
Supplementary materials

1. Robustness to source image quality

Here we present the robustness test results to the quality degradations of source images, for the 5- and 9-spoke under-sampling scenarios of real-time imaging. We first present the DICE coefficients and center-of-mass errors (COMEs) of the cardiac dataset in Fig. S-1. The quality of the prior images was degraded by removing 20%, 50%, and 80% of radial spokes from the fully-sampled k-space readout trajectory. For comparison, we also present the metrics between the fully-sampled source and target images. The results of KS-RegNet using fully-sampled source images are also included for comparison.

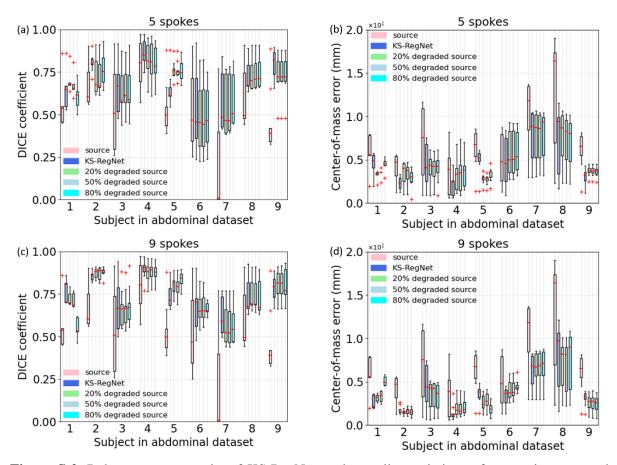

While there is a downward trend of registration accuracy for most of the subjects as the degradation factor increases, no significant reduction of registration accuracy is observed.

Figure S-1. Robustness test results of KS-RegNet to the quality variations of source images on the cardiac dataset. The spoke numbers are given in the subfigure title. The quality of source images was controlled by under-sampling their k-space data by 20%, 50% and 80%, respectively. For comparison, the first and second boxplots of each subject show the metrics between the source and target images, and the results of KS-RegNet using fully-sampled, non-degraded prior images, respectively.

Figure S-2 presents the robustness test results on the abdominal dataset. The results show a similar trend as the cardiac dataset. From Figs. S-1 and S-2, we see that the performance of KS-RegNet is insensitive to the

source image quality degradations in both cardiac and abdominal studies, which demonstrates the robustness of KS-RegNet to image quality variations of the source/prior images.

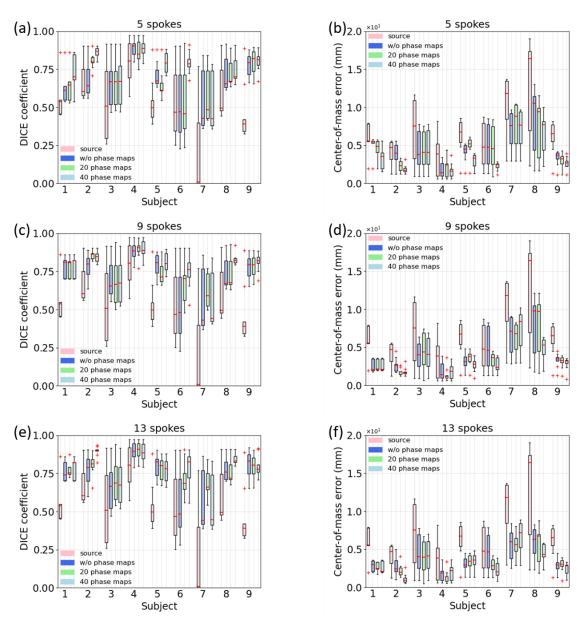
Figure S-2. Robustness test results of KS-RegNet to the quality variations of source images on the abdominal dataset. The spoke numbers are given in the subfigure title. The quality of source images was controlled by under-sampling their k-space data by 20%, 50% and 80%, respectively. For comparison, the first and second boxplots of each subject show the metrics between the source and target images, and the results of KS-RegNet using fully-sampled, non-degraded prior images, respectively.

Tables S-1 and S-2 summarize the mean (±s.d.) DICE coefficient and COME of the robustness tests on the cardiac and abdominal datasets, respectively. We also performed Wilcoxon signed-rank tests between the results of KS-RegNet with and without degraded source images. The p-values of the tests are also presented in the Tables. Although some tests appear statistically significant, the actual metric differences are very limited.

Table S-1. Mean (\pm s.d.) DICE coefficients, COME, and Wilcoxon signed-rank test results on the cardiac dataset. The Wilcoxon sign-rank tests are between the results of KS-RegNet with and without degraded source images.

