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Supplemental Information 1 

Figure S1: PCA plots regarding batch effect, Gleason score, Survival status, and vial. 

 

Table S1 :  Number of patients and differentially expressed genes between healthy and 

tumoral tissue filtering by P-value <0.01 and LogFC2 found for each subset. 

Subset Nr. patients Nr. of genes with adjusted p-
value <0.01 

Nr. of genes with LogFC2  

All 51 9,284 Over-expressed: 4,675 195 Over-expressed: 107 

Under-expressed: 4,609 Under-expressed: 88 

Gleason 
6 

9 299 Over-expressed: 146 54 Over-expressed: 45 

Under-expressed: 153 Under-expressed: 9 

Gleason 
7 

24 5,464 Over-expressed: 2,519 192 Over-expressed: 115 

Under-expressed: 2,945 Under-expressed: 77 

Gleason 
>=8 

9 0 Over-expressed: 0 0 Over-expressed: 0 

Under-expressed: 0 Under-expressed: 0 
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Figure S2: Expression of differentially expressed genes between healthy and tumoral tissue 

found in the “All'' subset. Heatmap rows represent genes and column samples. Sample 

annotations were considered regarding sample type, Gleason score, ethnicity, vital status, and 

tumor category. 

 

 

Figure S3: Expression of differentially expressed genes between healthy and tumoral tissue 

found in the “Gleason 6'' subset. Heatmap rows represent genes and column samples. Sample 

annotations were considered regarding sample type, Gleason score, ethnicity, vital status, and 

tumor category. 
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Figure S4: Expression of differentially expressed genes between healthy and tumoral tissue 

found in the “Gleason 7'' subset. Heatmap rows represent genes and column samples. Sample 

annotations were considered regarding sample type, Gleason score, ethnicity, vital status, and 

tumor category. 
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Table S2: Automatic functional annotation results. 

Expression Nr. of 
genes 

All Gleason 
6 

Gleason 
7 

Automatic functional annotation  

Over- 
expressed 

35 X X X Calcium ion binding, regulation of the endocrine process, 
thyroid hormone generation and other processes related to 
metabolism like conjugation of carboxylic acids or 
aminoacids. 

16 X   - 

6  X  Cell cycle, like G2/M transition, cell cycle checkpoints, 
nuclear division and RhoGTPases. 

26   X Lipase activity and rhodopsin-like receptors. 

3 X X  - 

1  X X - 

53 X  X Androgen receptor network in prostate cancer, skeletal 
system development, neuron fate commitment, 
anterior/posterior pattern specification, cAMP signaling 
pathway and DNA-binding transcription activator activity. 

Under- 
expressed 

5 X X X Metabolism, especially to lipid metabolism. 

29 X   Multiple drugs pathways, inflammatory response, 
glutathione and prostaglandin synthesis and regulation. 

2  X  - 

20   X Androgen receptor network in prostate cancer, skeletal 
system development, neuron fate commitment, 
anterior/posterior pattern specification, cAMP signaling 
pathway and DNA-binding transcription activator activity. 

2 X X  - 

52 X  X Calcium and potassium channels, GABA B receptors, 
mesenchyme morphogenesis, actin-based cell 
projection and response to alcohol. 
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Table S3: Type of antitumoral evidence  and variability of genes previously studied in prostate 

cancer.  

 Antitumoral Evidences   

GEN 
Genetic 

manipulation 
experiments 

Functional 
Effect varies with 

the type of 
cancer 

Additional information 

PCAT14 Yes   PCa 

TRPM8  Yes Yes PCa 

DRAIC  Yes  PCa 

NPY  Yes  PCa, Differential effect depending on the cell 
lines used 

MUC2 Yes   PCa 

SNCG Yes   PCa 

CCN5  Yes Yes PCa and breast cancer 

DPT  Yes  PCa 

CXCL13 Yes   PCa 

AQP5 Yes   PCa 

FUT3 Yes   PCa circulating cancer cells 

KRT13  Yes  PCa and related to brain and bone metastasis 

GPX2 Yes   PCa resistant to castration 

CYP11A1  Yes  PCa resistant to castration 

PTGS1 Yes   PCa neuroendocrine 

MATK  Yes  PCa, breast, lung, and colorectal cancer 

PIP Yes   PCa and breast cancer 
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Table S4: Type of antitumoral evidence  and variability of genes involved in other types of 
cancer. 

 

 Antitumoral Evidences   

GEN 
Genetic 

manipulation 
experiments 

Functional 
Effect varies with 

the type of 
cancer 

Additional information 

SRARP  Yes  Cancer general processes 

CGREF1  Yes  Cancer general processes 

UNC5A  Yes  Breast and bladder cancer 

FFAR2 Yes   Colorectal cancer 

TGM3 Yes  Yes Hepatic and colorectal 

TOX3 Yes  Yes Kidney and breast cancer 

C16orf74 Yes   Pancreatic and cervix cancer 

P2RX6  Yes  Kidney cancer 

MSLN Yes   Lung cancer and mesothelioma 

LGR6 Yes   Colorectal cancer 

PDE1C Yes   Glioblastoma 

ACTC1   Yes Glioma 

EMX2OS Yes  Yes Ovarian and thyroid cancer 

LINC00958 Yes   Pancreatic cancer and Lung adenocarcinoma 

IGSF1 Yes   Thyroid cancer 

SYT8 Yes   Gastric cancer with peritoneal metastasis 

PGM5 AS1  Yes Yes Colorectal and esophageal cancer 

CHP2 Yes   Breast and ovarian cancer 

CRABP2 Yes  Yes Malignant peripheral nerve sheath and 
breast cancer 

QPRT Yes   Cancer general processes 

PON3  Yes  Cancer general processes 

CA14    Cancer general processes 
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Table S5: : Antitumoral evidence of genes previously studied in prostate cancer. 

 

Gene Function 
Cancer 

Hallmark 
Ref. 

PCa 
exp. 

MATK 
Potential tumor suppressor, downregulated by epigenetic 
modifications in multiple types of cancer and its downregulation 
promotes CRPC. 

Met., 
R.C.D., 

C.R. 

[20, 
21] 

OE 

PCAT14 
It is an AR-regulated transcript and its over-expression suppresses 
invasion; it is associated with favorable outcomes. 

Met. [22] OE 

TRPM8 
It inhibits endothelial cell migration via a non-channel function by 
trapping the small GTPase Rap1. 

Met. [23] OE 

DRAIC 
It is regulated by AR and FOXA1 and prevents the transformation of 
cuboidal epithelial cells to fibroblast-like morphology; therefore, it 
prevents cellular migration and invasion. 

Met., 
R.C.D., 

C.R. 
[24] OE 

NPY 
Lower NPY expression is associated with aggressive high-grade 
disease and progression; it may influence the microenvironment to 
modulate ERG fusions. 

Met. [26] OE 

MUC2 
It has been found to have tumor suppressor function, and its 
inhibition induced increased cell proliferation and decreased 
apoptosis. 

Prol., 
R.C.D. 

[27] OE 

SNCG 
Interacts with AR and silencing it contributes to the inhibition of 
cellular proliferation and the suppression of EMT in vitro. 

Met., Prol. [28] UE 

CCN5 
CCN5 affects extracellular matrix to stimulate angiogenesis and 
invasiveness in PCa cells. 

Met., Ang. [29] UE 

DPT It may be involved in the pathogenesis growth, and metastasis of 
prostate cancer. 

Met., Prol. [30] UE 

CXCL13 It is involved in AR-induced cell migration and invasion. Met. [31] UE 
AQP5 It is likely to play a role in cell growth and metastasis. Met., Prol. [32] UE 

FUT3 
siRNA treatment against FUT3 significantly reduced the cell growth 
rate and metastasis. 

Met., Prol. [33] UE 

KRT13 KRT13 drives metastases toward mouse bone, brain and soft tissues. Met. [34] UE 

GPX2 
Its silencing caused significant growth inhibition and increased 
intracellular ROS in human (PC3) CRPC cells. 

