Supporting Information

Synthesis and Evaluation of Diaza-Crown Ether-Backboned Chelator Containing Hydroxamate Groups for Zr-89 Chelation Chemistry

Shuyuan Zhang,^a Haixing Wang,^a Siyuan Ren,^a Yanda Chen,^a Dijie Liu,^{b,c} Mengshi Li,^{b,c} Edwin Sagastume,^c Hyun-Soon Chong^{a,*}

^aDepartment of Chemistry, Illinois Institute of Technology, Chicago, IL, USA.; ^bDepartment of Radiology, University of Iowa, Iowa City, IA, USA.; ^cViewpoint Molecular Targeting Inc, Coralville, IA, USA.

Table of Contents

I. Materials and Methods	p. S2-S6
II. NMR Spectra of compounds 2, 4, and 5	p. S7-S9
III. Evaluation of chelators for radiolabeling with ⁸⁹ Zr	p. S10
IV. Evaluation of ⁸⁹ Zr-labeled complexes for stability in human serum	p. S11-S13
V. Evaluation of ⁸⁹ Zr-labeled complexes for stability in EDTA solution	p. S13-S15
VI. Evaluation of 89Zr-labeled complexes for stability in Apo-Transferrin solution	p. S16-S17
VII. In vivo biodistribution data of ⁸⁹ Zr-labeled complexes	p. S18

I. Materials and Methods

¹H and ¹³C NMR spectra were obtained using a Bruker 300 instrument, and chemical shifts are reported in ppm on the δ scale relative to solvent. Electrospray iodization (ESI) high resolution mass spectra (HRMS) were obtained on JEOL double sector JMS-AX505HA mass spectrometer (University of Notre Dame, IN). All reagents were purchased from Sigma-Aldrich or Acros Organics and used as received unless otherwise noted.

2-Bromo-N-((4-methoxybenzyl)oxy)-N-methylacetamide (2).¹⁴ To a solution of **1**¹⁵ (400 mg, 2.39 mmol) in CH₂Cl₂ (8 mL) was added K₂CO₃ (363.5 mg, 2.63 mmol) and bromo acetyl bromide (531.1 mg, 2.63 mmol) at 0 °C. The resulting mixture was stirred for 1 h. The reaction mixture was filtered, concentrated to dryness, and purified via column chromatography on silica gel eluting with 15%-20% ethyl acetate in hexane to provide product **2** (530 mg, 77%). ¹H NMR (CDCl₃, 300 MHz) δ 3.25 (s, 3H), 3.82 (s, 3H), 3.89 (s, 2H), 4.87 (s, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 25.8 (t), 33.9 (q), 55.3 (q), 76.1 (t), 114.3 (d), 126.0 (s), 131.2 (d), 160.4 (s), 168.2 (s).

2,2'-(1,4,10,13-Tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(N-((4-methoxybenzyl)oxy)-N-

methylacetamide) (4). To a solution of **3** (100 mg, 0.38 mmol) in CH₃CN (5 mL) was added K₂CO₃ (420.8 mg, 3.05 mmol) and **2** (241.6 mg, 0.83 mmol). The resulting mixture was stirred for 14 h at room temperature. The reaction mixture was filtered, concentrated to dryness, and purified via column chromatography on silica gel eluting with 3% CH₃OH in CH₂Cl₂ to provide product **4** (107.6 mg, 41%). ¹H NMR (CDCl₃, 300 MHz) δ 2.53 (s, 6H), 3.10-3.24 (m, 10H), 3.44-3.57 (m, 18H), 3.80 (s, 6H), 4.75 (s, 4H), 6.88 (d, *J* = 8.0 Hz, 4H), 7.28 (d, *J* = 9.0 Hz, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 33.3 (q), 54.9 (t), 55.4 (q). 57.9 (t), 67.1 (t), 68.8 (t), 75.6 (t), 114.1 (d), 126.1 (s), 131.5 (d), 160.4 (s), 173.5 (s). HRMS (positive ion ESI) Calcd for C₃₄H₅₂N₄O₁₀ [M + H]⁺ m/z 677.3756. Found: [M + H]+ m/z 677.3770. **2,2'-(1,4,10,13-Tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(N-hydroxy-N-methylacetamide**) (**5).** To compound **4** (107 mg, 0.16 mmol) was sequentially added TFA (2 mL) and triethyl silane (36.8

mg, 0.32 mmol) at 0 °C. The resulting mixture was stirred for 14 h at room temperature. The reaction mixture was evaporated to dryness and washed with CH₂Cl₂ to afford compound **5** (69 mg, 99%). ¹H NMR (D₂O, 300 MHz) δ 3.15 (s, 6H), 3.48-3.78 (m, 24H), 4.33 (s, 4H). ¹³C NMR (D₂O, 75 MHz) δ 36.2 (q), 55.5 (2C, t), 64.2 (t), 69.8 (t), 164.9 (s). HRMS (positive ion ESI) Calcd for C₁₈H₃₆N₄O₈ [M + H]⁺ m/z 437.2619. Found: [M + H]+ m/z 437.2606.

