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Supplementary Note 1
Comments on the reverse calling
The reverse calling approach implemented in this work for the identification of blood somatic
mutations has two main advantages with respect to one-sample germline or somatic calling.

First, variants supported by fewer reads than the minimum generally required in a germline
calling may be identified. It is this difference that accounts for the gain in sensitivity in the
identification of CH across samples in the metastasis cohort exemplified in Figure 1c and
Supplementary Figure 5c. This is a key feature in the aim to repurpose cancer genomics
datasets for the discovery of CH driver genes, given that the blood samples across cancer
patients cohorts are sequenced at lower depths than their tumor counterparts (e.g., ~40X in the
metastasis cohort). Deeper sequencing of these paired blood samples across cancer genomics
datasets would definitely favor this repurposing.

Second, the availability of a second sample from the same individual improves the filtering of
germline variants of the reverse calling with respect to any filter of polymorphisms implemented
posterior to germline calling of the blood sample in isolation. This thus determines that the
reverse calling is more specific than a germline calling. In order to precisely ascertain this gain
in specificity of somatic mutation calling arising from the implementation of the reverse calling,
we compared the number (and VAF distribution) of variants identified through the reverse calling
and the regular germline calling in the 15 well-known CH genes across the 3,785 donors in the
metastasis cohort. For the purpose of this comparison, the VAF distribution of variants from the
germline calling was cut at 0.5, and common polymorphisms present across databases such as
dbSNP and gnomAD were removed, exactly as in the case of the reverse calling
post-processing. The results (presented in Figure 1c of the main paper) show that more than
91% of the variants identified by the regular germline calling are not present in the reverse
calling due to their presence in the reference (tumor) sample from the donor. The distribution of
VAF of these variants (close to 0.5) supports the suspicion that they contain many germline
variants. This difference highlights the gain in specificity provided by the reverse calling (i.e.,
exploiting the second sample from the donor’s tumor as germline reference).

We next asked whether results similar to those of the reverse calling could be obtained by
calling potential somatic mutations from a single blood sample, for example using the Mutect2
single sample mode. We hypothesized that the reverse calling would produce a more specific
dataset of somatic mutations than the single-sample somatic calling, since germline variants are
expected to be filtered in the calling process from their presence in the reference (tumor)
sample. To answer this question, we recalled somatic mutations across 276 samples randomly
chosen from the primary cohort using Mutect2 in the single sample mode. We then compared
the distribution of VAF of the mutations identified by the reverse calling and this single-sample
somatic calling (Fig. 1a Supplementary Note 1). The single-sample somatic calling approach
identifies a larger number of mutations across these 276 samples, which are shifted towards
higher VAF values. This means, as expected, that potentially, many of the mutations (with VAF
close to 0.4) identified by the single-sample somatic calling approach are actually germline
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variants filtered out in the reverse calling approach due to their presence in the reference
sample.

One potential caveat of the reverse calling approach is that the VAF filter applied to the blood
mutations called (VAF<0.5) may result in the loss of true blood somatic mutations that occur in
genomic regions that suffer a mosaic copy number loss in the process of CH. We have
assessed that the number of such lost CH cases (based on the list of known CH drivers) is
minimal (see Figure 1b Supplementary Note 1), and we have decided to err on the side of
caution by keeping this filter to avoid the potential inclusion of falsely called blood somatic
mutations.

In order to identify other potential pitfalls of the reverse calling approach, we analyzed several
non-canonical scenarios of its operation and their potential outcomes. In genomic sites that bear
somatic mutations in the tumor (i.e., in which the reference allele, but also an alternate are
present), if the site is not polymorphic, the most likely outcome of the reverse calling is a non
mutated site. The reason is that the reference allele is present in both the query and reference
sample. Nevertheless, if a mutation were called in this site, it would be eliminated by the filter of
VAF implemented downstream the calling (see above and Figure 1 of the main article), as it
would appear with a VAF close to 1. A more complicated scenario is posed by somatic
mutations in the tumor that correspond to polymorphic sites in the genome. In this case, a false
positive blood somatic mutation could be called, because one of the alleles in the query sample
(blood) will differ from the two present in the reference sample (tumor). However, such false
somatic mutation would be eliminated by the filter of polymorphisms implemented downstream
the calling, except in the case that the variant in the germline genome of the donor is not a
polymorphism, but private. We specifically quantified the case of blood somatic mutations called
overlapping tumor mutations. Across all blood somatic mutations identified in the metastasis
cohort (1,369,926 mutations), 99 (0.00007) overlap mutations in the tumor (with the same or
different allele). Seven of these correspond to coding genes or the 64 genes identified as CH
drivers (3 in DNMT3A, 2 in SF3B1, 1 in TP53, and 1 in JAK2). Interestingly, in these seven
cases, exactly the same mutation (nucleotide change) is found in the blood and the tumor,
suggesting that at least some of these cases might correspond to blood somatic mutations
detected in the tumor due to leukocyte infiltration. We thus conclude that the reverse calling
approach is robust to the presence of tumor point somatic mutations, and only in very rare
occasions it may lead to a false blood somatic mutation call.