Met. [35] UE 

CYP11A1 Its decreased expression reduced testosterone level and tumor 
growth in castrated mice. 

C.R. [36] UE 

PTGS1 
Its increased expression is associated with cancer progression and 
linked to the dysregulation of the AR-SPDEF pathway. A.R. [37] UE 

PIP 
Reduced expression inhibits the abilities of migration, adhesion and 
invasion in breast cancer. 

Met. [56] UE 
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Table S6: Replication datasets trends compared to paired TCGA-PRAD pattern. 

 

 TCGA-PRAD GDS2545 GDS2546 GDS2547 

Identical 
expression 

pattern 

Present 
in 

dataset 

Identical 
expression 

pattern 

Present 
in 

dataset 

Identical 
expression 

pattern 

Present 
in 

dataset 

Identical 
expression 

pattern 

MATK Yes Yes Yes     

NPY Yes Yes Yes     

MUC2 Yes Yes Yes     

SNCG Yes Yes Yes     

DPT Yes Yes Yes     

CXCL13 Yes Yes Yes     

AQP5 Yes Yes Yes     

FUT3 Yes Yes      

KRT13 Yes Yes Yes     

GPX2 Yes Yes Yes     

CYP11A1 Yes Yes      

PTGS1 Yes Yes Yes     

PIP Yes Yes      

CGREF1 Yes Yes Yes     

UNC5A Yes   Yes Yes   

TGM3 Yes Yes Yes     

TOX3 Yes Yes Yes   Yes Yes 

C16orf74 Yes   Yes Yes   

P2RX6 Yes Yes      

MSLN Yes Yes      

LGR6 Yes   Yes Yes   

PDE1C Yes Yes    Yes Yes 

ACTC1 Yes Yes Yes   Yes  

EMX2OS Yes   Yes    

IGSF1 Yes Yes Yes     

SYT8      Yes Yes 

CHP2 Yes Yes  Yes    

CRABP2 Yes Yes Yes     

QPRT Yes Yes Yes     

PON3 Yes Yes      

CA14 Yes   Yes Yes Yes Yes 
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Genes previously studied in prostate cancer.

Over-expressed in tumor with regard to healthy samples

MATK “Overexpression of CHK [=MATK] in MCF-7 breast cancer cells markedly inhibited cell growth
and proliferative response to heregulin as well as decreased colony formation in soft agar. These studies
indicate that CHK binds, via its SH2 domain, to Tyr1253 of the activated ErbB-2/neu and down-regulates
the ErbB-2/neu-mediated activation of Src kinases, thereby inhibiting breast cancer cell growth. These data
strongly suggest that CHK is a novel negative growth regulator in human breast cancer.”

Zrihan-Licht, S.; Deng, B.; Yarden, Y.; McSchan, G.; Keydar, I.; Avraham, H. Csk homologous kinase, a
novel signaling molecule, directly associates with the activated ErbB-2 receptor in breast cancer cells and
inhibits their proliferation. J Biol Chem. 1998, 273(7), 4065-4072.

“Aberrant activation of Src-family tyrosine kinases (SFKs) directs initiation of metastasis and development
of drug resistance in multiple solid tumors and hematological cancers. Oncogenic mutations in Src-family
tyrosine kinases (SFKs) are rare events, aberrant activation of SFKs in cancer is likely due to dysregulation
of the two major upstream inhibitors: C-terminal Src kinase (Csk) and its homolog Csk-homologous kinase
(Chk/Matk). Csk and Chk/Matk inhibit SFKs by selectively phosphorylating the inhibitory tyrosine residue
at their C-terminal tail. Additionally, Chk/Matk can also employ a noncatalytic inhibitory mechanism
to inhibit multiple active forms of SFKs, suggesting that Chk/Matk is a versatile inhibitor capable of
constraining the activity of multiple active forms of SFKs. Mounting evidence suggests that Chk/ Matk is
a potential tumor suppressor downregulated by epigenetic silencing and/or missense mutations in several
cancers such as colorectal and lung carcinoma.”

Advani, G.; Chueh,A.C.; Lim,Y.C.; Dhillon,A.; Cheng,H.C. C-homologous kinase (Chk/Matk): a molecular
policeman suppressing cancer formation and progression. Frontiers in Biology 2015, 10, 195–202.

"SRC kinase is activated in castration resistant prostate cancer (CRPC), phosphorylates the androgen re-
ceptor (AR), and causes its ligand-independent activation as a transcription factor. Performing a functional
genomics screen, we found that downregulation of SRC inhibitory kinase CSK [CSK is not MATK] is sufficient
to overcome growth arrest induced by depriving human prostate cancer cells of androgen. CSK knockdown
led to ectopic SRC activation, increased AR signaling, and resistance to anti-androgens. (. . . ) A search in
the Oncomine database revealed frequent CSK copy number losses specifically in CRPCs as compared to
primary prostate cancer. A similar observation was made with an independent dataset as well as for the
CSK-related tyrosine kinase MATK.

Yang,C.; Fazli,L.; Loguercio,S.; Zharkikh,i.; Aza-Blanc,P.; Gleave,M.E.; Wolf,D.A. Downregulation of c-SRC
kinase CSK promotes castration resistant prostate cancer and pinpoints a novel disease subclass.Oncotarget
2015, 6, 22060–22071.

1



**** ****

5

10

15

Healthy Ady. Tumor Tumor R.

M
AT

K

Welch Anova, F (2,96.45) = 180.4, p = <0.0001

TCGA−PRAD

pwc: T test ; p.adjust: Bonferroni

*
*

4

6

8

10

Healthy Healthy Ady. Pr. PCa Met. PCa
M

AT
K

Welch Anova, F (3,57.74) = 5.56, p = 0.002

GDS2545

pwc: T test ; p.adjust: Bonferroni

Healthy Ady.

Tumor

Tumor R.

51

51

427

Healthy

Healthy Ady.

Met. PCa

Pr. PCa

18

63

25

57

Expression of MATK

2



PCAT14 “By performing differential expression analysis between prostate cancer with low vs high Gleason
scores, we identified lncRNA PCAT14 as a prostate cancer- and lineage- specific biomarker of indolent disease.
We show that PCAT14 is an AR-regulated transcript and its overexpression suppresses invasion of prostate
cancer cells. Moreover, in multiple independent datasets, PCAT14 expression associates with favorable
outcomes in prostate cancer and adds prognostic value to standard clinicopathologic variables.”."

Shukla, S.; Zhang, X.; Niknafs, Y.S.; Xiao, L.; Mehra, R.; Cieslik, M.; Ross, A.; Schaeffer, E.; Malik, B. ;Guo,
S.; Freier, S.M.; Bui, H.H.; Siddiqui, J.; Jing, X.; Cao, X.; Dhanasekaran, S.M.; Feng, F.Y.; Chinnaiyan,
A.M.; Malik, R. Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer.
Neoplasia 2016, 18, 489–499.

“Down-regulation of PCAT-14 expression significantly associated with Gleason score and a greater prob-
ability of metastatic progression, overall survival, and prostate cancer-specific mortality across multiple
independent datasets and ethnicities. Low PCAT-14 expression was implicated with genes involved in bi-
ological processes promoting aggressive disease. In-vitro analysis confirmed that low PCAT-14 expression
increased migration while overexpressing PCAT-14 reduced cellular growth, migration, and invasion.”

White, N.M.; Zhao, S.G.; Zhang, J.; Bozycki E.B.; Dang, H.X.; McFadden S.D.; Eteleeb, A.M.; Alshalalfa,
M.; Vergara, I.A.; Erho, N.; Arbeit, J.M.; Karnes, R.J.; Den, R.B.; Davicioni, E.; Maher, C.A. Multi-
institutional Analysis Shows that Low PCAT-14 Expression Associates with Poor Outcomes in Prostate
Cancer. Eur Urol. 2017, 71 (2):257-266.
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TRPM8 [Its activity is not clear, numerous studies found referred to its antitumoral properties but there
are others which talk about protumoral properties.]