Radiolabeling of chelators with ⁸⁹**Zr.** All HCl solutions were prepared from the commercially available ultrapure HCl solution (JT baker, #6900-05). For metal-free radiolabeling, plasticware including pipette tips, tubes, and caps was soaked in 0.1 M HCl overnight and washed thoroughly with Milli-Q (18.2 M Ω) water and air-dried overnight. Ultrapure ammonium acetate (Sigma-Aldrich, #431311) was used to prepare 0.25 M NH₄OAc buffer solution (0.25 M, pH 7.0). After adjusting pH using 0.1 M HCl or 1 M HCl or 1 M NaOH solution, 0.25 M NH₄OAc buffer solution was treated with Chelex-100 resin (Biorad, #142-2842, 1 g/100 mL buffer solution), shaken overnight at RT, and filtered through a 0.22 µM filter (Corning, #430320) prior to use. Etheylenediaminetetraacetic Acid (EDTA, Sigma-Aldrich, #03609) was used to prepare 100 mM EDTA solution (pH 7.0 and pH 5.0). ⁸⁹Zr-Oxalate was purchased from Washington University (St. Louis, MO). Stock solution of ⁸⁹Zr-Oxalate was adjusted to pH 7.5~8.0 by adding 1 M Na₂CO₃ solution that was treated with Chelex-100 resin. ITLC-SA plates (1 × 9 cm, ITLC-silica acid, Agilent Technologies, #A120B12) with the origin line drawn at 0.5 cm from the bottom were prepared.

To a buffer solution (0.25M NH₄OAc, pH 7.0) in a capped microcentrifuge tube (1.5 mL) was sequentially added a solution of DA-18C6-BHA (0.25 mM, 2.2 μ g, 0.5 μ L/0.25 M NH₄OAc, pH 7.0) or DFO (0.25 mM, 3.3 μ g, 0.5 μ L/ 0.25 M NH₄OAc, pH 7.0) and a solution of ⁸⁹Zr (0.37 MBq, 10 μ Ci), and the total volume of the resulting solution was brought up to 20 μ L by adding 0.25 M NH₄OAc solution (pH 7.0). The reaction mixture was agitated on the thermomixer (Eppendorf, #022670549) set at 1000 rpm at room temperature for 1 h. Radiolabeling efficiency was determined by ITLC-SA (eluent: 100mM EDTA, pH 5.0). A solution of reaction mixture (2 μ L) was withdrawn at the designated time

points, spotted on an ITLC plate and eluted with the mobile phase. After completion of elution, the ITLC plate was warmed and dried on the surface of a hotplate maintained at 35 °C and scanned using a TLC scanner (Bioscan, #FC-1000). The radiolabeled complex ⁸⁹Zr-DA-18C6-BHA or ⁸⁹Zr-DFO was detected at ~30 mm from the bottom of the ITLC plate, while the unbound ⁸⁹Zr moved faster (~65 mm).

In vitro serum stability of ⁸⁹Zr-radiolabeled complexes. Human serum was purchased from Gemini Bio-products (#100110). ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO were prepared by reaction of DA-18C6-BHA (1 mM, 8.7 µg, 2 µL/ 0.25 M NH₄OAc, pH 7.0) or DFO (1 mM, 13 µg, 2 µL/ 0.25 M NH₄OAc, pH 7.0) with ⁸⁹Zr (1.05 µL, 1.11 MBq, 30 µCi) in 0.25 M NH₄OAc buffer (pH 7.0), respectively. The total volume of the resulting solution was brought up to 20 µL by adding 0.25 M NH₄OAc solution (pH 7.0). Completion of radiolabeling was determined by ITLC-SA (eluent: 100mM EDTA, pH 5.0), and the resulting complexes ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO were directly used for serum stability studies without further purification. ⁸⁹Zr-DA-18C6-BHA (1.11 MBq, 30 µCi, 20 µL) or ⁸⁹Zr-DFO (1.11 MBq, 30 µCi, 20 µL) was added to human serum (200 µL) in a microcentrifuge tube. The stability of the radiolabeled complexes in human serum was evaluated at 37 °C for 7 days. The serum stability of the radiolabeled complexes was assessed by measuring the transfer of the radionuclide from each complex to serum proteins using ITLC-SA (eluent: 100 mM EDTA, pH 5.0). A portion of the radiolabeled complex in serum was withdrawn at the designated time point and evaluated by ITLC-SA. The radiolabeled complex ⁸⁹Zr-DA-18C6-BHA or ⁸⁹Zr-DFO was detected at ~30 mm from the bottom of the TLC plate, while the unbound 89 Zr moved faster (~65 mm).