Another complex scenario corresponds to an event of loss of heterozygosity (LOH) in the tumor
sample. Private germline variants of the donor overlapping such an event have the potential to
be falsely called as blood somatic mutations. The majority of these variants will appear as
mutations with VAF close to 0.5, and are filtered out in the mosaic set (see Figure 1c
Supplementary Note 1). To avoid that genes with possible false mutation calls in LOH regions in
the tumor or overlapping private variants of the donor are included in the compendium, we
decided to filter out blood somatic mutations with VAF>0.4 from the sets of mutations employed
in the discovery of CH driver genes.
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Figure 1 Supplementary Note 1. Potential caveats of the reverse calling approach.
a) Comparison of the results obtained with the application of the reverse calling and a single-sample
somatic calling approach on 276 samples of the primary cohort. Left plot: distribution of number of
variants identified by both approaches across samples; right plot: distribution of median VAF of
variants identified by both approaches across samples. In the boxplots, the box represents the
second and third quartiles, separated by a line indicating the median; the whiskers represent the
minimum and maximum of the distribution excluding outliers.
b) Distribution of variant allele frequency of blood somatic mutations affecting known CH drivers
across the metastasis cohort. The broken horizontal black line represents the threshold of VAF used
as a filter. Very few mutations (in red) possess VAF greater than 0.5 are thus lost due to the
application of this filter. In the boxplots, the box represents the second and third quartiles,
separated by a line indicating the median; the whiskers represent the minimum and maximum of
the distribution excluding outliers.
c) Distribution of VAF (variant allele frequency) of blood somatic mutations overlapping LOH in tumor
(left), and non-LOH (right) regions of the genome across donors of the metastasis cohort. The plot at
the center presents the distribution of VAF of blood somatic mutations overlapping LOH regions in
the tumor in the mosaic set.
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Identifying genes under positive selection in CH
We posit that if somatic mutations identified across healthy blood samples of patients in both
cohorts are true hematopoietic mutations that become detectable due to clonal hematopoiesis,
then their distribution across the genome is not expected to be completely random. Instead,
because clonal hematopoiesis is a phenomenon driven by mutations that provide some
hematopoietic stem cells with advantages with respect to others, signals of positive selection
are expected to be detectable in their distribution across the genome. Specifically, these signals
would be apparent in genes whose mutations are under positive selection in the arisal of clonal
hematopoiesis. Thus, we expect that mutations in these CH-related genes exhibit distinct
patterns of mutations that deviate from the expected under neutral evolution.

A range of methods to identify these signals of positive selection across genes have been
developed in recent years for their application to tumor genomics data with the aim of identifying
cancer driver genes. If detected, the signals of positive selection across the somatic mutations
in blood samples would thus be a reflection of the clonal expansion triggered by CH.

Therefore, we applied the IntOGen-pipeline19, which runs seven complementary state-of-the-art
methods26,35–40 to detect signals of positive selection in the mutation pattern of genes. These
methods are designed to detect different deviations of the mutation pattern of genes with
respect to their expectation under neutrality --that is, different signals of positive selection. The
methods were applied independently to the full and mosaic (see main text) sets of somatic
mutations identified across the blood samples of both datasets. As a general rule (i.e., except a
couple of cases) the genes with signals of positive selection according to the different methods
in the different cohorts and mutations sets are significantly enriched for known cancer driver
genes --i.e., those that when mutated confer an advantage to somatic cells (CGC41 genes in
Table 1). The same significant enrichment is apparent for known drivers of clonal hematopoiesis
(CH in Table 1) and genes that drive specifically myeloid malignancies (Myeloid12 in Table 1).

We also employed quantile-quantile plots (qqplots) of the results of the different methods (in
which the p-values of a set of genes deviate from the uniformity that would be expected under
neutrality) to assess their calibration (Fig. 2 Supplementary Note 1). Most methods, when run on
the mosaic sets of mutations derived from both cohorts exhibit a well calibrated behavior, with
only a few significant genes deviating from the diagonal. We hypothesize that in the few cases
in which an inflation is observed, the reason is that (unlike in the case of cancer somatic
mutations) the sets of mutations employed to run the methods are still contaminated with
artifactual mutations with a non-random distribution which may contribute to biasing their
results.

