#### **Data Supplement:**

**Supplement Table 1:** Demographics of this PROSE-ICD cohort compared to that of the parent PROSE-ICD cohort and published MADIT-II populations (1, 2). Note that left ventricular ejection fraction reported here in PROSE-ICD was that at the time of study enrollment and based on available clinically-indicated echocardiographic, nuclear, CT, catheterization or MRI findings.

|                            | PROSE-ICD<br>Current Cohort<br>(n = 46) | PROSE-ICD<br>Entire Cohort<br>(n = 1177) <sup>1</sup> | MADIT-II<br>(n = 742) <sup>2</sup> |
|----------------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------|
| Age, years                 | 52 ± 13                                 | 61 ± 13                                               | 64 ± 10                            |
| Male Sex, %                | 57                                      | 73                                                    | 84                                 |
| Non-White Race, %          | 26                                      | 43                                                    | 0                                  |
| Smoking History, %         | 52                                      | 67                                                    | 80                                 |
| History of Diabetes, %     | 17                                      | 35                                                    | 33                                 |
| History of Hypertension, % | 48                                      | 63                                                    | 53                                 |
| LV Ejection Fraction, %    | 23 ± 7                                  | 23 ± 8                                                | 23 ± 5                             |
| NYHA Class                 |                                         |                                                       |                                    |
| Class I, %                 | 17                                      | 17                                                    | 35                                 |
| Class II, %                | 43                                      | 43                                                    | 35                                 |
| Class III, %               | 39                                      | 38                                                    | 25                                 |
| Class IV, %                | 0                                       | 1                                                     | 5                                  |
| Ischemic Cardiomyopathy, % | 37                                      | 54                                                    | 100                                |

1 - from Cheng et al. (2013) J Am Heart Assoc (1).

 $^{2}$  – from Moss et al. (2002) N Engl J Med (2).

**Supplement Table 2:** Demographic, co-morbidity, biomarker, MRI, MRS, electrocardiographic and electrophysiology data for study participants split by low and normal ATP.

|    |                                    | ATP <3.4µmol/g             | ATP ≥3.4µmol/g    | D. Value  |
|----|------------------------------------|----------------------------|-------------------|-----------|
|    |                                    | (n = 14)                   | (n=32)            | P-value   |
| D  | emographics                        |                            |                   |           |
|    | Age (years)                        | 53 ± 13                    | 52 ± 14           | 0.90      |
|    | BSA (m <sup>2</sup> )              | 1.92 ± 0.29                | 1.98 ± 0.24       | 0.45      |
|    | Sex                                |                            |                   |           |
|    | Male Sex, n(%)                     | 7 (50)                     | 19 (59)           | 0.56      |
|    | Female Sex, n(%)                   | 7 (50)                     | 13 (41)           | 0.56      |
|    | Race                               |                            |                   |           |
|    | White Race, n(%)                   | 11 (79)                    | 23 (72)           | 0.63      |
|    | Black Race, n(%)                   | 3 (21)                     | 9 (28)            | 0.63      |
|    | NYHA Class, n(%)                   |                            |                   | 0.21      |
|    |                                    | 1 (7)                      | 7 (22)            | 0.23      |
|    |                                    | 5 (36)                     | 15 (47)           | 0.48      |
|    | 111                                | 8 (57)                     | 10 (31)           | 0.098     |
| N  | Nedical History                    |                            |                   |           |
|    | History of Hypertension, n(%)      | 8 (57)                     | 14 (44)           | 0.40      |
|    | History of Diabetes, n(%)          | 5 (36)                     | 3 (9)             | 0.030     |
|    | Smoking History, n(%)              | 8 (57)                     | 16 (50)           | 0.66      |
|    | Hypercholestaremia, n(%)           | 7 (50)                     | 14 (44)           | 0.70      |
|    | Atrial Eibrillation, n(%)          | 5 (36)                     | 5 (16)            | 0.13      |
|    | Left-Bundle Branch Block n(%)      | 5 (36)                     | 6 (19)            | 0.13      |
|    | Ischemic Cardiomyonathy n(%)       | 8 (57)                     | 9 (28)            | 0.061     |
|    | Duration of Cardiomyopathy (years) | 1 7 (0 2-7 9)              | 2 4 (0 7-9 8)     | 0.001     |
| N  | Adjustions                         | 1.7 (0.2-7.5)              | 2.4 (0.7-5.8)     | 0.45      |
|    | Aspirin n(%)                       | 12 (86)                    | 18 (56)           | 0.054     |
|    | B-Blockers n(%)                    | 12 (00)                    | 27 (84)           | 0.034     |
|    | ACEI or ABB n(%)                   | 14 (100)                   | 31 (97)           | 0.50      |
|    | Anti-Arrhythmics n(%)              | 1 (7)                      | 1 (3)             | 0.50      |
|    | Lipid Lowering n(%)                | 9 (64)                     | 14 (44)           | 0.20      |
|    | Spiropolactone n(%)                | 3 (21)                     | 6 (19)            | 0.83      |
|    | Divrotic n(%)                      | 10 (71)                    | 16 (50)           | 0.05      |
|    | Hydralazine n(%)                   | 1 (7)                      | 10 (50)           | 0.18      |
|    | Digovin $p(%)$                     | 2 (21)                     | 6 (10)            | 0.034     |
|    | Aldostarona Inhibitor n(%)         | 2 (21)                     | 6 (19)            | 0.83      |
| 31 |                                    | 5 (21)                     | 0 (19)            | 0.87      |
|    | PCr Concentration (umol/g)         | 5 2 (5 0 <sub>-</sub> 5 7) | 76(60-101)        | 0.0002    |
|    | ATB Concentration (µmol/g)         | 3.2 (3.0-3.7)              | 7.0(0.0-10.1)     | By Dosign |
|    | $Arr Concentration (\mu not/g)$    | $2.7 \pm 0.3$              | $3.0 \pm 1.1$     |           |
|    |                                    | $1.42 \pm 0.34$            | $1.99 \pm 1.12$   | 0.092     |
|    | R useu (/s)                        | U.20 ± U.12                | U.25 ± U.15       | 0.007     |
|    |                                    |                            |                   | 0.0007    |
| -  | amarkara                           | -23.2 (-23.023.1)          | -00.3 (-02.333.8) | 0.0002    |
| В  | hcCPD (mg/L)                       |                            | 1.96 (0.62,4.25)  | 0.20      |
|    |                                    | 2.70 (1.41-4.98)           | 1.00 (0.03-4.35)  | 0.28      |
|    | естк (mL/min/1./3m²)               | 8/.3 ± 34.3                | 88.1 ± 18.3       | 0.92      |
|    | INF-α (pg/mL)                      | 2369 (1999-4329)           | 2319 (1870-3311)  | 0.57      |

| hsIL-6 (pg/mL)                   | 1.61 (1.06-3.00) | 1.19 (0.62-2.71) | 0.31  |
|----------------------------------|------------------|------------------|-------|
| NT-proBNP (pg/mL)                | 2295 (1708-6968) | 1560 (1299-3130) | 0.043 |
| Serum Na (mEq/L)                 | 138 ± 3          | 139 ± 2          | 0.18  |
| Serum Cr (mg/dL)                 | 0.9 (0.7-1.1)    | 0.9 (0.8-1.0)    | 0.99  |
| Serum K (mEq/L)                  | 4.34 ± 0.33      | 4.19 ± 0.35      | 0.17  |
| MRI Measures                     |                  |                  |       |
| LVEDV (mL)                       | 231 ± 65         | 220 ± 49         | 0.51  |
| LVESV (mL)                       | 157 (137-199)    | 142 (125-195)    | 0.49  |
| LVEF (%)                         | 27 ± 10          | 29 ± 8           | 0.37  |
| LV Mass (g)                      | 124 (109-188)    | 126 (111-140)    | 0.61  |
| Electrophysiology                |                  |                  |       |
| Inducible VT/VF, n(%)            | 6 (43)           | 12 (38)          | 0.89  |
| Monomorphic VT at EPS, n(%)      | 5 (36)           | 6 (19)           | 0.27  |
| VT Cycle Length at EPS           | 255 ± 57         | 238 ± 33         | 0.53  |
| 12-lead QRS (ms)                 | 122 (91-146)     | 103 (96-128)     | 0.45  |
| 12-lead QTc (ms)                 | 459 (430-494)    | 438 (410-472)    | 0.078 |
| SAECG – HF QRS (ms)              | 116 (86-149)     | 100 (84-142)     | 0.47  |
| SAECG – RMS last 40ms (mV)       | 24 (14-37)       | 20 (12-36)       | 0.97  |
| SAECG – Duration under 40mV (ms) | 37 (22-56)       | 32 (22-56)       | 0.79  |
| SAECG – HF Noise (mV)            | 0.55 (0.29-0.87) | 0.36 (0.27-0.51) | 0.097 |
| HRV – Max R-R (ms)               | 1054 (832-1220)  | 1180 (1034-1450) | 0.094 |
| HRV – Min R-R (ms)               | 654 (452-774)    | 708 (490-808)    | 0.54  |
| HRV – Average R-R (ms)           | 893 ± 151        | 929 ± 163        | 0.49  |
| HRV – SDNN (ms)                  | 33 (23-99)       | 48 (32-127)      | 0.24  |
| HRV – RMSSD (ms)                 | 26 (11-119)      | 50 (25-178)      | 0.16  |
| HRV – HRV Triangle Index         | 10 (8-12)        | 12 (8-22)        | 0.15  |
| HRV – ULF                        | 56 (1-163)       | 8 (2-20)         | 0.42  |
| HRV – VLF                        | 200 (86-362)     | 111 (52-198)     | 0.095 |
| HRV – LF                         | 125 (65-183)     | 117 (85-167)     | 0.96  |
| HRV – HF                         | 126 ± 106        | 178 ± 89         | 0.10  |
| HRV – LF/HF                      | 0.88 (0.61-1.69) | 0.65 (0.45-1.17) | 0.18  |
| QTv – Max QT (ms)                | 524 ± 67         | 539 ± 94         | 0.63  |
| QTv – Min QT (ms)                | 328 (277-385)    | 336 (281-374)    | 0.92  |
| QTv – Average QT (ms)            | 423 (392-456)    | 417 (381-443)    | 0.68  |
| QTv – SDNN (ms)                  | 29 ± 19          | 30 ± 18          | 0.92  |
| QTv – RMSSD (ms)                 | 39 ± 27          | 36 ± 22          | 0.73  |
| QTv – QTV Triangle Index         | 3.54 (2.82-7.02) | 5.23 (2.95-7.68) | 0.57  |
| QTv – ULF                        | 22 (1-46)        | 19 (9-37)        | 0.99  |
| QTv – VLF                        | 50 (34-67)       | 83 (54-101)      | 0.022 |
| QTv – LF                         | 122 (102-169)    | 114 (100-137)    | 0.45  |
| QTv – HF                         | 181 ± 115        | 223 ± 135        | 0.34  |
| QTv – LPF/HPF                    | 0.61 (0.47-0.91) | 0.45 (0.34-0.71) | 0.38  |