“The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing
cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we
reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby
inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly
through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In
turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the confor-
mational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube forma-
tion, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by
which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior
of vascular endothelial cells by inhibiting migration.”

Genova, T.; Grolez, G.P.; Camillo, C.; Bernardini, M.; Bokhobza, A.; Richard, E.; Scianna, M.; Lemonnier,
L.; Valdembri, D.; Munaron, L.; Philips, M.R.; Mattot, V.; Serini, G.; Prevarskaya, N.; Gkika, D.; Pla, A.F.
TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1.
J. CellBiol. 2017, 216, 2107–2130.

“Cell cycle distribution and scratch assay analysis revealed that TRPM8 induced cell cycle arrest at the
G0/G1 stage (P < 0.05) and facilitated the cell apoptosis induced by starvation (P < 0.05). Furthermore,
TRPM8 inhibited the migration of PC-3-TRPM8 cells (P < 0.01) through the inactivation of focal-adhesion
kinase. It appears that TRPM8 was not essential for the survival of PC-3 cells; however, the overexpression
of TRPM8 had negative effects on the proliferation and migration of PC-3 cells. Thus, TRPM8 and its
agonists may serve as important targets for the treatment of prostate cancer.”

Yang, Z.H.; Wang, X.H.; Wang H.P.; Hu L.Q. Effects of TRPM8 on the proliferation and motility of prostate
cancer PC-3 cells. Asian J. Androl. 2009, 11(2): 157-165.

“However, recent studies have brought to light the complexity of TRPM8 isoforms in PCa. (. . . ) Here
we have studied the role of these regulatory sM8s subunits of TRPM8 in prostate cancer survival. Using a
siRNA-based strategy to decipher their role as non-channel isoforms, we have demonstrated that suppression
of sM8 isoforms (non-channel cytoplasmic small TRPM8 isoforms) induced the deregulation of TRPM8 and
4TM-TRPM8 (TM transmembrane domain) mRNA expression, ER and mitochondrial pathways of oxidative
stress, p21 induction and apoptosis. Finally, we have demonstrated that this sM8s-mediated apoptosis in
prostate cancer cells required functional 4TM-TRPM8 channels. Altogether, our results suggest that sM8
isoforms participate in resistance against pro-apoptotic signals in prostate cancer cells and consequently that
targeting sM8 isoforms rather than the TRPM8 channel itself could be an appropriate and beneficial strategy
against extracapsular prostate cancer.”

Bidaux, G.; Borowiec, A.S.; Dubois, C.; Delcourt, P.; Schulz, C.; Abeele, F.V.; Lepage, G.; Desruelles, E.;
Bokhobza, A.; Dewailly, E.; Slomianny, C.; Roudbaraki, M.; Héliot, L.; Bonnal, J.L.; Mauroy, B.; Mariot,
P.; Lemonnier, L.; Prevarskaya, N. Targeting of short TRPM8 isoforms induces 4TM-TRPM8-dependent
apoptosis in prostate cancer cells. Oncotarget. 2016, 7 (20): 29063-29080.

“Although TRPM8 mRNA levels increase at the early prostate cancer stages, we found that it is not propor-
tionally translated into TRPM8 protein levels. High-throughput proteome analysis revealed that TRPM8
degradation is enhanced in human prostate cancer cells. This degradation is executed via a dual degradation
mechanism with the involvement of both lysosomal and proteasomal proteolytic pathways.”

Asuthkar, S.; Demirkhanyan, L.; Mueting, S.R.; Cohen, A.; Zakharian, E. High-throughput proteome anal-
ysis reveals targeted TRPM8 degradation in prostate cancer. Oncotarget 2017, 8 (8): 12877-12890.
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DRAIC “The DRAIC lncRNA was identified from RNA-seq data and is downregulated as prostate can-
cer cells progress from an androgen-dependent (AD) to a castration-resistant (CR) state. Prostate cancers
persisting in patients after androgen deprivation therapy (ADT) select for decreased DRAIC expression, and
higher levels of DRAIC in prostate cancer are associated with longer disease-free survival (DFS). Androgen
induced androgen receptor (AR) binding to the DRAIC locus and repressed DRAIC expression. In contrast,
FOXA1 and NKX3-1 are recruited to the DRAIC locus to induce DRAIC, and FOXA1 specifically counters
the repression of DRAIC by AR. The decrease of FOXA1 and NKX3-1, and aberrant activation of AR,
thus accounts for the decrease of DRAIC during prostate cancer progression to the CR state. Consistent
with DRAIC being a good prognostic marker, DRAIC prevents the transformation of cuboidal epithelial
cells to fibroblast-like morphology and prevents cellular migration and invasion. (. . . ) Finally, based on
TCGA analysis, DRAIC expression predicts good prognosis in a wide range of malignancies, including blad-
der cancer, low-grade gliomas, lung adenocarcinoma, stomach adenocarcinoma, renal clear cell carcinoma,
hepatocellular carcinoma, skin melanoma, and stomach adenocarcinoma.”

Sakurai, K.; Reon, B.J.; Anaya, J.; Dutta, A. The lncRNA DRAIC/PCAT29 Locus Constitutes a Tumor-
Suppressive Nexus. Mol. CancerRes. 2015, 13, 828–838.

“Decreased DRAIC expression predicts poor patient outcome in prostate and seven other cancers, while
increased DRAIC represses growth of xenografted tumors. Here we show that cancers with decreased DRAIC
expression have increased NF-KB target gene expression. DRAIC downregulation increased cell invasion and
soft agar colony formation; this was dependent on NF-KB activation. DRAIC interacted with subunits of
the IKB kinase (IKK) complex.”

Saha, S.; Kiran, M.; Kuscu, M.; Chatrath, A.; Wotton, D.; Mayo, M.W.; Dutta, A. Long noncoding RNA
DRAIC inhibits prostate cancer progression by interacting with IKK to inhibit NF-KB activation. Cancer
Res. 2020, 80(5): 950-963.
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NPY “[Genome-wide expression profiling of n=18818] Though NPY is highly expressed in prostate cancers
relative to other cancers, low NPY expression is associated with adverse genomic and histological features,
disease progression, and poor clinical outcomes. Furthermore, patients with low NPY and ERG fusions are
at a high risk of developing metastasis and may be at risk of ADT resistance.”

Alshalalfa, M.; Nguyen, P.L.; Beltran, H.; Chen, W.S.; Davicioni, E.; Zhao, S.G.; Rebbeck, T.R.; Schaeffer,
E.M.; Lotan, T.L.; Feng, F.Y.; Mahal, B.A.Transcriptomic and Clinical Characterization of Neuropeptide Y
Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype
with Clinical Implications. Eur UrolOncol 2019, 2, 405–412.

“The role of NPY in PCa biology appears to vary in different in vitro human PCa cell systems, since it has
been found to reduce the proliferation of LNCaP and DU145 cells, but to stimulate the growth of PC3 cells.
These effects are mediated mainly by the NPY Y1 receptor and are associated with a clone-specific pattern
of intracellular signaling activation, including a peculiar time-course of MAPK/ERK1/2 phosphorylation
(long-lasting in DU145 and transient in PC3 cells).”

Ruscica, M.; Dozio, E.; Motta, M.; Magni, P. Modulatory actions of neuropeptide Y on prostate cancer
growth: role of MAP kinase/ERK 1/2 activation. Adv Exp Med Biol. 2007, 604, 96-100.
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MUC2 “Mucinous adenocarcinoma of the prostate shows diffuse expression of MUC2, a known tumor
suppressor, which is not present in either normal prostate or the majority of conventional adenocarcinomas
of this organ. (. . . ) In normal tissue, the expression of this marker is largely limited to intestinal goblet
cells, hence the name ‘secretory’-type mucin. (. . . ) Absence of MUC2 induces increased cell proliferation,
decreased apoptosis and increased migration of intestinal epithelial cells, ultimately leading to a spectrum
of neoplastic transformation, ranging from aberrant crypt foci to adenomas to frank carcinomas.”