EDTA challenge of ⁸⁹Zr-radiolabeled complexes. ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO were prepared by reaction of DA-18C6-BHA (1 mM, 8.7 μ g, 2 μ L/ 0.25 M NH₄OAc, pH 7.0) and DFO (1 mM, 13 μ g, 2 μ L/ 0.25 M NH₄OAc, pH 7.0) with ⁸⁹Zr (1.05 μ L, 1.11 MBq, 30 μ Ci) in 0.25 M NH₄OAc buffer (pH 7.0), respectively. The total volume of the resulting solution was brought up to 20 μ L by adding 0.25 M NH₄OAc solution (pH 7.0). Completion of radiolabeling was determined by ITLC-SA (eluent: 100mM

EDTA, pH 5.0), and the resulting complexes ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO were directly used for EDTA challenge studies without further purification. A solution of EDTA (18 µl, 100 mM/ H₂O, pH 7.0) at a 100-fold molar excess was added to a solution of ⁸⁹Zr-DA-18C6-BHA (0.99 MBq, 27 µCi, 18 µl/ 0.25 M NH₄OAc, pH 7.0) or a solution of ⁸⁹Zr-DFO (0.99 MBq, 27 µCi, 18 µl/ 0.25 M NH₄OAc, pH 7.0). The resulting mixture was incubated at 37 °C for 7 days. At each of the time points, the stability of ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO complex in the presence of EDTA at a 100-fold molar excess was determined using ITLC-SA (eluent: 100mM EDTA, pH 5.0). The radiolabeled complex ⁸⁹Zr-DA-18C6-BHA or ⁸⁹Zr-DFO was detected at ~30 mm from the bottom of the TLC plate, while unbound ⁸⁹Zr moved faster (~65 mm).

Apotransferrin challenge of ⁸⁹Zr-radiolabeled complexes. Apotransferrin was purchased from Sigma-Aldrich (#T1147). Phosphate buffered saline (1×, pH 7.4, Corning, #21-040-CV) was treated with Chelex-100 resin (Biorad, #142-2842, 1 g/100 mL buffer solution), shaken overnight at room temperature, and filtered through a 0.22 µM filter (Corning, #430320). The chelexed PBS was used to prepare a solution of apo-transferrin (500 µM). ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO was prepared by reaction of DA-18C6-BHA (1mM, 8.7 µg, 2 µL in 0.25M NH4OAc, pH 7.0) or DFO (1mM, 13 µg, 2 μL in 0.25M NH₄OAc, pH 7.0) with ⁸⁹Zr (0.88 μL, 1.11 MBq, 30 μCi) in 0.25 M NH₄OAc buffer (pH 7.0), respectively. The total volume of the resulting solution was brought up to 20 μ L by adding 0.25 M NH4OAc solution (pH 7.0). Completion of radiolabeling was determined by ITLC-SA (eluent: 100mM EDTA, pH 5.0), and the resulting complexes ⁸⁹Zr-DA-18C6-BHA and ⁸⁹Zr-DFO were directly used for apotransferrin challenge assays without further purification. A solution of apotransferrin (200 µl, 500 uM in PBS) at a 5-fold molar excess was added to a solution of ⁸⁹Zr-DA-18C6-BHA (1.11 MBq, 30 µCi/20 µl 0.25 M NH₄OAc buffer). A solution of apotransferrin (200 µl, 500 µM in PBS) at a 5-fold molar excess was added to a solution of ⁸⁹Zr-DFO (1.11 MBg, 30 µCi/20 µl 0.25 M NH₄OAc buffer). The resulting mixture was incubated at 37°C for 7 days. The stability of ⁸⁹Zr-DA-18C6-BHA and ⁸⁹ZrDFO complex in the presence of apotransferrin at a 5-fold molar excess was determined using ITLC-SA (eluent: 100mM EDTA, pH 5.0). The radiolabeled complex ⁸⁹Zr-DA-18C6-BHA or ⁸⁹Zr-DFO was detected at 20 - 45 mm from the bottom of the TLC plate, while unbound radionuclide ⁸⁹Zr moved faster (50 - 75 mm).