Categorical data are presented as n(%) and were analyzed using the Chi-squared test. Continuous data are presented as mean ± SD if normally distributed and were analyzed using Student's t-test, if normal distribution was not confirmed data are presented as median (IQR) and were analyzed using the Mann-Whitney U test.

| Variables                          | <i>n</i> = 46 |
|------------------------------------|---------------|
| Anthropometrics                    |               |
| Age, years                         | 52 ± 13       |
| Sex                                |               |
| Male, n (%)                        | 26 (57)       |
| Female, n (%)                      | 20 (43)       |
| Race                               |               |
| White Race, n (%)                  | 34 (74)       |
| Black Race, n (%)                  | 12 (26)       |
| BSA, m <sup>2</sup>                | 1.96 ± 0.25   |
| Heart Rate, bpm                    | 69 ± 12       |
| Medical History                    |               |
| Hypertension, n (%)                | 22 (48)       |
| Type-2 Diabetes, n (%)             | 8 (17)        |
| Atrial Fibrillation, n (%)         | 10 (22)       |
| Hypercholesterolemia, n (%)        | 21 (46)       |
| Smoking, n (%)                     | 24 (52)       |
| LBBB, n (%)                        | 11 (24)       |
| Cardiomyopathy Etiology            |               |
| Non-ischemic Cardiomyopathy, n (%) | 29 (63)       |
| Ischemic Cardiomyopathy, n (%)     | 17 (37)       |
| NYHA Class                         |               |
| Class I, n (%)                     | 8 (17)        |
| Class II, n (%)                    | 20 (43)       |
| Class III, n (%)                   | 18 (39)       |
| Medications                        |               |
| β-blocker, n (%)                   | 40 (87)       |
| ACEi or ARB, n (%)                 | 45 (98)       |
| Anti-arrhythmics, n (%)            | 2 (4)         |
| Lipid Lowering Agent, n (%)        | 23 (50)       |
| Aspirin, n (%)                     | 30 (65)       |
| Spironolactone, n (%)              | 9 (20)        |
| Diuretic, n (%)                    | 26 (57)       |
| Hydralazine, n (%)                 | 1 (2)         |
| Digoxin, n (%)                     | 9 (20)        |
| Aldosterone Inhibitor, n (%)       | 9 (20)        |
| Biochemistry                       |               |
| hsCRP, mg/L                        | 3.65 ± 4.84   |
| eGFR, mL/min/1.73m <sup>2</sup>    | 88 ± 24       |
| TNF-α Receptor-II, pg/mL           | 2854 ± 1315   |
| hsIL-6, pg/mL                      | 3.46 ± 6.91   |
| NT-proBNP, pg/mL                   | 2675 ± 2407   |
| Serum Sodium, mEq/L                | 139 ± 2       |
| Serum Creatinine, mg/dL            | $0.9 \pm 0.3$ |
| Serum Potassium, mEq/L             | 4.2 ± 0.3     |

Supplement Table 3: Complete list of baseline participant characteristics.

| LV Morphology and Function by MRI |                 |
|-----------------------------------|-----------------|
| End-diastolic Volume, mL          | 223 ± 54        |
| End-systolic Volume, mL           | 161 ± 51        |
| Ejection Fraction, %              | 28 ± 9          |
| Mass, g                           | 135 ± 43        |
| Cardiac <sup>31</sup> P MRS       |                 |
| PCr Concentration, µmol/g         | 7.44 ± 2.63     |
| ATP Concentration, μmol/g         | 4.31 ± 1.43     |
| CK flux, μmol/g/s                 | $1.81 \pm 1.00$ |
| PCr/ATP Ratio                     | 1.79 ± 0.51     |
| ΔG~ <sub>ATP</sub> , kJ/mol       | -60.8 ± 2.2     |

BSA – body surface area; LBBB – left bundle branch block; NYHA – New York Heart Association; ACEi – angiotensin converting enzyme inhibitor; ARB – angiotensin-II receptor blocker; hsCRP – high sensitivity C-reactive protein; eGFR – estimated glomerular filtration rate; TNF- $\alpha$  – tumor necrosis factor- $\alpha$ ; hsIL-6 – high sensitivity interleukin-6; NT-proBNP – N-terminal pro-brain natriuretic peptide; PCr - phosphocreatine; ATP – adenosine triphosphate; CK – creatine kinase; CK flux- forward rate of ATP synthesis through the cardiac CK reaction;  $\Delta G_{ATP}$  – Gibbs free energy of ATP hydrolysis. Results are shown as mean ± SD.

**Supplement Figure 1:** Relationship between myocardial [ATP] and left ventricular ejection fraction (LVEF; Pearson's correlation test).



**Supplement Figure 2:** During the first 3 years of follow-up post-ICD implantation, no group differences were observed between the low and normal myocardial ATP groups in terms of change in NYHA Class, left ventricular ejection fraction (LVEF) and NT-proBNP. This is consistent with the hypothesis that the ability of low myocardial ATP to predict sudden cardiac death risk is not simply a reflection of low ATP as a predictor of heart failure progression. Data represent mean ± SD and group differences were assessed by Student's t-test.



**Supplement Figure 3:** Results of computational modeling for the impact of ATP depletion on a simulated action potential (AP, panel A) and SERCA activity (panel B, "Jup") for normal ATP (solid line) and low ATP conditions (dotted line). The computational model employed (3) integrates mitochondrial bioenergetics and electrophysiology in the cardiac myocyte. The general, membrane and specific ion current, ion pump, and energetic parameters were assumed to be similar for normal ATP and low ATP conditions. The high-energy phosphate parameters were derived from the patients studied here and appear in Supplemental Table 2). Details of the model appear at the end of this Supplement and the code is provided in a separate file. The findings suggest that the "low ATP" energetic profile per se, prolongs the action potential, reduces SERCA calcium handling, as compared to "normal ATP".



#### **Reference List**

- Cheng A, Dalal D, Butcher B, Norgard S, Zhang Y, Dickfeld T, et al. Prospective observational study of implantable cardioverter-defibrillators in primary prevention of sudden cardiac death: study design and cohort description. J Am Heart Assoc. 2013;2(1):e000083.
- 2. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. *N Engl J Med.* 2002;346(12):877-83.
- 3. Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marban E, et al. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. *Biophys J.* 2006;91(4):1564-89.
- Vinnakota KC, and Bassingthwaighte JB. Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. *Am J Physiol Heart Circ Physiol.* 2004;286(5):H1742-9.

## Supplementary information for model equations and parameters

The computational simulation is based on excitation-contraction coupling/mitochondrial energetics (ECME) model of Cortassa et al (3). The ECME model contains 51 ordinary differential equations (ODEs) to describe the dynamic changes of ions and metabolites in guinea pig cardiac ventricular myocytes. Note that the main elements of this model were originally constrained using normal guinea pig data, because human data are often not available for many parameters and because guinea pig myocyte critical electrophysiologic and Ca<sup>++</sup> handling parameters are similar to those in humans. The code was converted from CellML (S1.xml in Physiome Model Repository) to MATLAB in OpenCOR and ran in MATLAB2021b.

The code is available at https://gitlab.com/MitoModel/ecme\_hf.

The parameters were directly taken from the ECME model. To simulate the conditions in this study of a normal ATP level and low ATP level, the cytosolic ATP and creatine phosphate levels were clamped to the constant levels as follows (derived from Supplement Table 2 above). Note that metabolite concentrations were converted from umol/g wet wt to mM with cytosolic volume taken as 0.725 ml/g of wet weight (4).

|                    | PCr/ATP | [ATP] <sub>cyto</sub><br>(mM) | [PCr] <sub>cyto</sub><br>(mM) | Total Creatine<br>([Cr]+[PCr]) (mM) |
|--------------------|---------|-------------------------------|-------------------------------|-------------------------------------|
| HF with normal ATP | 1.62    | 6.9                           | 11.178                        | 22.178                              |
| HF with low ATP    | 1.97    | 3.7                           | 7.289                         | 22.189                              |

, and set 
$$rac{dPCr_{cyto}}{dt}=0, rac{dATP_{cyto}}{dt}=0.$$

## I. General parameters

| Parameter                        | Value                  | Unit                | Desc.                                        |
|----------------------------------|------------------------|---------------------|----------------------------------------------|
| F                                | 96485                  | C/mol               | Faraday constant                             |
| C <sub>m</sub>                   | 1.0                    | μF cm⁻²             | Membrane capacitance                         |
| A <sub>cap</sub>                 | 1.534 10 <sup>-4</sup> | cm <sup>2</sup>     | Capacitative cell surface area               |
| V <sub>myo</sub>                 | 25.84                  | pL                  | Cytosolic volume                             |
| V <sub>mito</sub>                | 15.89                  | pL                  | Mitochondrial volume                         |
| V <sub>NSR</sub>                 | 1.4                    | pL                  | NSR volume                                   |
| V <sub>JSR</sub>                 | 0.16                   | pL                  | JSR volume                                   |
| Vss                              | 0.495 10 <sup>-3</sup> | pL                  | SS volume                                    |
| [K <sup>+</sup> ] <sub>o</sub>   | 5.4                    | mM                  | Extracellular K <sup>+</sup> concentration   |
| [Na <sup>+</sup> ] <sub>o</sub>  | 140.0                  | mM                  | Extracellular Na <sup>+</sup> concentration  |
| [Ca <sup>2+</sup> ] <sub>o</sub> | 2.0                    | mM                  | Extracellular Ca <sup>2+</sup> concentration |
| C <sub>m</sub>                   | 1.0                    | μF cm <sup>-2</sup> | Membrane capacitance                         |

