Supplementary materials

1. Robustness to source image quality

Here we present the robustness test results to the quality degradations of source images, for the 5- and 9-
spoke under-sampling scenarios of real-time imaging. We first present the DICE coefficients and center-
of-mass errors (COMES) of the cardiac dataset in Fig. S-1. The quality of the prior images was degraded
by removing 20%, 50%, and 80% of radial spokes from the fully-sampled k-space readout trajectory. For
comparison, we also present the metrics between the fully-sampled source and target images. The results
of KS-RegNet using fully-sampled source images are also included for comparison.

While there is a downward trend of registration accuracy for most of the subjects as the degradation factor
increases, no significant reduction of registration accuracy is observed.
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Figure S-1. Robustness test results of KS-RegNet to the quality variations of source images on the
cardiac dataset. The spoke numbers are given in the subfigure title. The quality of source images was
controlled by under-sampling their k-space data by 20%, 50% and 80%, respectively. For comparison,
the first and second boxplots of each subject show the metrics between the source and target images, and
the results of KS-RegNet using fully-sampled, non-degraded prior images, respectively.

Figure S-2 presents the robustness test results on the abdominal dataset. The results show a similar trend as
the cardiac dataset. From Figs. S-1 and S-2, we see that the performance of KS-RegNet is insensitive to the



source image quality degradations in both cardiac and abdominal studies, which demonstrates the
robustness of KS-RegNet to image quality variations of the source/prior images.
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Figure S-2. Robustness test results of KS-RegNet to the quality variations of source images on the
abdominal dataset. The spoke numbers are given in the subfigure title. The quality of source images was
controlled by under-sampling their k-space data by 20%, 50% and 80%, respectively. For comparison,
the first and second boxplots of each subject show the metrics between the source and target images, and
the results of KS-RegNet using fully-sampled, non-degraded prior images, respectively.

Tables S-1 and S-2 summarize the mean (ts.d.) DICE coefficient and COME of the robustness tests on the
cardiac and abdominal datasets, respectively. We also performed Wilcoxon signed-rank tests between the
results of KS-RegNet with and without degraded source images. The p-values of the tests are also presented
in the Tables. Although some tests appear statistically significant, the actual metric differences are very
limited.



Table S-1. Mean (s.d.) DICE coefficients, COME, and Wilcoxon signed-rank test results on the cardiac
dataset. The Wilcoxon sign-rank tests are between the results of KS-RegNet with and without degraded
source images.

Number Mean (%s.d.) p-value
of Degradation factor DICE coefficient COME DICE coefficient COME
spokes (mm)
20% 0.884+0.041 1.39+1.18 0.291 0.060
5 50% 0.883+0.040 1.41+1.19 0.001 0.028
80% 0.876+0.038 1.40+1.09 <10* 0.007
20% 0.891+0.035 1.38+£1.09 0.814 0.374
9 50% 0.889+0.036 1.40+1.09 0.237 0.472
80% 0.879+0.037 1.40+1.10 <10* 0.049
20% 0.897+0.033 1.13+0.91 0.031 0.257
13 50% 0.896+0.033 1.16+0.89 0.549 0.526
80% 0.884+0.034 1.22+0.90 <10* 0.001

Table S-2. Mean (zs.d.) DICE coefficients, COME, and Wilcoxon signed-rank test results on the abdominal
dataset. The Wilcoxon sign-rank tests are between the results of KS-RegNet with and without degraded
source images.

Number Mean (+s.d.) p-value
of Degradation factor DICE coefficient COME DICE coefficient COME
spokes (mm)
20% 0.679+0.162 4.69+2.62 0.017 0.289
5 50% 0.681+0.160 4.63+2.58 0.045 0.502
80% 0.682+0.154 4.752.46 0.151 0.224
20% 0.747+0.127 3.66+2.36 0.702 0.104
9 50% 0.745+0.128 3.69+2.35 0.721 0.177
80% 0.741+0.138 3.82+2.58 0.836 0.456
20% 0.754+0.123 3.41+2.18 0.107 0.084
13 50% 0.757+0.119 3.40+2.18 0.027 0.107
80% 0.748+0.110 3.58+2.13 0.052 0.026

2. Data augmentation using the synthesized phase maps

Since the real-valued MR images in the abdominal dataset were augmented by synthesized phase maps to
create complex-valued images, the network performance can depend on the degree of the phase-map
augmentation. Here we compared the liver tumor registration accuracy for KS-RegNet trained with
different degrees of phase map augmentation. Three scenarios of augmentation were considered: without
the phase-map augmentation, with 20 phase maps, and with 40 phase maps. Figure S-3 presents the DICE
coefficients and COMEs of KS-RegNet with various numbers of synthesized phase maps at three different
under-sampling factors, and Table S-3 summarizes the mean (£s.d.) and p-values of the Wilcoxon signed-
rank test between different degrees of augmentation.