Driver identification methods based on different signals of positive selection also show different
biases when applied to cancer somatic mutations. This is why we have developed a reasoned
approach to combine their outputs that delivers weights on the basis of the perceived credibility
of the methods in each cohort19. Thus, we anticipate that the biases observed in the results of
certain methods when applied to blood somatic mutations in both cohorts, could be solved using
this combination approach.
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Moreover, because the full set of mutations identified through the reverse calling approach may
be contaminated by potential sequencing artifacts, we deem the set of clonal hematopoiesis
genes identified by the combination of the results of the application of the methods to these
filtered catalogs (Mutect and Mosaic) more reliable than that obtained from the full catalog.

In order to derive the list of clonal hematopoiesis drivers, we thus start with genes that are
significant (in the combination of methods’ outputs) from the analysis of any filtered catalog.
Genes that appear significant from the analysis of the full catalog are only included in the final
list if they are supported by prior knowledge of their involvement in CH or cancer (i.e., included
in the CGC41). This way, we generate two lists of putative CH drivers, i.e., one for each cohort.
These two lists, directly obtained from the combination algorithm, are already very enriched for
known CH and cancer genes (Table 2). The genes in these two lists, among which false
positives may still be present, are carefully vetted employing criteria that we have developed in
a decade-worth of analysis of cancer cohorts
(https://intogen.readthedocs.io/en/latest/postprocessing.html#). Specifically, we remove from the
lists:

- 10 genes that are not expressed (their highest expression value is below 15 fragments
per kilobase of transcript per million mapped reads, or fpkms) across a set of HSCs (see
methods). The names of these non-expressed discarded genes are highlighted in Figure
3 Supplementary Note 1 with a “#” symbol preceding them.

- 1 gene due to be highly tolerant to Single Nucleotide Polymorphisms7 (SNP) across
human populations

- 2 genes that are frequent false positives of different driver discovery methods
- 1 gene that has more than 3 mutations in one sample, which may be a signal of a local

hypermutation process or contamination of germline variants from the reverse calling
- 1 gene that has more than 50% mutations in one of the cohorts associated with COSMIC

Signature 9 (https://cancer.sanger.ac.uk/cosmic/signatures), related with the maturation
of lymphoid cells

The names of these 5 genes discarded due to different reasons are included in Table 2 with the
label “DISCARDED”.

The vetting process yields two lists composed of 23 and 33 genes, all of which are reasonably
good candidates of driving clonal hematopoiesis in either cohort (Table 2). The vast majority
(21/23 and 26/33) have been mentioned in the literature related to CH, myeloid malignancies, or
tumorigenesis in general21,42. Although the genes with no prior knowledge of involvement in any
of these processes could be bona fide CH genes, further evidence is needed. With the objective
to generate a very reliable snapshot of the compendium, these genes are discarded from the
compendium, but still listed in Table 2 of this Supplementary Note.
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Figure 2 Supplementary Note 1. Quantile-quantile plots of driver discovery methods in the
detection of CH.
QQplots of the results of analyzing the mosaic set of mutations are represented. Parametric,
non-parametric or empirical statistical tests implemented by the seven methods in the IntOGen pipeline
are described in their original articles. The names of genes that are significant at FDR 0.01, appear in red,
while those significant at FDR 0.1, appear in green.
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Figure 3 Supplementary Note 1. Expression of genes under positive selection in the primary and
metastasis cohorts across HSCs.
Most genes in the list of putative CH drivers identified through the IntOGen pipeline appear expressed
across HSCs cells (i.e., above the threshold of 15 fpkm), while only 9 that appear below this value are
filtered out. Genes that are filtered out due to lack of expression are marked with ‘#’; genes that are
filtered out due to other criteria (detailed above) bear the ‘*’ label; genes discarded due to lack of literature
evidence of involvement in CH or tumorigenesis are labeled ‘^’. The gene TOMM70, not included in the
expression dataset employed for this purpose (see Methods of the main paper) is also excluded from the
list of potential CH driver genes. In the boxplots, the box represents the second and third quartiles,
separated by a line indicating the median; the whiskers represent the minimum and maximum of the
distribution excluding outliers.
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Table 1 Supplementary Note 1. Enrichment of different discovery methods applied to different sets of mutations called in the 
primary and metastasis cohorts on known CH, Myeloid and cancer genes. Odds ratios and p-values correspond to one-tailed Fisher’s 
exact test.