## II. Sarcoplasmic ion currents

Time-dependent delayed rectifier potassium current (IK)

$$I_{K} = \bar{G}_{K}X_{1}X_{K}^{2}(V - E_{K})$$

$$E_{K} = E_{N}([K^{+}]_{o} + P_{Na,K}[Na^{+}]_{o}, [K^{+}]_{i} + P_{Na,K}[Na^{+}]_{i}, z_{K})$$

$$\bar{G}_{K} = 0.282\sqrt{[K^{+}]_{o}/5.4}$$

$$X_{1} = (1 + e^{(V_{m} - 40)/40})^{-1}$$

$$\frac{dX_{k}}{dt} = \alpha_{X} - X_{k}(\alpha_{X} + \beta_{X})$$

$$\alpha_{X} = 7.19 \cdot 10^{-5} \frac{V_{m} + 30}{1 - e^{-0.148(V_{m} + 30)}}$$

$$\beta_{X} = 1.31 \cdot 10^{-4} \frac{V_{m} + 30}{e^{0.0687(V_{m} + 30)} - 1}$$

Time-independent potassium current (IK1)

$$\begin{split} \Delta V &= V_m - E_{K1} \\ I_{K1} &= \bar{G}_{K1} K_{1\infty} \Delta V \\ E_{K1} &= E_N (K^+]_o, [K^+]_i, 1) \\ \bar{G}_{K1} &= 0.748 \sqrt{[K^+]_o/5.4} \\ K_{1\infty} &= \frac{\alpha_{K_1}}{\alpha_{K_1} + \beta_{K_1}} \\ \alpha_{K_1} &= \frac{1.02}{1 + e^{0.2385(\Delta V - 59.215)}} \\ \beta_{K_1} &= \frac{0.4912 e^{0.28032(\Delta V + 5.476)} + e^{0.06175(\Delta V - 594.31)}}{1 + e^{-0.5143(\Delta V + 4.753)}} \end{split}$$

Plateau potassium current (IKp)

$$E_{Kp} = E_N([K^+]_o, [K^+]_i, z_K)$$
  

$$I_{Kp} = \frac{\bar{G}_{Kp}(V - E_{Kp})}{1 + e^{(7.488 - V_m)/5.98}}$$

# Fast Na current (INa)

$$I_{Na} = G_{Na}m^{3}hj(V_{m} - E_{Na})$$

$$E_{Na} = E_{N}([Na^{+}]_{o}, [Na^{+}]_{i}, 1)$$

$$\frac{dm_{Na}}{dt} = \alpha_{m} - m_{Na}(\alpha_{m} + \beta_{m})$$

$$\frac{dh_{Na}}{dt} = \alpha_{h} - h_{Na}(\alpha_{h} + \beta_{h})$$

$$\frac{dj_{Na}}{dt} = \alpha_{j} - m_{Na}(\alpha_{j} + \beta_{j})$$

$$\alpha_{m} = 0.32 \frac{V + 47.13}{1 - e^{-0.1(V_{m} + 47.13)}}$$

$$\beta_{m} = 0.08e^{-V_{m}/11}$$

For 
$$V \ge -40mV$$
  
 $\alpha_h = \alpha_j = 0$   
 $\beta_h = \left(0.13\left(1 + e^{-(V_m + 10.66)/11.1}\right)\right)^{-1}$   
 $\beta_j = 0.3 \frac{e^{-2.535 \cdot 10^{-7}V_m}}{1 + e^{-0.1(V_m + 32)}}$ 

For V < 
$$-40mV$$
  
 $\alpha_h = 0.135e^{-(V_m+80)/6.8}$   
 $\alpha_j = (-127140e^{0.2444V_m} - 3.474 \cdot 10^{-5}e^{-0.04391V_m}) \frac{V_m+37.78}{1+e^{0.311(V_m+79.23)}}$   
 $\beta_h = 3.56e^{0.079V_m} + 3.1 \cdot 10^5e^{0.35V_m}$   
 $\beta_j = \frac{0.1212e^{-0.01052V_m}}{1+e^{-0.1378(V_m+40.14)}}$ 

Sodium-calcium exchanger current (INaCa)

$$I_{NaCa} = k_{NaCa} \cdot f_{Nao} \cdot f_{Cao} \frac{exp(V_m/V_T)\phi_{Na}^3 - \phi_{Ca}}{exp((1-\eta)V_m/V_T) + k_{sat}}$$

$$f_{Nao} = Hill([Na^+]_o, K_{M,Na}^{NaCa}, 3)$$

$$f_{Cao} = Hill([Ca^+]_o, K_{M,Ca}^{NaCa}, 1)$$

$$\phi_{Na} = [Na^+]_i/[Na^+]_o$$

$$\phi_{Ca} = [Ca^+]_i/[Ca^+]_o$$

Background calcium  $(I_{Ca,b})$  and sodium currents  $(I_{Na,b})$ 

$$I_{Ca,b} = \bar{G}_{Ca,b}(V - E_{Ca}) E_{Ca} = E_N([Ca^{2+}]_o, [Ca^{2+}]_i, z_{Ca}) I_{Na,b} = \bar{G}_{Na,b}(V - E_{Na}) E_{Na} = E_N([Na^+]_o, [Na^+]_i, z_{Na})$$

Non-specific calcium-activated current (InsCa)

 $f_{Ca} = Hill([Ca^{2+}]_i, K_m^{nsCa}, 3)$   $I_{nsNa} = 0.75 \cdot f_{Ca} \cdot \Phi_{Na}(P_{nsNa}, z_{Na}, V_m, [Na^+]_i, [Na^+]_o)$  $I_{nsK} = 0.75 \cdot f_{Ca} \cdot \Phi_K(P_{nsK}, z_K, V_m, [K^+]_i, [K^+]_o)$ 

Sodium-potassium ATPase current (INaK)

$$\sigma = \frac{e^{[Na^+]_o/67.3} - 1}{7}$$

$$f_{NaK} = (1 + 0.1245exp(-0.1V_m/V_T) + 0.0365\sigma exp(-V_m/V_T))^{-1}$$

$$f_{Na} = Hill([Na^+]_i, K_{m,Na_i}, 1.5)$$

$$f_K = Hill([K^+]_o, K_{m,K_o}, 1)$$

$$f_{ATP} = Hill([ATP]_i \cdot Hill(K_{i,ADP}^{NaK}, [ADP]_i, 1), K_{M,ATP}^{NaK}, 1)$$

$$I_{NaK} = \bar{I}_{NaK} \cdot f_{ATP} \cdot f_{Na} \cdot f_K \cdot f_{NaK}$$

ODE for electrophysiology

$$\frac{d[Na^{+}]_{i}}{dt} = -(I_{Na} + 3I_{NaCa} + 3I_{NaK})\frac{A_{cap}}{V_{myo}F} + (V_{NHE} - 3V_{NaCa})\frac{V_{mito}}{V_{myo}}$$

$$\frac{d[K^{+}]_{i}}{dt} = -(I_{Ks} + I_{Kr} + I_{K1} + I_{Kp} + I_{Ca,K} - 2I_{NaK})\frac{A_{cap}}{V_{myo}F}$$

$$\frac{dV_{m}}{dt} = -\frac{1}{C_{m}}(I_{Na} + I_{CaL} + I_{Kr} + I_{Ks} + I_{K1} + I_{Kp} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{Ca,b} + I_{KATP} + I_{stim})$$

#### Functions

Nernst potential

$$E_N(X_o, X_i, z) := \frac{RT}{Fz} ln\left(\frac{X_o}{X_i}\right) \approx \frac{26.7mV}{z} ln\left(\frac{X_o}{X_i}\right)$$

Hill function

$$Hill(x,k,n) := \frac{x^n}{x^n + k^n}$$

GHK current equation

$$\Phi_{S}(P_{S}, z_{S}, V_{m}, [S]_{i}, [S]_{o}) := P_{S} z_{S}^{2} \frac{V_{m} F^{2}}{RT} \frac{[S]_{i} - [S]_{o} \exp(-z_{S} V_{m} F/RT)}{1 - \exp(-z_{S} V_{m} F/RT)}$$

#### Parameters

| Symbol                          | Value                  | Units                 | Description                                                           |
|---------------------------------|------------------------|-----------------------|-----------------------------------------------------------------------|
| $\overline{G}_{Na}$             | 12.8                   | $mS \cdot cm^{-2}$    | Maximal Na+ channel conductance                                       |
| $\overline{G}_{Kp}$             | 0.00828                | $mS \cdot cm^{-2}$    | Maximal plateau K+ channel conductance                                |
| $\overline{G}_{K,0}$            | 0.282                  | $mS \cdot cm^{-2}$    | IK conductance                                                        |
| $\overline{G}_{K1,0}$           | 0.748                  | $mS \cdot cm^{-2}$    | IK1 conductance                                                       |
| $P_{NaK}$                       | 0.01833                |                       | Na+ permeability ratio of K+ channel                                  |
| $K_{NaCa}$                      | 9000                   | $\mu A \cdot cm^{-2}$ | NCX current                                                           |
| $K_{M,Na}^{NaCa}$               | 87.5                   | mM                    | Dissociation constant of sodium for NCX                               |
| $K_{M,Ca}^{NaCa}$               | 1.38                   | mM                    | Dissociation constant of calcium for NCX                              |
| $K_{sat}^{NaCa}$                | 0.1                    |                       | NCX saturation factor at negative potentials                          |
| $\eta^{\scriptscriptstyle NCX}$ | 0.35                   |                       | Voltage dependence of NCX                                             |
| P <sub>ns,Na</sub>              | $1.75 \cdot 10^{-7}$   | $cm \ s^{-1}$         | Nonspecific channel current Na permeability                           |
| $P_{ns,K}$                      | 0                      | $cm \ s^{-1}$         | Nonspecific channel current K permeability                            |
| $K_{ca}^{ns}$                   | 1.2                    | $\mu M$               | Ca2+ half-saturation constant for nonspecific current                 |
| $\bar{G}_{Ca,b}$                | 0.003217               | $mS \cdot cm^{-2}$    | Maximum background current Ca2+ conductance                           |
| $\bar{G}_{Na,b}$                | 0.003217               | $mS \cdot cm^{-2}$    | Maximum background current Na+ conductance                            |
| $ar{I}_{_{_{ m NaK}}}$          | 3.147                  | $\mu A \cdot cm^{-2}$ | Maximum Na <sup>+</sup> /K <sup>+</sup> pump current                  |
| K <sub>m,Nai</sub>              | 10                     | mM                    | Na+ half saturation for Na <sup>+</sup> /K <sup>+</sup> pump          |
| $K_{m,K_o}$                     | 1.5                    | mM                    | K+ half saturation for Na <sup>+</sup> /K <sup>+</sup> pump           |
| $K_{NaK}^{1,ATP}$               | 8.0 × 10 <sup>-3</sup> | mM                    | ATP half saturation constant for Na <sup>+</sup> /K <sup>+</sup> pump |
| $K_{NaK}^{i,ADP}$               | 0.1                    | mM                    | ADP inhibition constant for Na <sup>+</sup> /K <sup>+</sup> pump      |