Osunkoya, A.O.; Adsay, N.V.; Cohen, C.; Epstein, J.I.; Smith, S.L. MUC2 expression in primary mucinous
and non mucinous adenocarcinoma of the prostate: ananalysis of 50 cases on radical prostatectomy. Mod.
Pathol. 2008, 21, 789–794.
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Under-expressed in tumor with regard to healthy samples

SNCG “Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation,
the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro,
as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently,
mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR
and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-
dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in
benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with
peripheral and lymph node invasion.”

Chen, J.; Jiao, L.; Xu, C.; Yu, Y.; Zhang, Z.; Chang, Z.; Deng, Z.; Sun, Y. Neural protein gamma-synuclein
interacting with androgen receptor promotes human prostate cancer progression. BMC Cancer 2012, 12,
593.

“DLX6-AS1 promoted PCa progression via upregulation of SNCG at a miR-497-5p dependent way”.

Zhu, X.; Ma, X.; Zhao, S.; Cao, Z. DLX6-AS1 accelerates cell proliferation through regulating miR-497-
5p/SNCG pathway in prostate cancer. Environmental Toxicology 2020, 1-12.
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CCN5 “The Wnt-Induced Signaling Protein-2 (Wisp-2 /CCN5) is a secreted protein implicated in mod-
ification of extracellular matrix, invasion, and angiogenesis. (. . . ) These results show that Wisp2 is down
stream effector of IL-8 and is an important modulator, affecting extracellular matrix to stimulate angiogenesis
and invasiveness in CaP cells. Suppression of Wisp-2 in CaP may reduce their metastatic potential.”

Hashimoto, Y. Effect of Wnt signaling protein (Wisp2/CCN5) on angiogenesis and invasion in prostate
cancer. J. Clin.Oncol. 2016, 30, 227.

“The studies showed that CCN5 expression is biphasic, such that in normal samples CCN5 expression is
undetectable, whereas its expression is markedly increased in noninvasive breast lesions, including atypical
ductal hyperplasia and ductal carcinoma in situ. Further, CCN5 mRNA and protein levels are significantly
reduced as the cancer progresses from a noninvasive to invasive type. (. . . ) CCN5 is a negative regulator
of migration and invasion of breast cancer cells, and these events could be regulated by CCN5 through the
modulation of the expression of genes essential for an invasive front.”

Banerjee, S.; Dhar, G.; Haque, i.; Kambhampati, S.; Mehta, S.; Sengupta, K.; Tawfik, O.; Phillips, T.A.;
Banerjee, S.K. CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent pro-
gression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res. 2008, 68(18)
7606-7612.
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DPT “Transfectants of mouse dermatopontin cDNA into PC-3 human prostate cancer cells showed en-
hanced dermatopontin protein expression compared with control PC-3 cells, leading to enhanced tumor
growth when mouse dermatopontin-transfected tumor cells were implanted subcutaneously in nude mice
compared with the controls. There are two possibilities why dermatopontin has enhanced the PC-3 tumor
growth in vivo. Dermatopontin itself is an extracellular matrix, thus increases the stroma, including colla-
gen 1. The increased stroma may have the possibility to support the tumor growth by supplying blood and
nutrition. (. . . ) In conclusion, dermatopontin may be involved in the pathogenesis, growth, and metastasis
of the prostate cancer”

Takeuchi, T.; Suzuki, M.; Kumagai, J.; Kamijo, T.; Sakai, M.; Kitamura, T. Extracellular matrix dermato-
pontin modulates prostate cell growth in vivo. J. Endocrinol. 2006, 190, 351–361.
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CXCL13 “CXCL13, known as B cell attracting chemokine1 (BCA-1), is a member of CXC chemokine
family and relevant to cancer metastasis. This study shows that CXCL13 is an androgen-responsive gene
and involved in AR-induced PCa cell migration and invasion. In clinical specimens, expression of CXCL13
in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of CXCL13 is
up-regulated by androgen-AR axis at both mRNA and protein levels. Furthermore, Chip-Seq assay identifies
canonical androgen responsive elements (ARE) at CXCL13 enhancer. (. . . ) In addition, CXCL13 promotes
G2/M phase transition by increasing Cyclin B1 levels in PCa cells. Functional studies demonstrate that
reducing endogenous CXCL13 expression in LNCaP cells largely weakens androgen-AR axis induced cell
migration and invasion. Taken together, our study implicates for the first time that CXCL13 is an AR
target gene and involved in AR-mediated cell migration and invasion in primary PCa.”

Fan, L.; Zhu, Q.; Liu, L.; Zhu, C.; Huang, H.; Lu, S.; Liu, P. CXCL13 is androgen-responsive and involved
in androgen induced prostate cancer cell migration and invasion. Oncotarget 2017, 8, 53244–53261.

“Mechanistic analysis revealed that PKCe overexpression and Pten loss individually and synergistically
upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the
CXCL13 gene via the non-canonical nuclear factor kB (NF-kB) pathway. Notably, targeted disruption
of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic
properties.”

Garg, R.; Blando, J.M.; Perez, C.J.; Abba, M.C.; Benavides, F.; Kazanietz, M.G. Protein Kinase C Ep-
silon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway. Cell
Rep. 2017, 19(2), 357-388.
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AQP5 “Patients who were negative for AQP5 had superior cumulative survival rate than those who were
positive for it. Over-expression of AQP5 protein was also found in prostate cancer cells and cell proliferation
and migration were significantly attenuated by AQP5-siRNA.”

Li, J.; Wang, Z.; Chong, T.; Chen, H.; Li, H.; Li, G.; Zhai, X.; Li, Y.Over-expression of a poor prognostic
marker in prostate cancer: AQP5 promotes cells growth and local invasion. WorldJSurgOncol 2014, 12, 284.
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FUT3 “Our results further support the functional importance of FUT3 in E-selectin-mediated CCC (cir-
culating cancer cells) recruitment and the feasibility of disrupting CCC metastasis using an siRNA approach.
An intriguing observation from our research is the cell growth inhibition by FUT3 siRNA. Inhibition of tumor
growth with reduced expression of FUT enzymes has been reported in a few references. (. . . ) Our study
provides support for using FUT3 siRNA to disrupt CCC metastasis. When delivered systemically, FUT3
siRNA will target epithelial cells without affecting leukocytes. (. . . ) Delivery of FUT3 siRNA to epithelial
cancer cells will not only block their metastasis but also slow down their proliferation, an added benefit for
anti-metastasis applications.”

Yin, X.; Rana, K.; Ponmudi, V.; King, M.R. Knockdown of fucosyltransferase III disrupts the adhesion of
circulating cancer cells to E-selectin without affecting hematopoietic cell adhesion. Carbohydr.Res. 2010,
345, 2334–2342.
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KRT13 “Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases to-
ward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the
expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, develop-
ment, and extracellular matrices, but not receptor activator NF-KB ligand (RANKL) signaling networks in
prostate cancer cells.”

Li, Q.; Yin, L.; Jones, L.W.; Chu, G.C.; Wu, J.B.; Huang, J.M.; Li, Q.; You, S.; Kim, J.; Lu, Y.T.;
Mrdenovic, S.; Wang, R.; Freeman, M.R.; Garraway, I.; Lewis, M.S.; Chung, L.W.; Zhau, H.E. Keratin
13 expression reprograms bone and brain metastases of human prostate cancer cells. Oncotarget 2016, 7,
84645–84657.