Cohort Method

Fraction of known genes Total genes Odds ratio P-value

CH Myeloid CGC CH Myeloid CGC CH Myeloid CGC

Metastasis Mutect Cbase 0.80 0.80 0.80 5 1 4 6781.8 816.3 103.1 1.3E-12 3.1E-09 9.6E-06

Metastasis Mosaic Cbase 0.44 0.44 0.44 9 5 4 1356.1 163.2 20.6 3.4E-11 7.8E-08 2.1E-04

Metastasis Full Cbase 0.57 0.57 0.57 7 3 4 2260.4 272.1 34.4 9.4E-12 2.2E-08 6.3E-05

Primary Mosaic Cbase 0.21 0.21 0.21 19 15 4 451.8 54.4 6.9 1.0E-09 2.3E-06 4.9E-03

Primary Full Cbase 0.20 0.20 0.25 20 15 5 423.5 51.0 8.6 1.3E-09 2.9E-06 7.1E-04

Metastasis Mutect OncodriveCLUSTL 1.00 1.00 1.00 2 0 2 inf inf inf 0.11 0.11 0.11

Metastasis Mosaic OncodriveCLUSTL 0.15 0.15 0.15 20 17 3 7.2 14.6 4.8 0.05 0.02 0.08

Metastasis Full OncodriveCLUSTL 0.02 0.03 0.05 144 137 7 1.4 1.1 0.6 0.70 0.76 0.20

Primary Mosaic OncodriveCLUSTL 0.25 0.25 0.25 4 3 1 251.6 51.0 6.6 5.8E-03 0.03 0.18

Primary Full OncodriveCLUSTL 0.03 0.03 0.08 59 54 5 42.2 5.7 2.0 1.5E-03 0.05 0.19

Metastasis Mosaic SMRegions 0.33 0.33 0.33 6 4 2 53.2 19.6 4.7 2.7E-03 0.01 0.11

Metastasis Mutect SMRegions 1.00 1.00 1.00 1 0 1 inf inf inf 0.08 0.10 0.23

Metastasis Full SMRegions 0.07 0.07 0.07 42 38 4 17.2 5.3 0.9 2.2E-03 0.03 1.00

Primary Mosaic SMRegions 1.00 1.00 1.00 1 0 1 inf inf inf 1.2E-03 6.8E-03 0.05

Primary Full SMRegions 0.31 0.23 0.23 13 9 4 713.1 47.9 6.3 3.5E-10 7.2E-05 0.02

Metastasis Mosaic DnDsCV 0.80 0.80 0.80 5 1 4 6992.7 841.8 106.1 1.2E-12 2.8E-09 8.6E-06

Metastasis Mutect DnDsCV 0.67 0.67 0.67 6 2 4 3496.2 420.9 53.1 3.6E-12 8.3E-09 2.5E-05

Metastasis Full DnDsCV 0.10 0.13 0.18 40 33 7 193.9 30.3 5.6 2.1E-08 1.5E-06 5.5E-04

Primary Mosaic DnDsCV 0.50 0.50 0.50 8 4 4 1747.9 210.4 26.5 1.7E-11 3.8E-08 1.1E-04

Primary Full DnDsCV 0.20 0.20 0.20 25 20 5 480.3 53.1 6.6 7.2E-12 1.3E-07 1.9E-03

Metastasis Mosaic OncodriveFML 1.00 1.00 1.00 4 0 4 inf inf inf 1.6E-10 2.2E-08 2.1E-05

Metastasis Mutect OncodriveFML 1.00 1.00 1.00 3 0 3 inf inf inf 2.1E-06 9.2E-06 4.4E-04

Metastasis Full OncodriveFML 0.33 0.33 0.42 12 7 5 303.0 61.6 11.7 9.4E-09 2.4E-06 3.7E-04

Primary Mosaic OncodriveFML 0.60 0.60 0.60 5 2 3 2062.0 289.8 36.8 6.1E-09 1.5E-06 5.7E-04

Primary Full OncodriveFML 0.36 0.36 0.36 14 9 5 959.5 112.4 14.0 4.6E-13 6.6E-09 1.2E-04

Metastasis Mosaic Mutpanning 0.42 0.42 0.42 12 7 5 1329.6 147.1 18.4 1.3E-13 2.4E-09 4.7E-05

Metastasis Full Mutpanning 0.21 0.21 0.29 24 17 7 488.7 54.1 10.6 6.8E-12 1.2E-07 2.0E-05

Primary Mosaic Mutpanning 0.47 0.40 0.40 15 8 7 2035.9 138.8 17.2 2.7E-19 7.2E-11 1.0E-05

Primary Full Mutpanning 0.11 0.10 0.13 71 61 10 336.3 22.9 3.8 1.9E-16 7.3E-08 1.3E-03

Metastasis Full HotMaps 0.17 0.25 0.25 12 9 3 99.8 36.7 5.3 3.6E-04 1.8E-04 0.03

Mutations 
set

Identified by 
the method

In no 
list

In 
any 
list



Table 2 Supplementary Note 1. Decision made on all genes discovered in the primary and 
metastasis cohort.