# III. Cytosolic calcium dynamics

## L-type Ca current (ICa & ICaK)

Common pool of subspace calcium model

$$\begin{array}{lll} a &= 0.4e^{(V_m+2)/10} \\ \beta &= 0.4e^{-(V_m+2)/13} \\ a' &= aa \\ \beta' &= \beta/b \\ \gamma &= 0.1875[Ca^{2+}]_{ss} \\ C_0 &= 1 - C_0 - C_1 - C_2 - C_3 - C_4 - O - C_{ca0} - C_{ca1} - C_{ca2} - C_{ca3} - C_{ca4} \\ v_{01} &= 4aC_0 - \beta C_1 \\ v_{12} &= 3aC_1 - 2\beta C_2 \\ v_{23} &= 2aC_2 - 3\beta C_3 \\ v_{44} &= aC_3 - 4\beta C_4 \\ v_{45} &= fC_4 - gO \\ v_{67} &= 4a'C_{ca0} - \beta' C_{ca1} \\ v_{78} &= 3a'C_{ca1} - 2\beta' C_{ca2} \\ v_{89} &= 2a'C_{ca2} - 3\beta' C_{ca3} \\ v_{910} &= a'C_{ca3} - 4\beta' C_{ca4} \\ v_{06} &= \gamma C_0 - \omega C_{ca0} \\ v_{17} &= a\gamma C_1 - \omega C_{ca1}/b \\ v_{28} &= a^2\gamma C_2 - \omega C_{ca2}/b^2 \\ v_{39} &= a^3\gamma C_3 - \omega C_{ca3}/b^3 \\ v_{410} &= a^4\gamma C_4 - \omega C_{ca4}/b^4 \\ \frac{dC_0}{dt} &= v_{01} - v_{12} - v_{17} \\ \frac{dC_2}{dt} &= v_{23} - v_{34} - v_{34} \\ \frac{dC_3}{dt} &= v_{34} - v_{45} - v_{410} \\ \frac{dO}{dt} &= v_{45} \\ \frac{dC_{ca1}}{dt} &= v_{17} + v_{67} - v_{78} \\ \frac{dC_{ca2}}{dt} &= v_{28} + v_{78} - v_{89} \\ \frac{dC_{ca2}}{dt} &= v_{29} + v_{89} - v_{910} \end{array}$$

$$\begin{split} I_{Ca}^{max} &= \Phi_{Ca}(P_{Ca}, z_{Ca}, V_m, 0.001, 0.341[Ca^{2+}]_o) \\ I_{Ca} &= 6I_{Ca}^{max} \cdot y_{Ca} \cdot 0 \\ I_{Ca,K} &= y_{Ca} \cdot 0 \cdot \Phi_{Ca}(P_K, z_K, V_m, [K^+]_i, [K^+]_o) \\ P_K &= P_K^{max} \cdot Hill(I_{Ca}^{half}, I_{Ca}^{max}, 1) \\ y_{\infty} &= \frac{1}{1 + e^{(V_m + 55)/7.5}} + \frac{0.5}{1 + e^{(-V_m + 21)/6}} \\ \tau_y &= 20 + \frac{600}{1 + e^{(V_m + 30)/9.5}} \\ \frac{dy_{Ca}}{dt} &= \frac{y_{\infty} - y_{Ca}}{\tau_y} \end{split}$$

| Parameter              | Value                 | Units         | Description                                |
|------------------------|-----------------------|---------------|--------------------------------------------|
| A                      | 2                     |               | Mode transition parameter                  |
| В                      | 2                     |               | Mode transition parameter                  |
| ω                      | 10                    | $s^{-1}$      | Mode transition parameter                  |
| f                      | 300                   | $s^{-1}$      | Transition rate into open state            |
| g                      | 2000                  | $s^{-1}$      | Transition rate into open state            |
| f'                     | 0                     | $s^{-1}$      | Transition rate into open state            |
| g'                     | 0                     | $s^{-1}$      | Transition rate into open state            |
| $P_{Ca}^{LCC}(P_{Ca})$ | $1.24 \cdot 10^{-3}$  | $cm \ s^{-1}$ | L-type Ca2+ channel permeability to Ca2+   |
| $P_K^{LCC}(P_K^{max})$ | $1.11 \cdot 10^{-11}$ | $cm \ s^{-1}$ | L-type Ca2+ channel permeability to K+     |
| I <sub>Ca,half</sub>   | -0.4583               | $\mu A/cm^2$  | ICa level that reduces equation Pk by half |

Ryanodine receptor (calcium release, Jrel)

$$P_{C1} = 1 - P_{01} - P_{02} - P_{C2}$$

$$If [Ca^{2+}]_{ss} \ge [Ca^{2+}]_{ss}^{*}:$$

$$P_{01} := (P_{01} + P_{C1})Hill(k_{a}^{+}[Ca^{2+}]_{ss}^{n}, k_{a}^{-}, 1)$$

$$v_{o1c1} = 0$$

$$If [Ca^{2+}]_{ss} < [Ca^{2+}]_{ss}^{*}:$$

$$v_{o1c1} = -k_{a}^{-}P_{01} + k_{a}^{+}[Ca^{2+}]_{ss}^{n}P_{C1}$$

$$v_{o1o2} = k_{b}^{+}[Ca^{2+}]_{ss}^{m}P_{01} - k_{b}^{-}P_{02}$$

$$v_{o1c2} = k_{c}^{+}P_{01} - k_{c}^{-}P_{C2}$$

$$\frac{dP_{01}}{dt} = -v_{o1c1} - v_{o1o2} - v_{o1c2}$$

$$\frac{dP_{02}}{dt} = v_{o1o2}$$

$$\frac{dP_{C2}}{dt} = v_{o1c2}$$

$$J_{rel} = r_{ryr}(P_{01} + P_{02})([Ca^{2+}]_{JSR} - [Ca^{2+}]_{ss})$$

| Parameter | Value                  | Units                      | Description               |
|-----------|------------------------|----------------------------|---------------------------|
| $v_1$     | 3600                   | s <sup>-1</sup>            | RyR flux channel constant |
| n         | 4                      |                            | Cooperativity parameter   |
| m         | 3                      |                            | Cooperativity parameter   |
| $k_a^+$   | 1.215x10 <sup>13</sup> | $s^{-1}  \mathrm{mM}^{-4}$ | RyR rate constant         |
| $k_a^-$   | 576                    | $s^{-1}$                   | RyR rate constant         |
| $k_b^+$   | 4.05x10 <sup>6</sup>   | $s^{-1}  \text{mM}^{-3}$   | RyR rate constant         |
| $k_b^-$   | 1930                   | $s^{-1}$                   | RyR rate constant         |
| $k_c^+$   | 100                    | $s^{-1}$                   | RyR rate constant         |
| $k_c^-$   | 0.8                    | $s^{-1}$                   | RyR rate constant         |

Plasma membrane calcium ATPase (PMCA) current (IpCa)

| $f_{ATP}$       | $= Hill([ATP]_i \cdot Hill(K_{i,ADP}^{PMCA}, [ADP]_i, 1), K_{M1,ATP}^{PMCA}, 1) + Hill([ATP]_i, K_{M2,ATP}^{PMCA}, 1)$ |
|-----------------|------------------------------------------------------------------------------------------------------------------------|
| f <sub>Ca</sub> | $= Hill([Ca^{2+}]_i, K^{PMCA}_{M,Ca}, 1)$                                                                              |
| $I_{pCa}$       | $=I_{max}^{PMCA} \cdot f_{Ca} \cdot f_{ATP}$                                                                           |

| Parameter         | Value | Units                    | Description                                                   |
|-------------------|-------|--------------------------|---------------------------------------------------------------|
| $I_{max}^{PMCA}$  | 0.575 | μΑ<br>• cm <sup>-2</sup> | Maximum sarcolemmal Ca2+ pump current                         |
| $K_{Ca}^{PMCA}$   | 0.5   | $\mu M$                  | Ca2+ half-saturation constant for sarcolemmal Ca2+ pump       |
| $K_{ATP1}^{PMCA}$ | 0.012 | mM                       | First ATP half-saturation constant for sarcolemmal Ca2+ pump  |
| $K_{ATP2}^{PMCA}$ | 0.23  | mM                       | Second ATP half-saturation constant for sarcolemmal Ca2+ pump |
| $K_{ADP}^{PMCA}$  | 1.0   | mM                       | ADP inhibition constant for sarcolemmal Ca2+ pump             |

## SERCA calcium pump (Jup)

$$J_{up} = \frac{V_f^{up} f_b - V_r^{up} r_b}{(1 + f_b + r_b) f_{ATP}^{SERCA}}$$

$$f_b = \left(\frac{[Ca^{2+}]_i}{K_{fb}}\right)^{N_{fb}}$$

$$r_b = \left(\frac{[Ca^{2+}]_{NSR}}{K_{rb}}\right)^{N_{rb}}$$

$$f_{ATP}^{SERCA} = K_{m,up}^{ATP} / \left([ATP]_i \cdot Hill(K_{i1,up}, [ADP]_i, 1)\right) + Hill(K_{i2,up}, [ADP]_i,)^{-1}$$

| Parameter                         | Value   | Units   | Description                                    |
|-----------------------------------|---------|---------|------------------------------------------------|
| $V_{max,f}^{SERCA}(V_f^{up})$     | 0.2989  | mM/s    | SERCA forward rate parameter                   |
| $V_{max,b}^{SERCA}(V_r^{up})$     | 0.3179  | mM/s    | SERCA reverse rate parameter                   |
| $K_{f}^{SERCA}({ m K}_{ m fb})$   | 0.24    | $\mu M$ | Forward Ca2+ half-saturation constant of SERCA |
| $K_r^{SERCA}(K_{rb})$             | 1.64269 | mM      | Reverse Ca2+ half-saturation constant of SERCA |
| $N_f^{SERCA}(N_{fb})$             | 1.4     |         | Forward cooperativity constant of SERCA        |
| $N_r^{SERCA}({ m N}_{ m rb})$     | 1.0     |         | Reverse cooperativity constant of SERCA        |
| $K_{ATP}^{SERCA}(K_{m,up}^{ATP})$ | 0.01    | mM      | ATP half-saturation constant for SERCA         |
| $K_{ADP1}^{SERCA}(K_{i1,up})$     | 0.14    | mM      | ADP first inhibition constant for SERCA        |
| $K_{ADP2}^{SERCA}(K_{i2,up})$     | 5.1     | mM      | ADP second inhibition constant for SERCA       |

