs + 2.4 µg ml<sup>-1</sup> heparin (comparable amount of heparin with that in heparin- $\alpha$ -syn PFFs, mixed in medium). The fixed neurons were immunostained for DAPI (blue), MAP2 (green), phosphorylated S129  $\alpha$ -syn (pS129, red). Scale bar, 20 µm. Right: Quantification of the pS129 intensity normalized to MAP2 intensity. Data are shown as mean  $\pm$  SD of 24 images in three independent experiments. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test. There was no significance between heparin- $\alpha$ -syn PFFs group and apo- $\alpha$ -syn PFFs+heparin group (P=0.1835).

**B.** Left: Representative immunofluorescence images of the  $\alpha$ -syn surface binding on rat primary cortical neurons treated with PBS,  $\alpha$ -syn monomer, apo- $\alpha$ -syn PFFs and hep- $\alpha$ -syn PFFs. The fixed neurons were immunostained for DAPI (blue), MAP2 (green),  $\alpha$ -syn (red). The  $\alpha$ -syn antibody (ab138501) specifically recognizes human  $\alpha$ -syn. Scale bar, 20 µm. Right: Quantification of the bound  $\alpha$ -syn intensity normalized to MAP2 intensity. Data are shown as mean  $\pm$  SD of 24 images in three independent experiments. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test.

C. Western blot of the  $\alpha$ -syn that were taken up by primary cortical neurons. The  $\alpha$ -syn antibody (ab138501) specifically recognizes human  $\alpha$ -syn.  $\beta$ -Actin was used as a loading control. The cellular uptake of  $\alpha$ -syn were quantitated by measuring the intensity of bands normalized to  $\beta$ -actin intensity. Data are means  $\pm$  SD of three independent experiment samples. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test.

![](_page_11_Figure_0.jpeg)

Supplementary Figure 10. Seeding properties of the apo- $\alpha$ -syn PFFs and heparin- $\alpha$ -syn PFFs.

A. ThT assay for  $\alpha$ -syn alone (colored in black) or in the presence of 0.1 mol% apo- $\alpha$ -syn PFFs (colored in light blue), 0.5 mol% apo- $\alpha$ -syn PFFs (colored in dark blue), 0.1 mol% heparin- $\alpha$ -syn PFFs (colored in light red), and 0.5 mol% heparin- $\alpha$ -syn PFFs (colored in dark red), respectively. Data are shown as mean  $\pm$  s.d., n = 3 independent samples.

**B.** The lag time of apo- $\alpha$ -syn PFFs seeded aggregation and heparin- $\alpha$ -syn PFFs seeded aggregation. Data are shown as mean  $\pm$  s.d., n = 3 independent samples. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test. **C.** The max fluorescence intensity of apo- $\alpha$ -syn PFFs seeded aggregation and heparin- $\alpha$ -syn PFFs seeded aggregation. Data are shown as mean  $\pm$  s.d., n = 3 independent samples. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test.

Tukey's post-hoc test. There was no significance between 0.5 mol% apo- $\alpha$ -syn PFFs and 0.5 mol% heparin- $\alpha$ -syn PFFs group (P=0.1476).

**D.** The hill slope of apo- $\alpha$ -syn PFFs seeded aggregation and heparin- $\alpha$ -syn PFFs seeded aggregation. Data are shown as mean  $\pm$  s.d., n = 3 independent samples. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test. There was no significance between apo- $\alpha$ -syn PFFs and heparin- $\alpha$ -syn PFFs group (P=0.7799 for 0.1 mol% seeds comparison, P=0.7484 for 0.5 mol% seeds comparison).

![](_page_13_Figure_0.jpeg)

Supplementary Figure 11. Seeding capacity of apo-α-syn PFFs and heparin-α-syn PFFs to endogenous α-syn in primary neuron.

**A.** Schematic diagram of the liposome mediated seeds transduction process. The figure is created with BioRender.com.

**B.** Representative immunofluorescence images of rat primary cortical neurons treated with liposome with PBS,  $\alpha$ -syn monomer, apo- $\alpha$ -syn PFFs (5, 20, 80, 200 nM), heparin- $\alpha$ -syn PFFs (5, 20, 80, 200 nM). The fixed neurons were immunostained for DAPI (blue), MAP2 (green), phosphorylated S129  $\alpha$ -syn (pS129, red).

C. Quantification of the pS129 intensity normalized to MAP2 intensity. Data are shown

as mean  $\pm$  SD of 8 images in three independent experiments. Statistical significance was measured using one-way ANOVA followed by Tukey's post-hoc test. \*\*\*P=0.0009;

\*\*\*\*P < 0.0001.