Number		Mean (±s.d.)	p-value	
of	Degradation factor	DICE coefficient	COME	DICE coefficient	COME
spokes			(mm)		
5	20%	0.884 ± 0.041	1.39±1.18	0.291	0.060
	50%	0.883 ± 0.040	1.41±1.19	0.001	0.028
	80%	0.876 ± 0.038	1.40 ± 1.09	< 10 ⁻⁴	0.007
9	20%	0.891±0.035	1.38±1.09	0.814	0.374
	50%	0.889 ± 0.036	1.40 ± 1.09	0.237	0.472
	80%	0.879 ± 0.037	1.40 ± 1.10	< 10 ⁻⁴	0.049
13	20%	0.897±0.033	1.13±0.91	0.031	0.257
	50%	0.896 ± 0.033	1.16 ± 0.89	0.549	0.526
	80%	0.884 ± 0.034	1.22 ± 0.90	< 10 ⁻⁴	0.001

Table S-2. Mean (±s.d.) DICE coefficients, COME, and Wilcoxon signed-rank test results on the abdominal dataset. The Wilcoxon sign-rank tests are between the results of KS-RegNet with and without degraded source images.


Number	.6	Mean (±s.d.)	p-value	
of spokes	Degradation factor	DICE coefficient	COME (mm)	DICE coefficient	COME
spokes	20%	0.679±0.162	4.69±2.62	0.017	0.289
5	50%	0.681 ± 0.160	4.63 ± 2.58	0.045	0.502
	80%	0.682 ± 0.154	4.75 ± 2.46	0.151	0.224
9	20%	0.747±0.127	3.66±2.36	0.702	0.104
	50%	0.745 ± 0.128	3.69 ± 2.35	0.721	0.177
	80%	0.741 ± 0.138	3.82 ± 2.58	0.836	0.456
13	20%	0.754±0.123	3.41±2.18	0.107	0.084
	50%	0.757 ± 0.119	3.40 ± 2.18	0.027	0.107
	80%	0.748 ± 0.110	3.58 ± 2.13	0.052	0.026

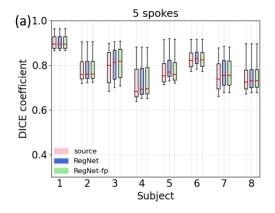
2. Data augmentation using the synthesized phase maps

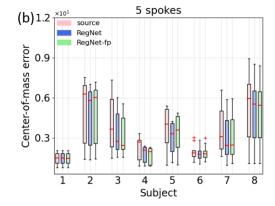
Since the real-valued MR images in the abdominal dataset were augmented by synthesized phase maps to create complex-valued images, the network performance can depend on the degree of the phase-map augmentation. Here we compared the liver tumor registration accuracy for KS-RegNet trained with different degrees of phase map augmentation. Three scenarios of augmentation were considered: without the phase-map augmentation, with 20 phase maps, and with 40 phase maps. Figure S-3 presents the DICE coefficients and COMEs of KS-RegNet with various numbers of synthesized phase maps at three different under-sampling factors, and Table S-3 summarizes the mean (±s.d.) and p-values of the Wilcoxon signed-rank test between different degrees of augmentation.

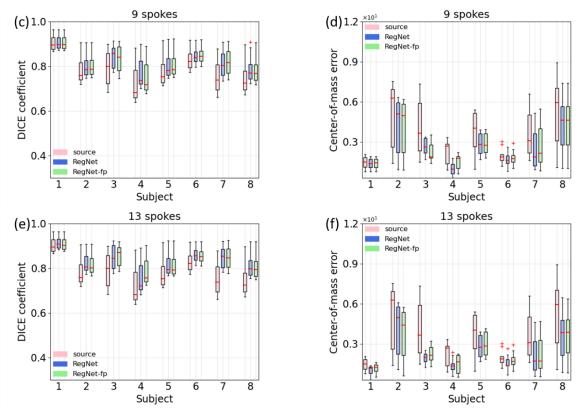
The results show that the registration accuracy improves with more phase maps in the data augmentation, and except for the 13-spoke case, the p-values between the cases of the 20 and 40 phase maps are smaller

than 0.05. Furthermore, the 5-spoke trajectory is most benefited from the increase of the phase maps, which may indicate the importance of phase augmentation for severely under-sampled cases.

Figure S-3. Comparison of liver tumor registration accuracy with various numbers of synthesized phase maps used in the data augmentation, at three under-sampling factors. The spoke numbers are given in the subfigure titles.


Table S-3. Mean (±s.d.) DICE coefficients and COMEs of different levels of phase-map augmentation, and
p-values of the Wilcoxon signed-rank test between the three levels of augmentation.


Number of spokes	Metric	w/o phase maps	20 phase maps	40 phase maps	p-value (0-20)	p-value (0-40)	p-value (20-40)
5	DICE	0.683±0.175	0.694±0.167	0.755±0.146	0.024	< 10 ⁻³	< 10 ⁻³
	COME (mm)	4.79 ± 2.97	4.61 ± 2.91	3.72 ± 2.56	0.068	$< 10^{-3}$	< 10 ⁻³
9	DICE	0.719±0.171	0.751±0.128	0.771±0.137	0.051	$< 10^{-3}$	0.030
	COME (mm)	4.22 ± 2.80	3.91 ± 2.72	3.43 ± 2.17	0.038	0.001	0.008
13	DICE	0.727±0.168	0.766 ± 0.106	0.776±0.142	0.007	0.006	0.489
	COME (mm)	3.83 ± 2.20	3.48 ± 2.00	3.28 ± 2.04	0.005	0.034	0.271