### Ca2+ transport and buffering parameters

| Symbol          | Value  | Units                    | Description                                          |
|-----------------|--------|--------------------------|------------------------------------------------------|
| $	au_{tr}$      | 574.7  | $s^{-1}$                 | Time constant for transfer from subspace to myoplasm |
| $	au_{xfer}$    | 9090   | $s^{-1}$                 | Time constant for transfer from NSR to JSR           |
| $K_m^{CMDN}$    | 2.38   | $\mu M$                  | Ca2+ half saturation constant for calmodulin         |
| $K_m^{CSQN}$    | 0.8    | mM                       | Ca2+ half saturation constant for calsequestrin      |
| $h_{trpn}^+$    | 100000 | $s^{-1}  {\rm mM}^{-1}$  | Ca2+ on-rate for troponin high-affinity sites        |
| $h^{trpn}$      | 0.33   | $s^{-1}$                 | Ca2+ off-rate for troponin high-affinity sites       |
| $l^+_{trpn}$    | 100000 | $s^{-1}  \text{mM}^{-1}$ | Ca2+ on-rate for troponin low-affinity sites         |
| $l^{trpn}$      | 40     | $s^{-1}$                 | Ca2+ off-rate for troponin low-affinity sites        |
| $\Sigma[HTRPN]$ | 0.14   | mM                       | Total troponin high-affinity sites                   |
| $\Sigma[LTRPN]$ | 0.07   | mM                       | Total troponin low-affinity sites                    |
| $\Sigma[CMDN]$  | 0.05   | mM                       | Total myoplasmic calmodulin concentration            |
| $\Sigma[CQSN]$  | 15     | mM                       | Total NSR calsequestrin concentration                |

#### ODE for cytosolic calcium

$$\begin{split} \beta_{i} &= Hill((K_{m}^{CMDN} + [Ca^{2+}]_{i})^{2}, K_{m}^{CMDN} \cdot [CMDN]_{tot}, 1) \\ \beta_{SS} &= Hill((K_{m}^{CMDN} + [Ca^{2+}]_{SS})^{2}, K_{m}^{CMDN} \cdot [CMDN]_{tot}, 1) \\ \beta_{SR} &= Hill((K_{m}^{CSQN} + [Ca^{2+}]_{SR})^{2}, K_{m}^{CSQN} \cdot [CSQN]_{tot}, 1) \\ \frac{d[Ca^{2+}]_{i}}{dt} &= \beta_{i} \left( J_{xfer} \frac{V_{ss}}{V_{myo}} - J_{up} - J_{trpn} - (I_{Ca,b} - 2I_{NaCa} + I_{pCa}) \frac{A_{cap}}{2V_{myo}F} + (V_{NaCa} - V_{uni}) \frac{V_{mito}}{V_{myo}} \right) \\ \frac{d[Ca^{2+}]_{SR}}{dt} &= \beta_{SR} \left( J_{up} \frac{V_{myo}}{V_{SR}} - J_{rel} \frac{V_{ss}}{V_{SR}} \right) \\ J_{trpn} &= \frac{d[HTRPNCa]}{dt} + \frac{d[LTRPNCa]}{dt} \\ J_{tr} &= \frac{[Ca^{2+}]_{NSR} - [Ca^{2+}]_{i}}{\tau_{tr}} \\ J_{xfer} &= \frac{[Ca^{2+}]_{SS} - [Ca^{2+}]_{i}}{\tau_{xfer}} \\ \frac{d[HTRPNCa]}{dt} &= k_{htrpn}^{+} [Ca^{2+}]_{i} \left( [HTRPN]_{tot} - [HTRPNCa] \right) - k_{htrpn}^{-} [HTRPNCa] \end{split}$$

 $\frac{d[LTRPNCa]}{dt} = k_{ltrpn}^{+} [Ca^{2+}]_{i} ([LTRPN]_{tot} - [LTRPNCa]) - k_{ltrpn}^{-} (1 - \frac{2}{3} Force_{Norm}) [LTRPNCa]$ 

IV. Force Generation

$$\begin{split} \frac{d|P_0|}{dt} &= -(k_{pn}^{trop} + f_{01}) [P_0] + k_{pp}^{trop} [N_0] + g_{01}(SL)[P_1] \\ \frac{d|P_1|}{dt} &= -(k_{pn}^{trop} + f_{12} + g_{01}(SL)) [P_1] + k_{np}^{trop} [N_1] + f_{01}[P_0] + g_{12}(SL)[P_2] \\ \frac{d|P_1|}{dt} &= -(f_{23} + g_{12}(SL)) [P_2] + f_{12}[P_1] + g_{23}(SL)[P_3] \\ \frac{d|P_1|}{dt} &= k_{pn}^{trop}[P_1] + (k_{np}^{trop} + g'_{01}(SL)) [N_1] \\ [N_0] = 1 - ([N_1] + [P_0] + [P_1] + [P_2] + [P_3]) \\ f_0 = 3 \times f_{XB} \\ f_{23} = 7 \times f_{XB} \\ g_{01} = 1 \times g_{XB}^{min} \\ g_{21} = 2 \times g_{XB}^{min} \\ g_{01} = 1 \times g_{XB}^{min} \\ g_{21} = S \times \varphi \times g_{XB}^{min} \\ g_{01} = 1 \times \varphi \times g_{XB}^{min} \\ g_{01} = 1 \times \varphi \times g_{XB}^{min} \\ g_{21} = S \times \varphi \times g_{XB}^{min} \\ g_{01} = 1 \times \varphi \times g_{XB}^{min} \\ g_{21} = S \times \varphi \times g_{XB}^{min} \\ g_{12} = (1 \times \chi \varphi \times g_{XB}^{min}) \\ g_{21} = S \times \varphi \times g_{XB}^{min} \\ g_{21} = S \times S \times S \times S \times S \times S \\ k_{17}^{trop} = k_{17}^{trop} \left[ \frac{[LTRPNCa]}{k_{17}^{trop}[LTRPNI_{104}]} \right]^{N^{trop}} \\ k_{17}^{trop} = \frac{k_{17}^{trop}}{k_{17}^{trop}} \left[ \frac{k_{17}^{trop}}{LTRPN_{100}} \right]^{N^{trop}} \\ N^{trop} = 3.5 \times S \times S \times 2.0 \\ K_{Ca}^{trop} = \frac{k_{17}^{trop}}{k_{trpn}^{trop}} \\ 2PATHS = g_{01} g_{12} g_{23} + f_{01} g_{12} g_{23} + f_{01} f_{12} g_{23} + f_{01} f_{12} f_{23} \\ P_{1max} = \frac{f_{01} g_{12} g_{23}}{\sum PATHS} \\ P_{2max} = \frac{f_{01} g_{12} g_{23}}{\sum PATHS} \\ P_{3max} = \frac{f_{01} g_{12} f_{23}}{\sum PATHS} \\ P_{3max} = \frac{f_{01} g_{12} f_{23}}{\sum PATHS} \\ P_{3max} = \frac{f_{01} g_{12} f_{23}}{\sum PATHS} \\ P_{3m$$

| Parameter                                                | Value                  | Units              | s Description                                                 |
|----------------------------------------------------------|------------------------|--------------------|---------------------------------------------------------------|
| $k_{pn}^{trop}$                                          | 0.04                   | ms <sup>-1</sup>   | Transition rate from tropomyosin permissive to non-permissive |
| SL                                                       | 2.15                   | μm                 | Sarcomere length                                              |
| f <sub>XB</sub>                                          | 0.05                   | ms⁻¹               | Transition rate from weak to strong cross bridge              |
| $g_{{\scriptscriptstyle X}{\scriptscriptstyle B}}^{min}$ | 0.1                    | ms⁻¹               | Minimum transition rate from strong to weak cross bridge      |
| ξ                                                        | 0.1                    | N mm <sup>-2</sup> | Conversion factor normalizing to physiological force          |
| $V_{AM}^{max}$                                           | 7.2 × 10 <sup>-3</sup> | mM ms⁻¹            | Maximal rate of ATP hydrolysis by myofibrils (AM<br>ATPase)   |
| $K_{M,AM}^{ATP}$                                         | 0.03                   | mM                 | ATP half saturation constant of AM ATPase                     |
| K <sub>i,AM</sub>                                        | 0.26                   | mM                 | ADP inhibition constant of AM ATPase                          |

## V. Cardiac Bioenergetics Mitochondrial ions

$$\frac{d[Ca^{2+}]_m}{dt} = \delta_{Ca}(J_{uni} - J_{NCLX})$$

$$\frac{d \Delta \Psi_m}{dt} = \frac{V_{He} + V_{HSDH} - V_{Hu} - V_{ANT} - V_{HLeak} - V_{NaCa} - 2 V_{uni}}{C_{mito}}$$

## High-energy and inorganic phosphates

$$\frac{d \text{ [ATP]}_{i}}{dt} = J_{\text{ANT}} \frac{V_{\text{mito}}}{V_{\text{myo}}} - V_{\text{CK}}^{\text{mito}} - V_{\text{AM}} - \frac{1}{2} J_{\text{up}} - (I_{\text{pCa}} + I_{\text{NaK}}) \frac{A_{cap}}{V_{myo}F}$$

$$\frac{d \text{ [ATP]}_{ic}}{dt} = -V_{\text{CK}}^{\text{cyto}} - V_{\text{ATPase}}^{\text{cyto}}$$

$$\frac{d \text{ [CrP]}_{i}}{dt} = V_{\text{CK}}^{\text{mito}} - V_{\text{tr}}^{\text{crP}}$$

$$\frac{d \text{ [CrP]}_{ic}}{dt} = V_{\text{tr}}^{\text{CrP}} + V_{\text{CK}}^{\text{cyto}}$$

$$\frac{d \text{ [ADP]}_{m}}{dt} = J_{ANT} - J_{F1Fo} - J_{SL}$$

$$[ATP]_{m} = C_{A} - [\text{ADP}]_{m}$$

Citric acid cycle

$$\frac{d[ISOC]}{dt} = J_{ACO} - J_{IDH}$$

$$\frac{d[\alpha KG]}{dt} = J_{IDH} - J_{KGDH} + J_{AAT}$$

$$\frac{d[SCOA]}{dt} = J_{KGDH} - J_{SL}$$

$$\frac{d[SUC]}{dt} = J_{SL} - J_{SDH}$$

$$\frac{d[FUM]}{dt} = J_{SDH} - J_{FH}$$

$$\frac{d[MAL]}{dt} = J_{FH} - J_{MDH}$$

$$\frac{d[OAA]}{dt} = J_{MDH} - J_{CS} - J_{AAT}$$

$$\frac{d[NADH]_m}{dt} = -V_{O_2} + J_{IDH} + J_{KGDH} + J_{MDH}$$

### TCA cycle rates Citrate synthase (CS)

| ı   | $\_ k_{cat} E_T AB$     |
|-----|-------------------------|
| Jcs | $-\frac{1}{(1+A)(1+B)}$ |
| Α   | $= [AcCoA]/K_m^{AcCoA}$ |
| В   | $= [OAA]/K_m^{OAA}$     |

| Parameter        | Value   | Unit            | Description                         |
|------------------|---------|-----------------|-------------------------------------|
| k <sub>cat</sub> | 0.23523 | s <sup>-1</sup> | Catalytic constant                  |
| $E_T$            | 0.4     | mM              | Enzyme concentration of CS          |
| $K_m^{AcCoA}$    | 0.0126  | mM              | Michaelis constant for AcCoA        |
| $K_m^{OAA}$      | 6.4E-4  | mM              | Michaelis constant for OAA          |
| [AcCoA]          | 1       | mM              | Acetyl CoA concentration            |
| $k_{cat}$ (cell) | 0.15891 | S <sup>-1</sup> | Catalytic constant (cellular model) |