SYMBOL COHORT SET DECISION SYMBOL COHORT SET DECISION
ABL2 TCGA MOSAIC IN COMPENDIUM MYO5A HMF MOSAIC IN COMPENDIUM
AFF3 TCGA MOSAIC IN COMPENDIUM NOTCH1 HMF FULL IN COMPENDIUM
AFF3 TCGA FULL IN COMPENDIUM PABPC1 TCGA FULL IN COMPENDIUM
APC HMF MUTECT IN COMPENDIUM PPFIBP1 TCGA MOSAIC IN COMPENDIUM
ARID2 HMF MOSAIC IN COMPENDIUM PPM1D HMF FULL IN COMPENDIUM
ARID2 HMF MUTECT IN COMPENDIUM PPM1D HMF MOSAIC IN COMPENDIUM
ASXL1 HMF FULL IN COMPENDIUM PPM1D HMF MUTECT IN COMPENDIUM
ASXL1 HMF MOSAIC IN COMPENDIUM PPM1D TCGA MOSAIC IN COMPENDIUM
ASXL1 HMF MUTECT IN COMPENDIUM PPM1D TCGA FULL IN COMPENDIUM
ASXL1 TCGA MOSAIC IN COMPENDIUM PTPRD HMF MOSAIC IN COMPENDIUM
ASXL1 TCGA FULL IN COMPENDIUM RET HMF MOSAIC IN COMPENDIUM
ATE1 HMF MOSAIC IN COMPENDIUM SDHAF2 TCGA FULL IN COMPENDIUM
ATM HMF FULL IN COMPENDIUM SF3B1 HMF MOSAIC IN COMPENDIUM
ATM HMF MOSAIC IN COMPENDIUM SF3B1 HMF MUTECT IN COMPENDIUM
ATM HMF MUTECT IN COMPENDIUM SMC1A HMF MUTECT IN COMPENDIUM
ATM TCGA MOSAIC IN COMPENDIUM SRSF2 TCGA MOSAIC IN COMPENDIUM
ATM TCGA FULL IN COMPENDIUM SRSF2 TCGA FULL IN COMPENDIUM
BAX HMF FULL IN COMPENDIUM STAT3 TCGA FULL IN COMPENDIUM
CHEK2 HMF MOSAIC IN COMPENDIUM TET2 HMF FULL IN COMPENDIUM
CHEK2 TCGA MOSAIC IN COMPENDIUM TET2 HMF MOSAIC IN COMPENDIUM
CHEK2 TCGA FULL IN COMPENDIUM TET2 HMF MUTECT IN COMPENDIUM
CUX1 HMF MUTECT IN COMPENDIUM TET2 TCGA MOSAIC IN COMPENDIUM
DNM2 HMF FULL IN COMPENDIUM TET2 TCGA FULL IN COMPENDIUM
DNMT3A HMF FULL IN COMPENDIUM TFRC HMF FULL IN COMPENDIUM
DNMT3A HMF MOSAIC IN COMPENDIUM TP53 HMF FULL IN COMPENDIUM
DNMT3A HMF MUTECT IN COMPENDIUM TP53 HMF MOSAIC IN COMPENDIUM
DNMT3A TCGA MOSAIC IN COMPENDIUM TP53 HMF MUTECT IN COMPENDIUM
DNMT3A TCGA FULL IN COMPENDIUM TP53 TCGA MOSAIC IN COMPENDIUM
ERCC2 TCGA FULL IN COMPENDIUM TP53 TCGA FULL IN COMPENDIUM
FOXP1 HMF MOSAIC IN COMPENDIUM TP63 HMF MOSAIC IN COMPENDIUM
GNAS TCGA MOSAIC IN COMPENDIUM B4GALT5 TCGA MOSAIC DISCARDED
GNAS TCGA FULL IN COMPENDIUM CDC42BPA TCGA MOSAIC DISCARDED
GNB1 HMF FULL IN COMPENDIUM CDC42BPA TCGA FULL DISCARDED
GNB1 TCGA MOSAIC IN COMPENDIUM FBLN2 HMF FULL DISCARDED
GNB1 TCGA FULL IN COMPENDIUM FNBP1L HMF MOSAIC DISCARDED
JAK2 HMF FULL IN COMPENDIUM RASAL3 HMF MOSAIC DISCARDED
JAK2 HMF MOSAIC IN COMPENDIUM SRCAP HMF MOSAIC DISCARDED
JAK2 TCGA MOSAIC IN COMPENDIUM SRCAP HMF MUTECT DISCARDED
JAK2 TCGA FULL IN COMPENDIUM ZNF334 HMF FULL DISCARDED
KDM5C HMF FULL IN COMPENDIUM ZNF334 HMF MOSAIC DISCARDED
KMT2C HMF FULL IN COMPENDIUM ZNF691 HMF FULL DISCARDED
KMT2C TCGA MOSAIC IN COMPENDIUM ZNF691 HMF MOSAIC DISCARDED
LZTR1 TCGA MOSAIC IN COMPENDIUM ZNF749 HMF FULL DISCARDED
MYD88 TCGA FULL IN COMPENDIUM ZNF749 HMF MOSAIC DISCARDED
MYO5A HMF FULL IN COMPENDIUM



Discovery of CH drivers in panel sequencing data
In many clinically oriented initiatives, a subset of all protein-coding genes in solid tumors has
been sequenced. In some cases, such as the MSK-IMPACT43,44, a paired blood sample has also
been sequenced with the aim of correctly calling tumor somatic mutations. In two recent studies,
the germline variants identified across 24,146 such blood samples have been filtered with those
appearing in the tumor sample from the same patient, thus yielding likely blood somatic
mutations12,45.