“The expression profile of KRT13 in benign fetal and adult prostate tissue and in recombinant grafts, as well
as the frequency of KRT13 expression in primary and metastatic prostate cancer indicates that it may be a
marker of a stem/progenitor-like cell state that is co-opted in aggressive tumor cells. KRT13 is enriched in
benign stem-like cells that display androgen-resistance, apoptosis-resistance, and branching morphogenesis
properties. Collectively our data demonstrate that KRT13 expression is associated with poor prognosis at
multiple stages of disease progression and may represent an important biomarker of adverse outcome in
patients with prostate cancer.”

Liu, S.; Cadaneau R.M.; Zhang, B.; Huo, L.; Lai, K.; Li, X.; Galet, C.; Grogan, T.R.; Elashoff, D.; Freedland,
S.J.; Rettig, M.; Aronson, W.J.; Knudsen, T.R.; Lewis, M.S.; Garraway, I.P. Keratin 13 Is Enriched in
Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone.
PLoS One. 2016, 11(10).
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GPX2 “Silencing of GPX2 caused significant growth inhibition and increased intracellular ROS in both rat
(PCai1) and human (PC3) CRPC cells. Flow cytometry and western blot analyses revealed that the decrease
in proliferation rate of the GPX2-silenced cells was due to cyclin B1-dependent G2/M arrest. Furthermore,
knockdown of Gpx2 inhibited tumor growth of PCai1 cells in castrated mice. (. . . ) Moreover, patients with
high GPX2 expression in biopsy specimen had significantly lower prostate-specific antigen recurrence-free
survival and overall survival than those with no GPX2 expression.”

Naiki, T.; Naiki-Ito, A.; Asamoto, M.; Kawai, N.; Tozawa, K.; Etani, T.; Sato, S.; Suzuki, S.; Shirai, T.;
Kohri, K.; Takahashi, S. GPX2 overexpression is involved in cell proliferation and prognosis of castration-
resistant prostate cancer. Carcinogenesis 2014, 35, 1962–1967.
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CYP11A1 “We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis in-
duced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null PCa cell lines in
culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased CYP11A1 and Cyp17a1
expression, testosterone level and tumor growth in castrated mice.”

Yang, Y.; Bai, Y.; He, Y.; Zhao, Y.; Chen, J.; Ma, L.; Pan, Y.; Hinten, M.; Zhang, J.; Karnes, R.J.; Kohli,
M.; Westendorf, J.J.; Li, B.; Zhu, R.; Huang, H.; Xu, W. PTEN Loss Promotes Intratumoral Androgen
Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-
Resistant Prostate Cancer. Clin. CancerRes. 2018, 24, 834–846.
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PTGS1 “Prostaglandin endoperoxide synthase 1 (PTGS1), also known as cyclooxygenase 1 (COX1), was
shown to regulate angiogenesis in endothelial cells. Activation of PTGS1 is involved in the inflammatory
response, cell proliferation, and fatty acid metabolism during tumor progression. (. . . ) We hypothesized that
the abundance of PTGS1 may be involved in NEPC [neuroendocrine prostate cancer] differentiation following
ADT. (. . . ) Our results demonstrated that ADT induces ZBTB46 expression through the downregulation
of the androgen-responsive SAM pointed domain containing ETS transcription factor (SPDEF), leading to
increased expression of PTGS1 and contributing to NE differentiation of prostate cancer cells. The addition
of PTGS1 inhibitor treatment can restore enzalutamide (MDV3100) sensitivity and reduce tumor growth,
whereas overexpression of ZBTB46 disrupts the tumor-suppressive effect of this combination treatment and
induces PTGS1- and NEPC- associated genes.”

Chen, W.Y.; Zeng, T.; Wen, Y.C.; Yeh, H.L.; Jiang, K.C.; Chen, W.H.; Zhang, Q.; Huang, J.; Liu, Y.N. An-
drogen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate
cancer. Cancer Lett. 2019, 440-441, 35–46.
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PIP “Using BCa and PCa cells, we found that Runx2, a pro-metastatic transcription factor, functionally
interacts with the Androgen Receptor (AR) to regulate PIP expression. Runx2 expression in C4-2B PCa
cells synergized with AR to promote PIP expression. (. . . ). PIP silencing arrested growth in cultures that
were maintained with complete serum, where mitogens other than androgens likely predominated. (. . . )
However, it is interesting to note that PIP is not always required for cell proliferation as demonstrated by
the normal development of PIP knockout mice”

Baniwal, S.K.; Little, G.H.; Chimge, N.O.; Frenkel, B. Runx2 Controls a Feed-forward loop between An-
drogen and Prolactin-induced Protein (PIP) in Stimulating T47D Cell Proliferation. J Cell physiol. 2012,
227(5), 2276-2282.

[This article is not about PIPbut about RUNX2 in prostate cancer and is related to the one above] " The
effects of Runx2 in C4-2B/Rx2 dox cells, as well as similar observations made by employing LNCaP, 22RV1
and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa
cells, including tissue invasion, homing to bone and induction of high bone turnover."

Baniwal, S.K.; Khalid, O.; Gabet, Y.; Shah, R.R.; Purcell, D.J.; Mav, D.; Kohn-Gabet, A.E.; Shi, Y.;
Coetzee, G.A.; Frenkel, B. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone
metastasis. Mol Cancer. 2010, 9, 258.

“Reduced PIP expression in MDA-MB-453 cells can inhibit the abilities of migration, adhesion and invasion,
which suggests that PIP plays an important role in the metastatic potency of breast cancer cells.”

Zheng, Z.; Xie, X. Decreased prolactin-inducible protein expression exhibits inhibitory effects on the
metastatic potency of breast cancer cells. Chin. -Ger.J.Clin.Oncol. 2013, 12, 101–105.
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Genes not deeply studied in prostate cancer but in other cancer types.

Over-expressed in tumor with regard to healthy samples

SRARP “SRARP has recently been identified as a novel corepressor of the androgen receptor (AR) and
is located on chromosome 1p36. Here, bioinformatics analysis of large tumor datasets was performed to
study SRARP and its gene pair, HSPB7. This study demonstrated that SRARP and HSPB7 (. . . ) are
inactivated by deletions and epigenetic silencing in malignancies. Importantly, SRARP and HSPB7 have
tumor suppressor functions in clonogenicity and cell viability associated with the downregulation of Akt
and ERK. SRARP expression is inversely correlated with genes that promote cell proliferation and signal
transduction, which supports its functions as a tumor suppressor. In addition, AR exerts dual regulatory
effects on SRARP, and although an increased AR activity suppresses SRARP transcription, a minimum
level of AR activity is required to maintain baseline SRARP expression in AR+ cancer cells. (. . . ) Of note,
genome- and epigenome-wide associations of SRARP and HSPB7 with survival strongly support their tumor
suppressor functions. In particular, DNA hypermethylation, lower expression, somatic mutations, and lower
copy numbers of SRARP are associated with worse cancer outcome. Moreover, DNA hypermethylation
and lower expression of SRARP in normal adjacent tissues predict poor survival, suggesting that SRARP
inactivation is an early event in carcinogenesis.”

Naderi, A. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors
and predict clinical outcome in malignancies. Mol Oncol 2018, 12, 724–755.
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CGREF1 “Functional studies indicated that overexpression of CGREF1, or purified CGREF1 protein, can
significantly inhibit the transcriptional activity of AP-1 and reduce phosphorylation of ERK (extracellular
signal-regulated kinases) and p38 MAPK (mitogen-activated protein kinases), but not JNK/SAPK (c-JUN
N-terminal/stress-activated protein kinase). Conversely, specific siRNAs against CGREF1 can activate the
transcriptional activity of AP-1. Furthermore, overexpression of CGREF1 can repress cell proliferation,
suggesting that CGREF1 might act as a repressor of the AP-1 signaling pathway and play a significant role
in cell proliferation.”