In vivo biodistribution studies. All animal experiments were conducted in accordance with the guidelines established by the Animal Care and Use Committee of the University of Iowa. Six to eight weeks old CD-1 mice were obtained from Charles River Laboratories and housed one week prior to the studies. ⁸⁹Zr-labeled chelator (DA-18C6-BHA) was freshly prepared prior to *in vivo* biodistribution studies. ⁸⁹Zr-labeled DFO was also evaluated for comparison. Stock solution of the radioisotopes (75 μ L, 3 mCi) was adjusted to pH 7.0 by adding 1 M Na₂CO₃ solution. Each chelator (50 μ g) in buffer solution (0.25 M NH₄OAc, pH 7.0) and ⁸⁹Zr (100 μ Ci) were sequentially added to a microcentrifuge tube (1.5 mL). The total volume of the reaction mixture was 30 μ L. The resulting mixture was reacted in a thermomixer (Eppendorf, 5355) set at 300 rpm at 37 °C for 1 h.

Completion of Zr-89 labeling was determined by TLC followed by phosphor imaging (Typhoon, FLA 7000). An aliquot of ⁸⁹Zr-radiolabeled complex (3 μ Ci) was intravenously injected via the tail vein in a volume of 100 μ L of sterilized saline. At 1 h, 4 h and 24 h post-injection, mice were sacrificed, and blood, liver, kidney, muscle, and bone were collected, weighed, and counted in a Cobra II auto gamma counter. The radioactivity from each tissue/organ was decay-corrected by a known aliquot of the injected dose, and the percent-injected dose per gram of tissue (% ID/g) was calculated. Values were presented as mean ± SD for each group of 4 mice.

II. NMR Spectra of compounds 2, 4, and 5.

Figure S3. ¹H NMR spectrum of compound 4

 $O = \begin{pmatrix} V & V \\ -0 & -0 \\ -0 & -0 \\ -0 & -1 \\$

ppm

60 50 40 30 20 10

80 70

90

200 190 180 170 160 150 140 130 120 110 100

Figure S5. ¹H NMR spectrum of compound 5

III. Evaluation of chelators for radiolabeling with ⁸⁹Zr

Time [–]	Radiolabeling efficiency (%)			
	DA-18C6-BHA	DFO		
1 min	90.2	99.1		
10 min	98.2	99.1		
30 min	99.5	99.4		

Table S1. Radiolabeling efficiency (%) with ⁸⁹Zr (pH 7, RT, ITLC)

*Radiolabeling efficiency (mean ± standard deviation%) was measured using ITLC (eluent: 100mM EDTA, pH 5.0).

Figure S7. Control ITLC of unbound radionuclide (⁸⁹Zr-oxalate)

Figure S8. Radiolabeling of DA-18C6-BHA with ⁸⁹Zr

Figure S9. Radiolabeling of DFO with ⁸⁹Zr

IV. Evaluation of ⁸⁹Zr-labeled complexes for stability in human serum (pH 7.0, 37 °C, ITLC, duplicate).

Figure S10. Complex Stability of ⁸⁹Zr-labeled DA-18C6-BHA in human serum

Figure S11. Complex Stability of ⁸⁹Zr-labeled DFO in human serum

V. Evaluation of ⁸⁹Zr-labeled complexes for stability in EDTA solution (100-fold molar excess, pH 7.0, 37°C, ITLC, duplicate).

48hr

168hr

VI. Evaluation of ⁸⁹Zr-labeled complexes for stability in apotransferrin solution (5-fold molar excess, pH 7.0, 37°C, ITLC, duplicate).

Figure S14. Complex Stability of ⁸⁹Zr-DA-18C6-BHA in apotransferrin solution

1st run

Figure S15. Complex Stability of ⁸⁹Zr-DFO in apotransferrin solution

1st run

VII. In Vivo Biodistribution of ⁸⁹Zr-DFO and ⁸⁹Zr-DA-18C6-BHA in CD-1 Mice.

	Time points (%ID/g)					
Tissue	1 h		4 h		24 h	
	DFO	DA-18C6-BHA	DFO	DA-18C6-BHA	DFO	DA-18C6-BHA
blood	0.02 ± 0.02	0.05 ± 0.04	0.04 ± 0.02	0.12 ± 0.14	0.02 ± 0.01	0.03 ± 0.01
liver	0.03 ± 0.01	0.43 ± 0.06	0.04 ± 0.01	0.44 ± 0.03	0.01 ± 0.00	0.30 ± 0.05
kidney	0.23 ± 0.03	0.21 ± 0.02	0.25 ± 0.03	0.15 ± 0.02	0.16 ± 0.02	0.12 ± 0.01
muscle	0.04 ± 0.02	0.06 ± 0.02	0.05 ± 0.01	0.05 ± 0.01	0.03 ± 0.01	0.05 ± 0.02
bone	0.06 ± 0.02	0.11 ± 0.01	0.09 ± 0.03	0.09 ± 0.02	0.04 ± 0.02	0.07 ± 0.01

Table S2. Percentage of injected dose per gram of tissue (%ID/g)