We hypothesized that the same rationale of discovery of clonal hematopoiesis driver genes
presented here could be applied to this cohort (targeted cohort). The genes in the MSK-IMPACT
panel have been selected because they are involved in tumor development; most are included
in the CGC. In the two aforementioned studies, blood somatic mutations affecting them have
been taken as evidence of clonal hematopoiesis. We propose that identifying signals of positive
selection in this cohort would fulfill at least two main objectives. First, due to the number of
samples included in the cohort, and thus the high statistical power, the discovery would most
likely extend the list of drivers of clonal hematopoiesis. Second, given the nature of the genes
included in the panel, it would identify cancer driver genes that do not show any evidence to be
drivers of clonal hematopoiesis, and thus identified blood mutations may be passenger
mutations.

Unlike the discovery described for the metastasis and the primary cohorts, the “panel discovery”
of CH drivers is limited to the 468 genes included in the MSK-IMPACT panel. Furthermore, only
driver discovery methods that rely on local background models --i.e., capable of computing a
background model from the fragment of the genome covered by the panel-- could be employed.
We thus applied OncodriveFML26, OncodriveCLUSTL36, dNdSscv35 (without the mutation rate
covariates, as described in ref23), and SMRegions37 to the blood somatic mutations identified in
these 468 genes across 24,146 samples.

Forty-four drivers of clonal hematopoiesis are identified by at least one method in the targeted
cohort discovery (Fig. 4a Supplementary Note 1). Twenty-eight panel CH drivers are identified
by more than one method. Twenty-eight of the panel CH driver genes are only identified across
the targeted cohort (Fig. 2b of the main paper). Interestingly, 9 genes included in the panel are
not identified as CH drivers by the targeted cohort discovery, but are identified either in the
primary (4) or in the metastasis (5) cohorts (Fig. 4b Supplementary Note 1). This supports the
notion that an extensive effort, including new cohorts is the path to the discovery of the
compendium of drivers of clonal hematopoiesis, as has been demonstrated in cancer19.

One of the main outcomes of this work is an unbiased snapshot of the compendium of clonal
hematopoiesis driver genes, presented in Supplementary Table 2 of the main paper and
available at www.intogen.org/ch. This compendium is integrated by the genes that exhibit
signals of positive selection in their mutational patterns in at least one of the three cohorts
analyzed in the paper (whole-exome primary, whole-genome metastasis, and targeted).
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Figure 4 Supplementary Note 1. Clonal hematopoiesis drivers identified across targeted
sequenced blood samples.
(a) Genes with signals of positive selection (identified by 4 methods as shown in the heatmap) across
blood samples probed with the MSK-IMPACT panel (targeted cohort).
(b) Some genes included in the MSK-IMPACT panel only exhibit signals of positive selection in the
Primary or Metastasis cohorts (represented by the Venn diagram). This illustrates the importance of
carrying out a discovery of CH drivers across cohorts.

Interestingly, although genes in the MSK-IMPACT panels have been selected due to their
involvement in tumorigenesis, most of them (424) show no signals of positive selection across
these 24,146 blood samples. This includes some genes that appear recurrently mutated in the
cohort. For example, EGFR or MED12 well known cancer genes mutated in 58 and 45 blood
samples (respectively) in the targeted cohort do not show any signal of positive selection in their
mutation patterns. These mutations therefore do not have any support of being drivers of clonal
hematopoiesis, and the mutations detected in blood might just be passenger mutations

This observation has important implications for the detection of CH through the identification of
somatic mutations in these genes across blood samples. Traditionally, the occurrence of CH in a
blood sample is detected either through a mutation affecting a CH driver, or because a number
of hematopoiesis mutations are identified in the sample (both approaches are illustrated in Fig.
4g of the main paper). The identification of a mutation in a cancer driver gene which is not a CH
driver (in the absence of a critical mass of hematopoiesis mutations detected in the same
sample) may lead to a spurious classification of the sample as CH.

Evidences supporting the genes in the compendium
Reassuringly, the discovery of CH driver genes described in the main manuscript identified all
well known CH-related genes (Fig. 2 Supplementary Note 1 and of the main manuscript).
Moreover, 26 of the newly discovered CH drivers are known to be involved --when mutated-- in
the development of myeloid malignancies (Fig. 2 of the main manuscript). For the majority of the
remaining genes in the compendium, we found at least one report in the literature supporting
their involvement in CH.