Deng, W.; Wang, L.; Xiong, Y.; Li, J.; Wang, Y.; Shi, T.; Ma, D. The novel secretory protein CGREF1
inhibits the activation of AP-1 transcriptional activity and cell proliferation. Int. J.Biochem.CellBiol. 2015,
65, 32–39.
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UNC5A “The three mammalian receptors UNC5H1, UNC5H2, and UNC5H3 (also named UNC5A,
UNC5B, and UNC5C in human) that belong to the family of the netrin-1 receptors, UNC5H, were initially
proposed as mediators of the chemorepulsive effect of netrin-1 on specific axons. However, they were also
recently shown to act as dependence receptors. Such receptors induce apoptosis when unbound to their
ligand. We show here that the expression of the human UNC5A, UNC5B, or UNC5C is down-regulated
in multiple cancers including colorectal, breast, ovary, uterus, stomach, lung, or kidney cancers. The
loss/reduction of expression may be a crucial mechanism for tumorigenicity because the expression of
UNC5H1, UNC5H2, or UNC5H3 inhibits tumor cell anchorage-independent growth and invasion. Moreover,
these hallmarks of malignant transformation can be restored by netrin-1 addition or apoptosis inhibition.
Hence, UNC5H1, UNC5H2, and UNC5H3 receptors may represent tumor suppressors that inhibit tumor
extension outside the region of netrin-1 availability by inducing apoptosis.”

Thiebault, K.; Mazelin, L.; Pays, L.; Llambi, F.; Joly, M.O.; Scoazec, J.Y.; Saurin, J.C.; Romeo, G.;
Mehlen,P.The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment.
Proc. Natl. Acad.Sci.U.S.A. 2003, 100, 4173–4178.

“Downregulation of UNC5A was responsible for tumorigenesis and phenotypes in BC [BLADDER CANCER].
Results from clinical samples and in vitro models provided evidence for the idea that UNC5A is a candidate
tumor suppressor. Although data on a large number of patients with BC will be required in order to validate
the preliminary results of our study. (. . . ) Moreover, colony formation assay indicated that reexpression of
UNC5A inhibited the survival of 5637 cells.”

Zhu, Y.; Yu, M.; Chen, Y.; Wang, Y.; Wang, J.; Yang, C.; Bi, J. DNA damage-inducible gene, UNC5A,
functions as a tumor-suppressor in bladder cancer. Tumor Biology. 2014, 35, 6887-6891.

“Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast
tumors, and lower expression of UNC5A, particularly in ERalpha+/PR+/HER2- tumors, was associated
with poor outcome. (. . . ) These studies reveal an unexpected role of the axon guidance receptor UNC5A
in fine-tuning ERalpha and EGFR signaling and the luminal progenitor status of hormone-sensitive breast
cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of
ERalpha+ breast cancers.”

Padua, M.B.; Bhat-Nakshatri, P.; Anjanappa, M.; Prasad, M.S.; Hao, Y.; Rao, X.; Liu, S.; Wan, J.; Liu,
Y.; McElyea, K.; Jacobsen, M.; Sandusky, G.; Althouse, S.; Perkins, S.; Nakshatri, H. Dependence receptor
UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res. 2018, 20,35
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FFAR2 “Our current study assessed whether FFAR2 deficiency drives the progression of colon cancer
that is promoted by mild-inflammation. Our results suggest that FFAR2 is an important epigenetic tumor
suppressor that blocks colon cancer progression (Figure 5). The downstream pathway of FFAR2, cAMP–
PKA–CREB signaling, was overexpressed in the FFAR2-deficient mice, leading to overexpression of HDACs.
Consequently, inflammation suppressors were hypermethylated, and their expression levels were decreased.
Accordingly, our findings support the hypothesis that FFAR2 is a novel biomarker for colon cancer progres-
sion.”

Pan, P.; Oshima, K.; Huang, Y.W.; Agle, K.A.; Drobyski, W.R.; Chen, X.; Zhang, J.; Yearsley, M.M.; Yu, J.;
Wang, L.S. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors.
Int. J.Cancer 2018, 143, 886–896.

“Restoration of GPR43 [=FFAR2] expression in HCT8 human colonic adenocarcinoma cells induced G0/G1
cell cycle arrest and activated caspases, leading to increased apoptotic cell death after propionate/butyrate
treatment. (. . . ) Our results suggest that GPR43 functions as a tumor suppressor by mediating SCFA-
induced cell proliferation inhibition and apoptotic cell death in colon cancer.”

Tang, Y.; Chen, Y.; Jiang, H.; Robbins, G.T.; Nie, D. G-protein-coupled receptor for short-chain fatty acids
suppresses colon cancer. Int J Cancer. 2011, 128(4), 847-856.

**** ****

5

10

15

Healthy Ady. Tumor Tumor R.

F
FA

R
2

Welch Anova, F (2,84.84) = 63.04, p = <0.0001

TCGA−PRAD

pwc: T test ; p.adjust: Bonferroni

Healthy Ady.

Tumor

Tumor R.

51

51

427

Expression of FFAR2

23



TGM3 “Following TGM3 inhibition and overexpression in CRC cells, it was revealed that TGM3
suppressed cell proliferation, potentially via the promotion of apoptosis and cell cycle regulation. Fur-
thermore, TGM3 also inhibited invasion and metastasis. Finally, it was observed that TGM3 inhibited
epithelial-to-mesenchymal transition and activated phosphorylated AKT serine/threonine kinase in CRC
cells. The results from the present study revealed that TGM3 is a tumor suppressor in the progression of
CRC, and may be used as a novel target for CRC treatment.”

Feng, Y.; Ji, D. Huang, Y.; Ji, B.; Zhang, Y.; Li, J.; Peng, W.; Zhang, C.; Zhang, D.; Sun, Y.; Xu, Z. TGM3
functions as a tumor suppressor by repressing epithelial-to-mesenchymal transition and the PI3K/AKT
signaling pathway in colorectal cancer. Oncol. Rep. 2020, 43, 864-876.

“We identified TGM3 to be overexpressed in HCC compared to normal tissues. Higher expression of TGM3
predicts poor prognosis in HCC patients. TGM3 knockdown led to decreased HCC cell proliferation, invasion,
and xenograft tumour growth. TGM3 depletion inhibited AKT, extracellular signal–regulated kinase (ERK),
p65, and glycogen synthase kinase 3beta (GSK3beta)/beta-catenin activation, but promoted levels of cleaved
caspase 3. Moreover, TGM3 knockdown cells had increased E-cadherin levels and decreased vimentin levels,
suggesting that TGM3 contributes to epithelial–mesenchymal transition (EMT) in HCC.”

Hu, J.W.; Yang, Z.F.; Li, J.; Hu, B.; Luo, C.B.; Zhu, K.; Dai, Z.; Cai, J.B.; Zhan, H.; Hu, Z.Q.; Hu, J.;
Cao, Y.; Qiu, S.J.; Zhou, J.; Fan, J.; Huang, X.W. TGM3 promotes epithelial-mesenchymal transition and
hepatocellular carcinogenesis and predicts poor prognosis for patients after curative resection. Dig Liver Dis
2020, 52, 668–676.
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TOX3 “TOX3 was identified as a novel cancer suppressor gene in ccRCC. Hypermethylation of CpG
probes in the promoter region was associated with the functional loss of TOX3 in ccRCC cancer tissues.
Downregulation of TOX3 mRNA was strongly associated with poor clinical outcomes in ccRCC. Mechanistic
investigations showed that TOX3 deficiency facilitates the epithelial-mesenchymal transition due to impair-
ment of transcriptional repression of SNAIL members SNAI1 and SNAI2 and promotes cancer cell migration
and invasion. In vivo, restoring TOX3 expression reduced lung metastatic lesions and prolonged survival of
mice. TOX3 combined with SNAI1 or SNAI2 predicted overall survival in ccRCC patients.”

Jiang, B.; Chen, W.; Qin, H.; Diao, W.; Li, B.; Cao, W.; Zhang, Z.; Qi, W.; Gao, J.; Chen, M.; Zhao,
X.; Guo ,H. TOX3 inhibits cancer cell migration and invasion via transcriptional regulation of SNAI1 and
SNAI2 in clear cell renal cell carcinoma. Cancer Lett. 2019, 449, 76–86.