#### Aconitase (ACO)

| J <sub>ACO</sub><br>[CIT] | $= k_f ([CIT] - [ISOC]/K_{eq})$<br>= $\Sigma_{CAC} - [ISOC] - [\alpha KG] - [SCOA] - [SUC] - [FUM] - [MAL] - [OAA]$ |                 |                                        |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|--|--|
| Parameter                 | Value                                                                                                               | Unit            | Description                            |  |  |
| $k_f$                     | 0.11688                                                                                                             | S <sup>-1</sup> | Forward rate constant of ACO           |  |  |
| $K_{eq}$                  | 2.22                                                                                                                | -               | Equilibrium constant of ACO            |  |  |
| $\Sigma_{CAC}$            | 1.300                                                                                                               | mM              | Sum of TCA cycle intermediates         |  |  |
| $k_f$ (cell)              | 0.078959                                                                                                            | S <sup>-1</sup> | Forward rate constant (cellular model) |  |  |

Isocitrate dehydrogenase, NADH-producing (IDH)

$$J_{IDH} = \frac{k_{cat}E_TAB}{f_HAB + f_iB + f_aA + f_af_i}$$

$$f_H = 1 + \frac{[H^+]_m}{K_{H1}} + \frac{K_{H2}}{[H^+]_m}$$

$$A = [NAD]/K_{NAD}$$

$$B = ([ISOC]/K_{ISOC})^n$$

$$f_a = \frac{K_A}{K_A + [ADP]_m} \frac{K_{CA}}{K_{CA} + [Ca^{2+}]_m}$$

$$f_i = 1 + \frac{[NADH]}{K_{NADH}}$$

| Parameter         | Value | Unit            | Description                       |
|-------------------|-------|-----------------|-----------------------------------|
| k <sub>cat</sub>  | 11880 | S <sup>-1</sup> | Rate constant of IDH              |
| $E_T$             | 0.109 | mМ              | Concentration of IDH              |
| $K_{H1}$          | 1E-6  | mΜ              | Ionization constant of IDH        |
| $K_{H2}$          | 9E-4  | mМ              | Ionization constant of IDH        |
| $K_{NAD}$         | 0.923 | mΜ              | Michaelis constant for NAD        |
| K <sub>ISOC</sub> | 1.520 | mΜ              | Michaelis constant for isocitrate |
| n                 | 2     | -               | Cooperativity for isocitrate      |
| $K_A$             | 0.62  | mМ              | Activation constant by ADP        |
| $K_{CA}$          | 5E-4  | mΜ              | Activation constant for calcium   |
| $K_{NADH}$        | 0.19  | mМ              | Inhibition constant by NADH       |
| $k_{cat}$ (cell)  | 535   | S <sup>-1</sup> | Rate constant (cellular model)    |

Alpha-ketoglutarate dehydrogenase (KGDH)

$$J_{KGDH} = \frac{k_{cat}E_{T}AB}{f_{H}AB + f_{a}(A + B)}$$

$$f_{H} = 1 + \frac{[H^{+}]_{m}}{K_{H1}} + \frac{K_{H2}}{[H^{+}]_{m}}$$

$$A = [NAD]/K_{NAD}$$

$$B = ([\alpha KG]/K_{AKG})^{n}$$

$$f_{a} = \frac{K_{MG}}{K_{MG} + [Mg^{2+}]_{m}} \frac{K_{CA}}{K_{CA} + [Ca^{2+}]_{m}}$$

| Parameter        | Value  | Unit            | Description                        |
|------------------|--------|-----------------|------------------------------------|
| k <sub>cat</sub> | 13.2   | s <sup>-1</sup> | Rate constant of KGDH              |
| $E_T$            | 0.5    | mМ              | Concentration of KGDH              |
| $K_{H1}$         | 4E-5   | mМ              | Ionization constant of KGDH        |
| $K_{H2}$         | 7E-5   | mМ              | Ionization constant of KGDH        |
| $K_{NAD}$        | 38.7   | mΜ              | Michaelis constant for NAD         |
| $K_{AKG}$        | 30     | mΜ              | Michaelis constant for $\alpha KG$ |
| n                | 1.2    | -               | Hill coefficient for αKG           |
| $K_{MG}$         | 0.0308 | mМ              | Activation constant for Mg         |
| $K_{CA}$         | 1.5E-4 | mМ              | Activation constant for Ca         |
| $k_{cat}$ (cell) | 17.9   | s <sup>-1</sup> | Rate constant (cellular model)     |

#### Succinate-CoA ligase (SL)

|       | $J_{SL} = k_f$       | ([SCoA][AD.                              | $P]_m[Pi]_m - [SUC][ATP]_m[CoA]/K_{eq}^{app})$ |  |
|-------|----------------------|------------------------------------------|------------------------------------------------|--|
|       | $K_{eq}^{app} = K_e$ | $q \frac{P_{SUC}P_{ATP}}{P_{Pi}P_{ADP}}$ |                                                |  |
| meter | Value                | Unit                                     | Description                                    |  |
| k.    | 2 8F-5               | mM s <sup>-1</sup>                       | Forward rate constant of SI                    |  |

| Parameter      | Value   | Unit   | Description                            |
|----------------|---------|--------|----------------------------------------|
| k <sub>f</sub> | 2.8E-5  | mM s⁻¹ | Forward rate constant of SL            |
| $K_{eq}$       | 3.115   | -      | Equilibrium constant of SL             |
| [CoA]          | 0.020   | mM     | Coenzyme A concentration               |
| $k_f$ (cell)   | 2.84E-5 | mM s⁻¹ | Forward rate constant (cellular model) |

### Succinate dehydrogenase (SDH)

$$J_{SDH} = \frac{k_{cat}^{SDH} E_T^{SDH}}{1 + \left(\frac{K_M^{Suc}}{[Suc]}\right) \left(1 + \frac{[OAA]}{K_{i,sdh}^{OAA}}\right) \left(1 + \frac{[FUM]}{K_i^{FUM}}\right)}$$

| Parameter       | Value | Unit            | Description                      |
|-----------------|-------|-----------------|----------------------------------|
| $k_{cat}^{SDH}$ | 3.0   | S <sup>-1</sup> | Rate constant of SDH             |
| $E_T^{SDH}$     | 0.5   | mM              | SDH enzyme concentration         |
| $K_M^{Suc}$     | 0.03  | mM              | Michaelis constant for succinate |

### Fumarate hydratase (FH)

$$J_{FH} = k_f ([FUM] - [MAL]/K_{eq})$$

| Parameter    | Value | Unit            | Description                            |
|--------------|-------|-----------------|----------------------------------------|
| $k_f$        | 8.3   | S <sup>-1</sup> | Forward rate constant                  |
| $K_{eq}$     | 1.0   | -               | Equilibrium constant                   |
| $k_f$ (cell) | 8.4   | s⁻¹             | Forward rate constant (cellular model) |

#### Malate dehydrogenase (MDH)

$$J_{MDH} = \frac{k_{cat}E_TABf_af_i}{(1+A)(1+B)}$$

$$A = \frac{[MAL]}{K_{MAL}}\frac{K_{OAA}}{K_{OAA} + [OAA]}$$

$$B = [NAD]/K_{NAD}$$

$$f_a = k_{offset} + \left(1 + \frac{[H^+]_m}{K_{H1}}\left(1 + \frac{[H^+]_m}{K_{H2}}\right)\right)^{-1}$$

$$f_i = \left(1 + \frac{K_{H3}}{[H^+]_m}\left(1 + \frac{K_{H4}}{[H^+]_m}\right)\right)^2$$

| Parameter        | Value    | Units           | Description         |
|------------------|----------|-----------------|---------------------|
| k <sub>cat</sub> | 124.2    | S <sup>-1</sup> | Rate constant       |
| $E_T$            | 0.154    | mM              |                     |
| $K_{H1}$         | 1.131E-5 | mM              | Ionization constant |
| $K_{H2}$         | 26.7     | mM              | Ionization constant |
| $K_{H3}$         | 6.68E-9  | mM              | Ionization constant |
| $K_{H4}$         | 5.62E-6  | mM              | Ionization constant |

| Parameter           | Value  | Units           | Description                          |
|---------------------|--------|-----------------|--------------------------------------|
| k <sub>offset</sub> | 0.0399 |                 | Offset of MDH pH activation factor   |
| $K_{NAD}$           | 0.2244 | mM              | Michaelis constant for NAD           |
| $K_{MAL}$           | 1.493  | mM              | Michaelis constant for malate        |
| K <sub>OAA</sub>    | 0.031  | mM              | Inhibition constant for oxaloacetate |
| $k_{cat}$ (cell)    | 125.9  | S <sup>-1</sup> | Rate constant for cellular model     |

Aspartate aminotransferase (AAT)

$$J_{AAT} = k_f [OAA] [GLU] \frac{k_{ASP} K_{eq}}{k_{ASP} K_{eq} + k_f [\alpha KG]}$$

| Parameter    | Value  | Units           | Description                            |
|--------------|--------|-----------------|----------------------------------------|
| $k_{f}$      | 21.4   | S <sup>-1</sup> | Forward rate constant                  |
| $k_{ASP}$    | 0.0015 | s <sup>-1</sup> | Rate constant of aspartate consumption |
| $K_{eq}$     | 6.6    |                 | Equilibrium constant                   |
| [GLU]        | 30.000 | mM              | Glutamate concentration                |
| $k_f$ (cell) | 21.7   | s <sup>-1</sup> | Forward rate constant (cellular model) |