3. RegNet with fully-sampled source images

Here we compare the registration accuracy of RegNet with and without accessing fully-sampled source images. The ablation study of KS-RegNet shows that, when the input channels contain the fully-sampled source images, the registration accuracy improves and the model are more robust. However, it is unclear whether the accessibility of fully-sampled source image benefits RegNet. The RegNet variant with accessing to the fully-sampled prior is called RegNet-fp. Figure S-4 compares the registration accuracy of RegNet and RegNet-fp for the subjects in the cardiac dataset. Table S-4 summarizes the mean (±s.d.) DICE coefficients and COMEs and the p-values of the Wilcoxon signed-rank test between the two networks.

The 13-spoke case shows a minute improvement of the registration accuracy with p-values < 0.05 when the network is able to access the fully-sampled source image. On the other hand, for the 5- and 9-spoke cases, one can see the registration accuracy even slightly decreases for RegNet-fp. Since the prior information is not utilized to define the similarity loss during the network training, it seems that RegNet-fp is unable to fully utilize this prior information to improve the registration accuracy. Moreover, as the image quality between the fully- and under-sampled source images diverts apart, this additional input channel of high-quality source image seems potentially confusing the registration network when the sampling ratio is very low (5- and 9- spokes).

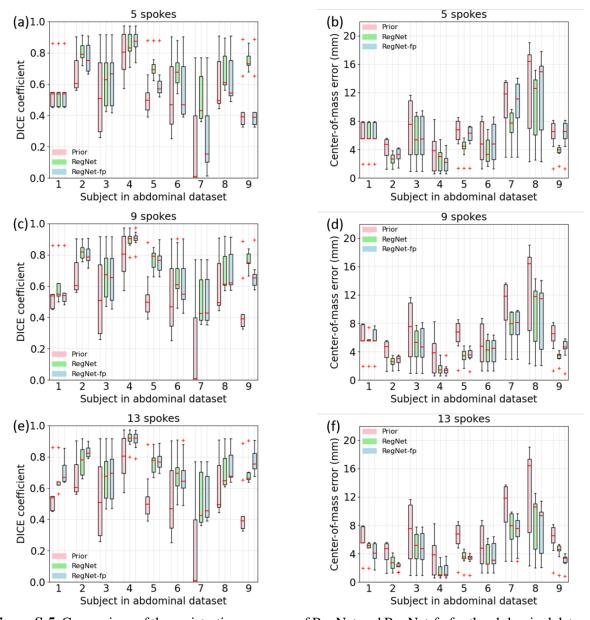


Figure S-4. Comparison of the registration accuracy of RegNet and RegNet-fp for the cardiac dataset. RegNet-fp stands for the RegNet with fully-sampled prior images as additional network inputs.

Table S-4. Mean (±s.d.) DICE coefficients and COMEs of RegNet and RegNet-fp for the subjects in the cardiac dataset, and p-values of the Wilcoxon signed-rank test between the two variant of RegNet.

Number of spokes	Metric	RegNet	RegNet-fp	p-value
5	DICE	0.797 ± 0.051	0.796 ± 0.014	0.822
	COME (mm)	1.82 ± 1.85	1.83±1.86	0.426
0	DICE	0.821 ± 0.040	0.819 ± 0.013	0.886
9	COME (mm)	1.61±1.56	1.62 ± 1.54	0.341
13	DICE	0.835 ± 0.042	0.836 ± 0.033	0.001
15	COME (mm)	1.49±1.41	1.52±1.392	0.032

Figure S-5 presents the liver tumor registration accuracy of RegNet and RegNet-fp, and the mean (\pm s.d.) DICE coefficients and COMEs are summarized in Table S-5. Like the cardiac dataset, RegNet-fp has better registration accuracy for the 13-spoke case, but the registration error increases when the under-sampling factor increases for some cases (5- and 9- spokes).

Figure S-5. Comparison of the registration accuracy of RegNet and RegNet-fp for the abdominal dataset.

Table S-5. Mean (±s.d.) DICE coefficients and COMEs of RegNet and RegNet-fp for the subjects in the abdominal dataset, and p-values of the Wilcoxon signed-rank test between the two variant of RegNet.

abdominar dataset, and p varies of the vineonon signed rank test between the two variant of negrees.					
Number of spokes	Metric	RegNet	RegNet-fp	p-value	
	DICE	0.693±0.151	0.594 ± 0.228	< 10 ⁻³	
3	COME (mm)	5.14 ± 3.35	6.30 ± 4.22	< 10 ⁻³	
0	DICE	0.713±0.156	0.692±0.163	< 10 ⁻³	
9	COME (mm)	4.62 ± 3.23	4.78 ± 3.19	0.058	
12	DICE	0.712±0.149	0.735±0.145	< 10 ⁻³	
13	COME (mm)	4.54 ± 2.93	4.17 ± 2.72	< 10 ⁻³	