“High expression of this protein likely plays a crucial role in breast cancer progression. This is in sharp
contrast to previous studies that indicated breast cancer susceptibility is associated with lower expression of
TOX3. Together, these results suggest two different roles for TOX3, one in the initiation of breast cancer,
potentially related to expression of TOX3 in mammary epithelial cell progenitors, and another role for this
nuclear protein in the progression of cancer. In addition, these results can begin to shed light on the reported
association of TOX3 expression and breast cancer metastasis to the bone, and point to TOX3 as a novel
regulator of estrogen receptor-mediated gene expression.”

Seksenyan, A.; Kadavallore, A.; Walts, A.E.; delaTorre, B.; Berel, D.; Strom, S.P.; Aliahmad, P.; Funari,
V.A.; Kaye, J. TOX3 is expressed in mammary ER (+) epithelial cells and regulates ER target genes in
luminal breast cancer. BMC Cancer 2015, 15, 22.
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Under-expressed in tumor with regard to healthy samples

C16orf74 "Overexpression of C16orf74 protein detected by immunohistochemical analysis was an inde-
pendent prognostic factor for patients with PDAC [pancreatic ductal adenocarcinoma]. The knockdown of
endogenous C16orf74 expression in the PDAC cell lines KLM-1 and PK-59 by vector-based small hairpin-
RNA (shRNA) drastically attenuated the growth of those cells, whereas ectopic C16orf74 overexpression in
HEK293T and NIH3T3 cells promoted cell growth and invasion, respectively.

Nakamura, T.; Katagiri, T.; Sato, S.; Kushibiki, T.; Hontani, K.; Tsuchikawa, T.; Hirano, S.; Nakamura, Y.
Overexpression of C16orf74 is involved in aggressive pancreatic cancers. Oncotarget 2017, 8, 50460-50475.

“Among the genes upregulated in STS [short-term survivors] (. . . ) C16orf74 (. . . ) are involved in NF-KB-
mediated cell signaling, and (. . . ) C16orf74 (. . . ) in epithelial–mesenchymal transition.(. . . ) Associated
with poor OS in pancreatic cancer.”

Birnbaum, D.J.; Finetti, P.; Lopresti, A.; Gilabert, M.; Poizat, F.; Raoul, J.L.; Delpero, J.R.; Moutardier,
V.; Birnbaum, D.; Mamessier, E.; Bertucci, F. A 25-gene classifier predicts overall survival in resectable
pancreatic cancer. BMC Med 2017, 15, 170.

“HAND2-AS1 overexpression suppressed the proliferation, colony formation, migration and invasion of cer-
vical cancer cells. (. . . ) This study provided evidence on the inhibitory effect of HAND2-AS1 on the
development of cervical cancer through the suppression of C16orf74 expression by recruiting transcription
factor E2F4.”

Gong, J.; Fan, H.; Deng, J.; Zhang, Q. LncRNA HAND2-AS1 represses cervical cancer progression by
interaction with transcription factor E2F4 at the promoter of C16orf74. J Cell Mol Med. 2020, 24(11),
6015-5027.
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P2RX6 “Here, we found that P2RX6, a preferred receptor for ATP, contributed to the invasion and
metastasis of RCC cells. (. . . ) our preclinical studies using multiple in vitro cell lines and in vivo mouse
models as well as human clinical studies all suggest that ATP-P2RX6-Ca2+ -p-ERK1/2-MMP9 axis facilitate
RCC migration and invasion.”

Gong, D.; Zhang, J.; Chen, Y.; Xu, Y.; Ma, J.; Hu, G.; Huang, Y.; Zheng, J. ;Zhai, W.; Xue, W. The m6A-
suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca2+
influx modulating ERK1/2phosphorylation and MMP9 signaling pathway. J. Exp. Clin. CancerRes. 2019,
38, 233.
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MSLN "Mesothelin (MSLN), a tumor-associated antigen broadly overexpressed on various malignant tu-
mor cells, while its expression is generally limited to normal mesothelial cells, is an attractive candidate for
targeted therapy. (. . . ) MSLN has also been identified as a receptor of CA125 that mediates cell adhesion [6].
The interaction of CA125 and MSLN play an important role in ovarian cancer cell peritoneal implantation
and increase the motility and invasion of pancreatic carcinoma cells (. . . ). The overexpression of MSLN
could activate the NFKB, MAPK, and PI3K pathways and subsequently induce resistance to apoptosis or
promote cell proliferation, migration, and metastasis by inducing the activation and expression of MMP7
and MMP9. An increase in tumor burden and poor overall survival are associated with elevated MSLN
expression according to clinical observations

Lv, J.; Li, P. Mesothelin as a biomarker for targeted therapy. Biomark Res 2019, 7, 18.

“Firstly, MSLN was found to be highly upregulated in non-small cell lung cancer (NSCLC) patient tissues
and in lung carcinoma and mesothelioma cell lines. Secondly, genetic knockdown of MSLN significantly
reduced anchorage-independent cell growth, tumor sphere formation, cell adhesion, migration and invasion
in vitro, as well as tumor formation and metastasis in vivo. Thirdly, ectopic overexpression of MSLN induced
the malignant phenotype of non-cancerous cells, supporting its role as an oncogene. Finally, mechanistic
studies revealed that knockdown of MSLN reversed EMT and attenuated stem cell properties, in addition
to inhibiting tumor growth and metastasis.”

He, X.; Wang, L.; Riedel, H.; Wang, K.; Yang, Y.; Dinu, C.Z.; Rojanasakul, Y. Mesothelin promotes
epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol
Cancer. 2017, 16(1), 63.
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LGR6 “The results demonstrated that the level of Lgr6 was higher in CRC tissues than that in ad-
jacent tissues, and Lgr6 overexpression increased CRC proliferation, and invasion of CRC cells in vitro.
Notably, suppressing the expression of Lgr6 in CRC cells increased the expression of B-cell lymphoma-2
(Bcl-2)-associated X protein and caspase-3, but decreased the expression of Bcl-2 at the mRNA and protein
levels. Lgr6 also had the ability to regulate the phosphoinositide 3-kinase/AKT signaling pathway. It was
concluded that Lgr6 has a tumor-promoting role in the development of CRC”

Wang, F.; Dai, C.Q.; Zhang, L.R.; Bing, C.; Qin, J.; Liu, Y.F. Downregulation of Lgr6 inhibits proliferation
and invasion and increases apoptosis in human colorectal cancer. Int. J.Mol.Med. 2018, 42, 625–632.
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PDE1C “We demonstrate that PDE1C is essential in driving cell proliferation, migration and invasion
in GBM cultures since silencing of this gene significantly mitigates these functions. We also define the
mechanistic basis of this functional effect through whole genome expression analysis by identifying down-
stream gene effectors of PDE1C which are involved in cell cycle and cell adhesion regulation. In addition,
we also demonstrate that Vinpocetine, a general PDE1 inhibitor, can also attenuate proliferation with no
effect on invasion/migration.”

Rowther, F.B.; Wei, W.; Dawson, T.P.; Ashton, K.; Singh, A.; Madiesse-Timchou, M.P.; Thomas, D.G.;
Darling, J.L.; Warr, T. Cyclic nucleotide phosphodiesterase-1C (PDE1C) drives cell proliferation, migration
and invasion in glioblastoma multiforme cells in vitro. Mol. Carcinog. 2016, 55, 268–279.
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ACTC1 “ACTC1-positive GBMs indicated poorer prognosis compared with ACTC1-negative GBMs.”