Oxidative phosphorylation reaction rates

 $V_{O_2}$ 

$$= 0.5 \rho^{\text{res}} \frac{\left(r_{a} + r_{c1} e^{\left(\frac{6F \Delta \Psi_{B}}{RT}\right)}\right) e^{\left(\frac{A_{res}F}{RT}\right)} - r_{a} e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)} + r_{c2} e^{\left(\frac{A_{res}F}{RT}\right)} e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)}}{\left(1 + r_{1} e^{\left(\frac{F \, A_{res}}{RT}\right)}\right) e^{\left(\frac{6F \, \Delta \Psi_{B}}{RT}\right)} + \left(r_{2} + r_{3} e^{\left(\frac{F \, A_{res}}{RT}\right)}\right) e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)}}}{\left(1 + r_{1} e^{\left(\frac{F \, A_{res}F}{RT}\right)}\right) e^{\left(\frac{6F \, \Delta \Psi_{B}}{RT}\right)} - (r_{a} + r_{b}) e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)}}\right)} \\ V_{He} = 6 \rho^{\text{res}} \frac{\left(r_{a} e^{\left(\frac{A_{res}F}{RT}\right)}\right) e^{\left(\frac{6F \, \Delta \Psi_{B}}{RT}\right)} - (r_{a} + r_{b}) e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)}}\right)}{\left(1 + r_{1} e^{\left(\frac{F \, A_{res}}{RT}\right)}\right) e^{\left(\frac{6F \, \Delta \Psi_{B}}{RT}\right)} + \left(r_{2} + r_{3} e^{\left(\frac{F \, A_{res}}{RT}\right)}\right) e^{\left(\frac{g \, 6F \, \Delta \mu_{H}}{RT}\right)}} \\ A_{res} = \frac{R \, T}{F} \ln \left(K_{res} \sqrt{\frac{[NADH]}{[NAD^{+}]}}\right) \\ \left[NAD^{+}\right] = C_{PN} - [NADH] \\ V_{HSDH} \left(r_{a} e^{\left(\frac{A_{res}(F) \, F}{RT}\right)} - (r_{a} + r_{b}) e^{\left(\frac{g \, 4F \, \Delta \mu_{H}}{RT}\right)}\right) \frac{1}{1 + \frac{[OAA]}{K_{i}^{OAA}}} \\ = 4 \rho^{\text{res}(F)} \frac{\left(1 + r_{1} e^{\left(\frac{F \, A_{res}(F)}{RT}\right)}\right) e^{\left(\frac{4F \, \Delta \Psi_{B}}{RT}\right)} + \left(r_{2} + r_{3} e^{\left(\frac{F \, A_{res}(F)}{RT}\right)}\right) e^{\left(\frac{g \, 4F \, \Delta \mu_{H}}{K_{i}^{OAA}}}}$$

$$A_{res(F)} = \frac{\text{R T}}{F} \ln \left( K_{res(F)} \sqrt{\frac{[\text{SUC}]}{[\text{FUM}]}} \right)$$

 $V_{ATPase}$ 

$$\rho^{F1} \frac{\left(10^{2} p_{a} + p_{c1} e^{\left(\frac{3 F \Delta \Psi_{B}}{R T}\right)}\right) e^{\left(\frac{A_{F1} F}{R T}\right)} - \left(p_{a} e^{\left(\frac{3 F \Delta \mu_{H}}{R T}\right)} + p_{c2} e^{\left(\frac{A_{F1} F}{R T}\right)} e^{\left(\frac{3 F \Delta \mu_{H}}{R T}\right)}\right)}{\left(1 + p_{1} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \Psi_{B}}{R T}\right)} + \left(p_{2} + p_{3} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \mu_{H}}{R T}\right)}}{\left(1 + p_{1} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \Psi_{B}}{R T}\right)} + \left(p_{2} + p_{3} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \mu_{H}}{R T}\right)}}{\left(1 + p_{1} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \Psi_{B}}{R T}\right)} + \left(p_{2} + p_{3} e^{\left(\frac{F A_{F1}}{R T}\right)}\right) e^{\left(\frac{3 F \Delta \mu_{H}}{R T}\right)}}}{A_{F1} = \frac{R T}{F} \ln \left(K_{F1} \frac{[ATP]_{m}}{[ADP]_{m} Pi}\right)}$$
$$V_{Hleak} = g_{H} \Delta \mu_{H}}$$
$$\Delta \mu_{H} = -2.303 \frac{R T}{F} \Delta pH + \Delta \Psi_{m}$$

Cytosolic metabolic reaction rates

$$V_{ANT} = V_{\text{maxANT}} \frac{0.75 \left(1 - \frac{0.25 [\text{ATP}]_i \times 0.45 [\text{ADP}]_m}{0.17 [\text{ADP}]_i \times 0.025 [\text{ATP}]_m}\right) \left(e^{-\frac{F}{RT} \Delta \Psi_m}\right)}{\left(1 + \frac{0.25 [\text{ATP}]_i}{0.225 [\text{ADP}]_i} e^{\left(-\frac{h^{\text{ANT}} F \Delta \Psi_m}{RT}\right)}\right) \left(1 + \frac{0.45 [\text{ADP}]_m}{0.025 [\text{ATP}]_m}\right)}{V_{CK}^{cyto}} = k_{CK}^{cyto} \left([ATP]_{ic} [Cr]_{ic} - \frac{[ADP]_{ic} [CrP]_{ic}}{K_{EQ}}\right)$$
$$V_{CK}^{mito} = k_{CK}^{mito} \left([ATP]_i [Cr]_i - \frac{[ADP]_i [CrP]_i}{K_{EQ}}\right)$$
$$V_{tr}^{CrP} = k_{tr}^{Cr} ([CrP]_i - [CrP]_{ic})$$

| Parameter           | Value                     | Units            | Description                                                            |
|---------------------|---------------------------|------------------|------------------------------------------------------------------------|
| r <sub>a</sub>      | 6.394 × 10 <sup>-13</sup> | ms⁻¹             | Sum of products of rate constants                                      |
| r <sub>b</sub>      | 1.762 × 10 <sup>-16</sup> | ms <sup>-1</sup> | Sum of products of rate constants                                      |
| r <sub>c1</sub>     | 2.656 × 10 <sup>-22</sup> | ms <sup>-1</sup> | Sum of products of rate constants                                      |
| r <sub>c2</sub>     | 8.632 × 10 <sup>-30</sup> | ms <sup>-1</sup> | Sum of products of rate constants                                      |
| r <sub>1</sub>      | 2.077 × 10 <sup>-18</sup> |                  | Sum of products of rate constants                                      |
| r <sub>2</sub>      | 1.728 × 10 <sup>-9</sup>  |                  | Sum of products of rate constants                                      |
| r <sub>3</sub>      | 1.059 × 10 <sup>-26</sup> |                  | Sum of products of rate constants                                      |
| $\rho^{\text{res}}$ | $3.0 \times 10^{-3}$      | mМ               | Concentration of electron carriers<br>(respiratory complexes I-III-IV) |

| Parameter            | Value                     | Units               | Description                                                             |
|----------------------|---------------------------|---------------------|-------------------------------------------------------------------------|
| Kres                 | $1.35 \times 10^{18}$     |                     | Equilibrium constant of respiration                                     |
| $\rho^{res(F)}$      | 3.75 × 10 <sup>-4</sup>   | mМ                  | Concentration of electron carriers<br>(respiratory complexes II-III-IV) |
| $\Delta \Psi_B$      | 50                        | mV                  | Phase boundary potential                                                |
| g                    | 0.85                      |                     | Correction factor for voltage                                           |
| K <sub>res(F)</sub>  | 5.765 × 10 <sup>13</sup>  |                     | Equilibrium constant of FADH <sub>2</sub> oxidation                     |
| $K_i^{OAA}$          | 0.15                      |                     | Inhibition constant for OAA                                             |
| pa                   | 1.656 × 10 <sup>-8</sup>  | ms⁻¹                | Sum of products of rate constants                                       |
| pb                   | 3.373 × 10 <sup>-10</sup> | ms⁻¹                | Sum of products of rate constants                                       |
| p <sub>c1</sub>      | 9.651 × 10 <sup>-17</sup> | ms⁻¹                | Sum of products of rate constants                                       |
| p <sub>c2</sub>      | 4.585 × 10 <sup>-17</sup> | ms⁻¹                | Sum of products of rate constants                                       |
| <b>p</b> 1           | 1.346 × 10 <sup>-8</sup>  |                     | Sum of products of rate constants                                       |
| p <sub>2</sub>       | 7.739 × 10 <sup>-7</sup>  |                     | Sum of products of rate constants                                       |
| p <sub>3</sub>       | 6.65 × 10 <sup>-15</sup>  |                     | Sum of products of rate constants                                       |
| $\rho^{\texttt{F1}}$ | 1.5                       | mM                  | Concentration of F <sub>1</sub> F <sub>0</sub> -ATPase                  |
| K <sub>F1</sub>      | 1.71 × 10 <sup>6</sup>    |                     | Equilibrium constant of ATP hydrolysis                                  |
| Pi                   | 2.0                       | mM                  | Inorganic phosphate concentration                                       |
| C <sub>A</sub>       | 1.5                       | mΜ                  | Total sum of mitochondrial adenine nucleotides                          |
| V <sub>maxANT</sub>  | 0.025                     | mM ms <sup>-1</sup> | Maximal rate of the ANT                                                 |
| h <sup>ANT</sup>     | 0.5                       |                     | Fraction of $\Delta \Psi_m$                                             |
| gн                   | 1.0 × 10 <sup>-8</sup>    | mM ms⁻¹<br>mV⁻¹     | Ionic conductance of the inner membrane                                 |
| ∆рН                  | -0.6                      | pH units            | pH gradient across the mitochondrial inner membrane                     |
| $C_{PN}$             | 10.0                      | mΜ                  | Total sum of mitochondrial pyridine nucleotides                         |
| $\delta_{Ca}$        | 0.0003                    |                     | Mitochondrial free calcium fraction                                     |
| $k_{CK}^{cyto}$      | $1.4 \times 10^{-4}$      | ms⁻¹                | Forward rate constant of cytoplasmic CK                                 |
| $k_{CK}^{mito}$      | 1.33 × 10 <sup>-6</sup>   | ms <sup>-1</sup>    | Forward rate constant of mitochondrial CK                               |

| Parameter           | Value                  | Units   | Description                                 |
|---------------------|------------------------|---------|---------------------------------------------|
| $k_{tr}^{Cr}$       | 2.0 × 10 <sup>-3</sup> | ms⁻¹    | Transfer rate constant of CrP               |
| K <sub>EQ</sub>     | 0.0095                 |         | Equilibrium constant of CK                  |
| $V_{ATPase}^{cyto}$ | 1.0 10 <sup>-5</sup>   | mM ms⁻¹ | Constitutive cytosolic ATP consumption rate |