We also determined that the age of donors within the primary cohort --that is, those who have
not been exposed to cytotoxic treatments-- significantly correlates with the presence of CH
mutations in these genes (Supp. Fig. 2b). Interestingly, a study of the relationship between the
different tumor types represented in this cohort and the presence of CH showed a lack of
significant relationships with most malignancies, with the exception of thymomas, and smaller
effects across breast and bladder tumors (Supp. Fig. 2c). This is probably an indication that the
donors in this cohort reflect the underlying risk of CH across the general population.

Significance of the compendium of CH drivers
As pointed out in the Discussion of the main paper, the availability of the compendium of clonal
hematopoiesis driver genes is significant in at least two regards. First, the compendium of CH
drivers will help advance the research on the molecular mechanisms underlying clonal
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hematopoiesis faced with different evolutionary constraints (cytotoxic treatments, tobacco
carcinogens, etc). Second, knowing the compendium of CH drivers will improve the diagnosis of
the condition across human donors, by helping distinguish mutations that more likely drive CH in
a donor’s blood sample. One can easily imagine that the completion of the compendium will
lead to the development of targeted sequencing panels focused on CH drivers. These would
guarantee sequencing relevant genes --and, eventually other genomic elements-- at higher
depth, thus discovering the condition as early as possible in population screenings.

A second step to take in the direction of identifying CH-driving mutations remains. As the study
of tumorigenesis has revealed, not all mutations in CH driver genes will be equally capable of
driving clonal hematopoiesis. This is already apparent in the distribution of observed mutations
along the sequence of CH drivers presented in Figure 3 of the main paper. The example of
mutations affecting PPM1D is very eloquent in this sense. In clonal hematopoiesis cases,
mutations in this gene tend to be truncating, resulting in the loss of a degron located in the
C-terminal portion of the protein, thus leading to its abnormal stabilization which results in
decreased levels of the active TP53 protein product46–49.