The results show that the registration accuracy improves with more phase maps in the data augmentation,
and except for the 13-spoke case, the p-values between the cases of the 20 and 40 phase maps are smaller



than 0.05. Furthermore, the 5-spoke trajectory is most benefited from the increase of the phase maps, which
may indicate the importance of phase augmentation for severely under-sampled cases.
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Figure S-3. Comparison of liver tumor registration accuracy with various numbers of synthesized phase
maps used in the data augmentation, at three under-sampling factors. The spoke numbers are given in
the subfigure titles.



Table S-3. Mean (%s.d.) DICE coefficients and COMEs of different levels of phase-map augmentation, and
p-values of the Wilcoxon signed-rank test between the three levels of augmentation.
Number
of Metric
spokes

wi/o phase 20 phase 40 phase p-value p-value p-value
maps maps maps (0-20) (0-40)  (20-40)

DICE 0.683+0.175 0.694+0.167 0.755+0.146  0.024 <10% <103

° COME (mm)  4.79+2.97 4.61+2.91 3.72+2.56 0.068 <103 <103
9 DICE 0.719+0.171 0.751+0.128 0.771+0.137 0.051 <10 0.030

COME (mm)  4.22+2.80 3.91+2.72 3.43+2.17 0.038 0.001 0.008
13 DICE 0.727+£0.168 0.766+0.106 0.776+0.142  0.007 0.006 0.489

COME (mm)  3.83+2.20 3.48+2.00 3.28+2.04 0.005 0.034 0.271

3. RegNet with fully-sampled source images

Here we compare the registration accuracy of RegNet with and without accessing fully-sampled source
images. The ablation study of KS-RegNet shows that, when the input channels contain the fully-sampled
source images, the registration accuracy improves and the model are more robust. However, it is unclear
whether the accessibility of fully-sampled source image benefits RegNet. The RegNet variant with
accessing to the fully-sampled prior is called RegNet-fp. Figure S-4 compares the registration accuracy of
RegNet and RegNet-fp for the subjects in the cardiac dataset. Table S-4 summarizes the mean (xs.d.) DICE
coefficients and COMEs and the p-values of the Wilcoxon signed-rank test between the two networks.

The 13-spoke case shows a minute improvement of the registration accuracy with p-values < 0.05 when the
network is able to access the fully-sampled source image. On the other hand, for the 5- and 9-spoke cases,
one can see the registration accuracy even slightly decreases for RegNet-fp. Since the prior information is
not utilized to define the similarity loss during the network training, it seems that RegNet-fp is unable to
fully utilize this prior information to improve the registration accuracy. Moreover, as the image quality
between the fully- and under-sampled source images diverts apart, this additional input channel of high-

guality source image seems potentially confusing the registration network when the sampling ratio is very
low (5- and 9- spokes).
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Figure S-4. Comparison of the registration accuracy of RegNet and RegNet-fp for the cardiac dataset.
RegNet-fp stands for the RegNet with fully-sampled prior images as additional network inputs.

Table S-4. Mean (£s.d.) DICE coefficients and COMEs of RegNet and RegNet-fp for the subjects in the
cardiac dataset, and p-values of the Wilcoxon signed-rank test between the two variant of RegNet.

Number of spokes Metric RegNet RegNet-fp p-value
5 DICE 0.797+0.051 0.796+0.014 0.822
COME (mm) 1.82+1.85 1.83+1.86 0.426
9 DICE 0.821+0.040 0.819+0.013 0.886
COME (mm) 1.61+1.56 1.62+1.54 0.341
13 DICE 0.835+0.042 0.836+0.033 0.001
COME (mm) 1.49+1.41 1.52+1.392 0.032

Figure S-5 presents the liver tumor registration accuracy of RegNet and RegNet-fp, and the mean (%s.d.)
DICE coefficients and COMEs are summarized in Table S-5. Like the cardiac dataset, RegNet-fp has better
registration accuracy for the 13-spoke case, but the registration error increases when the under-sampling
factor increases for some cases (5- and 9- spokes).
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Figure S-5. Comparison of the registration accuracy of RegNet and RegNet-fp for the abdominal dataset.

Table S-5. Mean (zs.d.) DICE coefficients and COMEs of RegNet and RegNet-fp for the subjects in the
abdominal dataset, and p-values of the Wilcoxon signed-rank test between the two variant of RegNet.

Number of spokes Metric RegNet RegNet-fp p-value
5 DICE 0.693+0.151 0.594+0.228 <10°

COME (mm) 5.14+3.35 6.30+4.22 <10°%

9 DICE 0.713+0.156 0.692+0.163 <103

COME (mm) 4.62+3.23 4.78+3.19 0.058

13 DICE 0.712+0.149 0.735+0.145 <103
COME (mm) 4.54+2.93 4.17+2.72 <10°%