## Mitochondrial Ca<sup>2+</sup> handling rates

$$V_{uni} = V_{max}^{uni} \frac{\frac{[Ca^{2+}]_i}{K_{trans}} \left(1 + \frac{[Ca^{2+}]_i}{K_{trans}}\right)^3 \frac{2 \operatorname{F} (\Delta \Psi_m - \Delta \Psi^0)}{R \operatorname{T}}}{\left(\left(1 + \frac{[Ca^{2+}]_i}{K_{trans}}\right)^4 + \frac{L}{\left(1 + \frac{[Ca^{2+}]_i}{K_{act}}\right)^{n_a}}\right) \left(1 - e^{\left\{\frac{-2 \operatorname{F} (\Delta \Psi_m - \Delta \Psi^0)}{R \operatorname{T}}\right\}}\right)}$$

$$V_{NaCa} = V_{\max}^{NaCa} \frac{e^{\left(\frac{b F (\Delta \Psi_m - \Delta \Psi^\circ)}{RT}\right)} e^{\left(ln \quad \frac{[Ca^{2+}]_m}{[Ca^{2+}]_i}\right)}}{\left(1 + \frac{K_{Na}}{[Na^+]_i}\right)^n \left(1 + \frac{K_{Ca}}{[Ca^{2+}]_m}\right)}$$

| Parameter          | Value                   | Unit    | Description                                                |
|--------------------|-------------------------|---------|------------------------------------------------------------|
| $V_{max}^{uni}$    | 0.0275                  | mM ms⁻¹ | Vmax uniport Ca <sup>2+</sup> transport                    |
| ΔΨ°                | 91                      | mV      | Offset membrane potential                                  |
| K <sub>act</sub>   | $3.8 \times 10^{-4}$    | mM      | Activation constant                                        |
| K <sub>trans</sub> | 0.019                   | mM      | $K_d$ for translocated Ca <sup>2+</sup>                    |
| L                  | 110.0                   |         | Keq for conformational transitions in uniporter            |
| n <sub>a</sub>     | 2.8                     |         | Uniporter activation cooperativity                         |
| $V_{max}^{NaCa}$   | $0.8 \times 10^{-4}$    | mM ms⁻¹ | Vmax of Na <sup>+</sup> /Ca <sup>2+</sup> antiporter       |
| b                  | 0.5                     |         | $\Delta\Psi_m$ dependence of Na+/Ca2+ antiporter           |
| K <sub>Na</sub>    | 9.4                     | mM      | Antiporter Na <sup>+</sup> constant                        |
| K <sub>Ca</sub>    | 3.75 × 10 <sup>-4</sup> | mM      | Antiporter Ca <sup>2+</sup> constant                       |
| n                  | 3                       |         | Na <sup>+</sup> /Ca <sup>2+</sup> antiporter cooperativity |
| δ                  | 3.0× 10 <sup>-4</sup>   |         | Fraction of free [Ca <sup>2+</sup> ] <sub>m</sub>          |

|                                  |                                                    | HF         | HF        |
|----------------------------------|----------------------------------------------------|------------|-----------|
| Symbol                           | Description                                        | normal ATP | low ATP   |
| [ATP]i                           | EC coupling linked ATP concentration               | 6.90E+00   | 3.70E+00  |
| V                                | Sarcolemmal membrane potential                     | -8.57E+01  | -8.54E+01 |
| P <sub>C1</sub>                  | Fraction of RyR channels in $P_{C1}$ state         | 2.49E-01   | 2.36E-01  |
| P <sub>C2</sub>                  | Fraction of RyR channels in $P_{C2}$ state         | 7.50E-01   | 7.63E-01  |
| P <sub>O2</sub>                  | Fraction of RyR channels in $P_{02}$ state         | 9.42E-09   | 9.88E-09  |
| m <sub>Na</sub>                  | Sodium channel activation gate                     | 3.28E-02   | 3.27E-02  |
| n <sub>Na</sub>                  | Sodium channel inactivation gate                   | 9.87E-01   | 9.86E-01  |
| j <sub>Na</sub>                  | Sodium channel slow inactivation gate              | 9.92E-01   | 9.91E-01  |
| xKs                              | Potassium channel activation gate                  | 3.68E-02   | 4.36E-02  |
| 0                                | L-type Ca <sup>2+</sup> channel open – mode normal | 8.10E-12   | 2.45E-14  |
| $O_{Ca}$                         | L-type Ca <sup>2+</sup> channel open – mode Ca     | 0.00E+00   | 0.00E+00  |
| у                                | ICa inactivation gate                              | 4.89E-01   | 4.82E-01  |
| [K <sup>+</sup> ] <sub>i</sub>   | Intracellular K <sup>+</sup> concentration         | 1.48E+02   | 1.47E+02  |
| [Na <sup>+</sup> ] <sub>i</sub>  | Intracellular Na <sup>+</sup> concentration        | 7.35E+00   | 7.58E+00  |
| [Ca <sup>2+</sup> ] <sub>i</sub> | Intracellular Ca <sup>2+</sup> concentration       | 9.80E-05   | 1.03E-04  |
| [ADP] <sub>m</sub>               | Mitochondrial ADP concentration                    | 3.87E-01   | 5.21E-01  |
| $\Delta \Psi_m$                  | Inner mitochondrial membrane potential             | 1.56E+02   | 1.55E+02  |
| [NADH]                           | Mitochondrial NADH concentration                   | 7.01E+00   | 7.18E+00  |
| [OAA]                            | Oxalacetate concentration (mitochondrial)          | 3.67E-07   | 3.89E-07  |
| [αKG]                            | α-ketoglutarate concentration<br>(mitochondrial)   | 1.41E-03   | 1.45E-03  |
| [SCoA]                           | Succinyl CoA concentration (mitochondrial)         | 5.88E-02   | 4.63E-02  |
| [Suc]                            | Succinate concentration (mitochondrial)            | 1.50E-03   | 1.60E-03  |
| [FUM]                            | Fumarate concentration (mitochondrial)             | 6.51E-02   | 6.92E-02  |
| [MAL]                            | Malate concentration (mitochondrial)               | 3.09E-02   | 3.30E-02  |
| [ISOC]                           | Isocitrate concentration (mitochondrial)           | 5.74E-01   | 5.78E-01  |

## State variables initial conditions

| [Ca <sup>2+</sup> ] <sub>m</sub>   | Mitochondrial free Ca <sup>2+</sup> concentration      | 3.45E-04  | 3.91E-04 |
|------------------------------------|--------------------------------------------------------|-----------|----------|
| [Ca <sup>2+</sup> ] <sub>NSR</sub> | Network SR Ca <sup>2+</sup> concentration              | 4.06E-01  | 3.80E-01 |
| [Ca <sup>2+</sup> ] <sub>JSR</sub> | Junctional SR Ca <sup>2+</sup> concentration           | 4.06E-01  | 3.78E-01 |
| [Ca <sup>2+</sup> ] <sub>SS</sub>  | Ca <sup>2+</sup> concentration in the subspace         | 1.71E-04  | 1.73E-04 |
| [N <sub>1</sub> ]                  | Nonpermissive tropomyosyn with 1 cross bridges         | 1.05E-03  | 1.78E-03 |
| [P <sub>0</sub> ]                  | Permissive tropomyosyn with 0 cross bridges            | 7.71E-04  | 1.23E-03 |
| [P <sub>1</sub> ]                  | Permissive tropomyosyn with 1 cross bridges            | 8.40E-04  | 1.38E-03 |
| [P <sub>2</sub> ]                  | Permissive tropomyosyn with 2 cross bridges            | 1.66E-03  | 2.75E-03 |
| [P <sub>3</sub> ]                  | Permissive tropomyosyn with 3 cross bridges            | 1.47E-03  | 2.45E-03 |
| [LTRPNCa]                          | Ca <sup>2+</sup> bound to low affinity troponin sites  | 1.39E-02  | 1.46E-02 |
| [HTRPNCa]                          | Ca <sup>2+</sup> bound to high affinity troponin sites | 1.36E-01  | 1.36E-01 |
| C <sub>1</sub>                     | L-type Ca <sup>2+</sup> channel closed – mode normal   | 1.16E-05  | 1.20E-05 |
| C <sub>Ca0</sub>                   | L-type Ca <sup>2+</sup> channel closed – mode Ca       | 2.74E-02  | 2.97E-02 |
| Co                                 | L-type Ca <sup>2+</sup> channel closed – mode normal   | 9.73E-01  | 9.70E-01 |
| C <sub>2</sub>                     | L-type Ca <sup>2+</sup> channel closed – mode normal   | 5.22E-11  | 5.59E-11 |
| $C_{Ca1}$                          | L-type Ca <sup>2+</sup> channel closed – mode Ca       | 1.31E-06  | 1.47E-06 |
| C <sub>3</sub>                     | L-type Ca <sup>2+</sup> channel closed – mode normal   | 1.79E-13  | 6.67E-16 |
| C <sub>Ca2</sub>                   | L-type Ca <sup>2+</sup> channel closed – mode Ca       | 2.35E-11  | 2.73E-11 |
| C <sub>4</sub>                     | L-type Ca <sup>2+</sup> channel closed – mode normal   | 1.30E-13  | 4.05E-16 |
| C <sub>Ca3</sub>                   | L-type Ca <sup>2+</sup> channel closed – mode Ca       | -3.20E-18 | 2.26E-16 |
| $C_{Ca4}$                          | L-type Ca <sup>2+</sup> channel closed – mode Ca       | -8.18E-17 | 4.91E-21 |
| [CrP] <sub>i</sub>                 | Mitochondrial linked creatine phosphate concentration  | 1.04E+01  | 5.64E+00 |
| [CrP] <sub>ic</sub>                | Cytosolic creatine phosphate concentration             | 1.12E+01  | 7.30E+00 |
| [ATP] <sub>ic</sub>                | Cytosolic ATP concentration not linked to EC coupling  | 6.90E+00  | 3.70E+00 |
| ASP                                | Asparatate concentration (mitochondrial)               | 4.88E-02  | 4.88E-02 |
| [N <sub>0</sub> ]                  | Nonpermissive tropomyosyn with 0 cross bridges         | 9.94E-01  | 9.90E-01 |