It is important to consider that some of the mutations identified in the genes within the
compendium --even known CH-related genes-- may not be drivers of CH. For example, while
truncating mutations affecting PPM1D (see Fig. 4c Supplementary Note 1) which abrogate the
degron from the sequence of the protein are known to trigger CH. However, the same has not
yet been demonstrated for non-synonymous mutations along the protein sequence. Actually, the
same is true in the case of mutations observed in cancer genes in tumorigenesis: at least a
fraction of them may be passengers. To assess whether this issue caused an important
overestimation of the cases of CH across the metastasis cohort, we repeated the analysis
shown in Figure 4g counting only mutations considered to be canonical in CH, according to a
recent study12. While counting all protein affecting mutations in known CH genes yields 7% of
patients with CH in the metastasis cohort (Fig. 4g of the main paper), using the stricter definition
in the aforementioned study yields 6.7%. The overestimation is thus, in any case, very small.
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Supplementary Figure 1. Identification of blood somatic mutations across the primary
cohort.
(a) Flowchart of the reverse calling and filtering approach in its application to the primary cohort.
In this case only one filter of the set of mutations is applied. Therefore, two sets of somatic
mutations are derived from the reverse calling pipeline: the full set and the mosaic set.
(b) Tri-nucleotide profiles of mutational signatures extracted from the somatic mutations in the
metastatic cohort (N=3,785 samples).
(c) Distribution of the activity of different mutational signatures active in the metastasis cohort
across samples with different burden of somatic mutations.
(d) Significant positive correlation between the number of phased mutations (yielded by the
MosaicForecast algorithm) and the age of donors in the metastasis cohort. (The same general
trend is shown in Fig. 1e for HSC signature mutations.)
(e) Lack of significant positive correlation between the number of mutations contributed by
different mutational signatures (except the corresponding to the HSC signature, depicted in Fig.
1e) and the age of donors in the metastasis cohort.
Source data for panels c, d and e are provided as Source Data files.
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Supplementary Figure 2. The compendium of CH driver genes.
a) Top panel: association between age of patients in the primary cohort and mutation of CH
genes in the compendium excluding the list of known CH genes. The significance positive
association supports the involvement of the mutations in these novel genes in CH. Bottom
panel: association between mutations in individual selected CH drivers (with enough mutations
to carry out the regression across the primary cohort) and age. Mutations in most genes are
positively associated with age, as expected if they are involved in the development of CH.
Significant associations are marked by a black circle surrounding the dot. Yellow: known CH
genes. The bars represent the 95% confidence interval of the regression coefficients. The
p-values correspond to the results of the logistic regression.
b) Top panel: fraction of donors within each cancer type of the primary cohort with CH
mutations. Bottom panel: results of regression of CH on the tumor type (and age) of donors
across the primary cohort. The positive effect of age on the development of CH is recapitulated.
A significant strong positive relationship between the presence of thymomas (and smaller
negative significant effects for breast and bladder tumors) and CH is observed. No significant
relationship is appreciable for most tumor types, probably highlighting that the donors in the
cohort reflect the underlying risk of CH in the general population. The bars represent the 95%
confidence interval of the regression coefficients. The p-values correspond to the results of the
logistic regression.
c) Each plot presents the distribution of variant allele frequency (VAF) of mutations in genes
identified as CH drivers in the primary (top) and metastasis (bottom) cohorts. Known CH drivers,
known myeloid drivers, and novel CH drivers are labeled with different colors (bottom dots), as
defined in Figure 2. In the boxplots, the box represents the second and third quartiles,
separated by a line indicating the median; the whiskers represent the minimum and maximum of
the distribution excluding outliers.
Source data for panels a, b and c are provided as Source Data files.
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Supplementary Figure 3. Distribution of blood and tumor mutations in CH driver genes.
(a) Distribution of blood somatic mutations affecting seven selected genes in the CH drivers
compendium (in addition to those presented in Fig. 3b) across donors of the primary and
metastasis cohorts (above the horizontal axis) in comparison to those observed in the same
genes across 28076 tumors19 (below the horizontal axis).
Source data are provided as Source Data files.
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Supplementary Figure 4. Distribution of blood mutations in CH driver genes across
different cohorts.
(a) Distribution of blood somatic mutations along the sequence of 15 CH driver genes
(presented in Fig. 3b and Supp. Fig. 3) across the primary and metastasis cohorts (above the
x-axis) compared to those identified across the targeted cohort (below the x-axis). Proportions
with respect to the total number of mutations are shown across the targeted cohort, while the
absolute numbers are illustrated for primary and metastasis cohorts.
(b) Fraction of truncating mutations in CH driver genes with 10 or more mutations across the
primary and metastatic (x-axis) and the targeted (y-axis) cohorts. The p-value corresponds to
the Person’s correlation coefficient.
Source data for panels a and b are provided as Source Data files.
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Supplementary Figure 5. Detection of clonal hematopoiesis across donors.
(a) Mutation co-occurrence across pairs of CH driver genes.
(b) Distribution of the number of hematopoiesis mutations of donors with mutations in a CH
driver gene identified in the primary or the metastasis cohort (N=420) and those with no
mutation in CH driver genes (N=3247) across samples from the metastasis cohort. The p-value
of the one-tailed Mann-Whitney test is annotated. In the boxplots, the box represents the
second and third quartiles, separated by a line indicating the median; the whiskers represent the
minimum and maximum of the distribution excluding outliers.
(c) Comparison of the somatic mutations and germline variants identified by the reverse calling
approach and a traditional one-sample variant calling across blood samples of donors in the
metastasis cohort. Analogous to Figure 1c, but including more known and discovered CH driver
genes. The variant allele frequency of mutations affecting KDM5C (an X-linked gene) identified
in male donors are divided by 2 to correct for their single X dose.
(d) Number of donors (above the bars) in the primary cohort with clonal hematopoiesis
recognizable through different criteria. Similar to Figure 4g, but only with the first four sets of
donors. The fifth set is not available due to the extreme difficulty of extracting a mutational
signature with the low number of mutations provided by whole-exome sequencing.
(e) Number of donors in the metastasis (left) and primary (right) cohorts with clonal
hematopoiesis recognizable through different criteria. Similar to Figure 4g and Supplementary
Figure 5d, but restricting blood somatic mutations to those with VAF<=0.4. The numbers are
almost identical, showing that there are very few cases in which mutations with VAF ranging
between 0.4 and 0.5 affect genes of the compendium.
Source data for panels a, b, c, d and e are provided as Source Data files.
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Supplementary Figure 6. Non-coding mutations in clonal hematopoiesis.
(a) Quantile-quantile plots presenting the observed and expected distribution of p-values
resulting from the analysis of blood somatic mutations overlapping non-coding genomic
elements across the metastasis cohort with three state-of-the-art non-coding driver discovery
methods. The names of the most significant non-coding genomic elements are annotated in red
in the plot. The empirical or non-parametric tests implemented by each of the methods are
described in their respective articles.
(b) Example of a mutation that potentially disrupts the binding site of an expressed transcription
factor within an enhancer element in the genome of a donor in the metastasis cohort.
Enhancers are obtained from a manually curated database (geneHancer) and bear marks of
transcriptional activity (i.e, active enhancers) in cells with phenotype close to HSC. Other
possible affected transcription factors are also labeled.
(c) Example of a mutation that potentially creates a binding site for an expressed transcription
factor in one enhancer element. Other possible affected transcription factors are also labeled.
Source data are provided as Source Data files.
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