Ohtaki, S.; Wanibuchi, M.; Kataoka-Sasaki, Y.; Sasaki, M.; Oka, S.; Noshiro, S.; Akiyama, Y.; Mikami, T.;
Mikuni, N.; Kocsis, J.D.; Honmou, O. ACTC1 as an invasion and prognosis marker in glioma. J. Neurosurg.
2017, 126, 467–475.
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EMX2OS “EMX2OS is overexpressed in human ovarian cancer tissues. Knockdown of EMX2OS reduced,
while overexpression of EMX2OS enhanced the proliferation, invasion and sphere formation of OC cells.
(. . . ) We discovered that EMX2OS directly binds to miR-654 and suppresses its expression, thus leading
to the upregulation of AKT3, which served as a direct target of miR-654. Moreover, miR-654 inhibited
cell proliferation, invasion and sphere formation, and restoration of AKT3 reversed the effects of EMX2OS
silencing or miR-654 overexpression. Furthermore, PD-L1 was identified as the key oncogenic component
acting downstream of AKT3 in OC cells. Ectopic expression of PD-L1 reversed the anti-cancer functions by
EMX2OS knockdown, AKT3 silencing or miR-654 upregulation in OC cells.”

Duan, M.; Fang, M.; Wang, C.; Wang, H.; Li, M. LncRNA EMX2OS Induces Proliferation, Invasion and
Sphere Formation of Ovarian Cancer Cells via Regulating the miR-654-3p/AKT3/PD-L1 Axis. Cancer
Manag Res 2020, 12, 2141–2154.

“Based on the findings, we infer that decreased EMX2OS expression might be a valuable prognostic biomarker
of unfavorable RFS [RECURRANCE FREE SURVIVAL] in classical PTC [PAPILLARY THYROID CAN-
CER].”

Gu, Y.; Feng, C.; Liu, T.; Zhang, B.; Yang, L. The downregulation of lncRNA EMX2OS might independently
predict shorter recurrence-free survival of classical papillary thyroid cancer. PLos One. 2018, 13(12).
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LINC00958 “LINC00958 was found notably overexpressed in LAD, which was associated with the stim-
ulation of its promoter activity induced by SP1. LINC00958 depletion dramatically inhibited LAD cell
proliferation, migration and invasion capacities by acting as a miR-625-5p sponge. MiR-625-5p curbed
LAD progression via targeting CPSF7 and down-regulating its expression. Mechanically, LINC00958 was
identified as a competing endogenous RNA (ceRNA) and positively regulated the expression of CPSF7 via
sponging miR-625-5p.”

Yang, L.; Li, L.; Zhou, Z.; Liu, Y.; Sun, J.; Zhang, X.; Pan, H.; Liu, S. SP1 induced long non-coding RNA
LINC00958 overexpression facilitate cell proliferation, migration and invasion in lung adenocarcinoma via
mediating miR-625-5p/CPSF7axis. Cancer CellInt. 2020, 20, 24.

“LINC00958 knockdown represses EMT, invasion, and metastasis of PC [PANCREATIC CANCER] cells
via the down-regulation of miR-330-5p/PAX8 axis (Fig. 7). Therefore, the identification of LINC00958 via
miR-330-5p/PAX8 in PC cells may aid in facilitating the existing understanding of the mechanisms of PC,
with potential of serving as a prognostic marker for the treatment of PC in the future.”

Chen, S.; Chen, J.Z.; Zhang, J.Q.; Chen, H.X.; Qui, F.N.; Yan, M.L.; Tian, Y.F.; Peng, C.H.; Shen, B.Y.;
Chen, Y.L.; Wang, Y.D. Silencing of long noncoding RNA LINC00958 prevents tumor initiation of pancreatic
cancer by acting as a sponge of microRNA-330-5p to down-regulate PAX8. Cancer Lett. 2019, 1, 446-449.
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IGSF1 “Loss-of-function analysis showed that IGSF1 knockdown could inhibit the cell proliferation and
significantly impair the migration and invasion in vitro. Wnt signalling is frequently activated in a variety
of tumours and be essential for tumourigenic properties. Our results demonstrated that silencing of IGSF1
would inhibit the expression of N-cadherin, EZH2, and vimentin. Results of our study shared downregulated
IGSF1 expression in thyroid cancer cell line can inhibit cell metastasis by EMT.”

Guan, Y.; Wang, Y.; Bhandari, A.; Xia, E.; Wang, O. IGSF1: A novel oncogene regulates the thyroid cancer
progression. Cell Biochem.Funct. 2019, 37, 516–524.
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SYT8 “SYT8 levels above the cut-off value were significantly and specifically associated with peritoneal
metastasis, and served as an independent prognostic marker for peritoneal recurrence-free survival of patients
with stage II/III GC. The survival difference between patients with SYT8 levels above and below the cut-off
was associated with patients who received adjuvant chemotherapy. Inhibition of SYT8 expression by GC cells
correlated with decreased invasion, migration, and fluorouracil resistance. Intraperitoneal administration of
SYT8-siRNA inhibited the growth of peritoneal nodules and prolonged survival of mice engrafted with GC
cells.”

Kanda, M.; Shimizu, D.;Tanaka,H.; Tanaka, C.; Kobayashi, D.; Hayashi, M.; Iwata, N.; Niwa, Y.; Yamada,
S.; Fujii, T.; Sugimoto, H.; Murotani, K.; Fujiwara, M.; Kodera, Y. Significance of SYT8 For the Detection,
Prediction, and Treatment of Peritoneal Metastasis From Gastric Cancer. Ann. Surg. 2018, 267, 495–503.
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PGM5AS1 “PGM5-AS1 was upregulated in CRC tissues and cell lines; however, its downregulation
contributed to the decreasing of cell viability, growth, migration, and invasion of SW480 and HCT116
cells. (. . . ) The loss of miR-484 expression in CRC might be involved in the promotion and metastasis of
CRC, which may be caused by the overexpression of PGM5-AS1. Hence, the downregulation of PGM5-AS1
could be a therapeutic target in the prevention or intervention of CRC.”

Shen, Y.; Qi, L.; Li, Y.; Zhang, Y.; Gao, X.; Zhu, Y.; Wang, K. The Downregulation of lncRNA PGM5-AS1
Inhibits the Proliferation and Metastasis Via Increasing miR-484 Expression in Colorectal Cancer. Cancer
Biother.Radiopharm. 2020.

"“Functional experiments revealed that exogenous expression of PGM5-AS1 significantly suppressed the
proliferation, migration, and invasion of ESCC cells in vitro as well as tumor growth in vivo. Mechanistically,
PGM5-AS1 was transcriptionally activated by p53 and it could directly interact with and sequester miR-466
to elevate PTEN expression, thereby inhibiting ESCC progression.”

Zhihua, Z.; Weiwei, W.; Lihua, N.; Jianying, Z.; Jiang, G. p53-induced long non-coding RNA PGM5-AS1
inhibits the progression of esophageal squamous cell carcinoma through regulating miR-466/PTENaxis.
IUBMB Life 2019, 71, 1492–1502.
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CHP2 “Moreover, it was demonstrated that overexpressing CHP2 significantly enhanced, whereas silencing
endogenous CHP2 inhibited, the proliferation and tumorigenicity of breast cancer cells in vitro and in vivo.
In addition, overexpression of CHP2 accelerated, whereas inhibition of CHP2 retarded, G1–S phase cell-
cycle transition in breast cancer cells. Mechanistically, overexpression of CHP2 activated AKT signaling and
suppressed the transactivation of the forkhead box O3 (FOXO3/FOXO3a) transcription factor.”

Zhao, X.; Xie, T.; Dai, T.; Zhao, W.; Li, J.; Xu, R.; Jiang, C.; Li, P.; Deng, J.; Su, X.; Ma, N. CHP2
Promotes Cell Proliferation in Breast Cancer via Suppression of FOXO3a. Mol. CancerRes. 2018, 16,
1512–1522.

“CHP2-transfected OVCAR3/CHP2 cells showed increased proliferation rates and exhibited increased activi-
ties of cell adhesion, migration and invasion. The current study provides the first evidence that overexpression
of the CHP2 gene affects the biological behavior of ovarian cancer cell line OVCAR3 and is one of key mech-
anisms for ovarian carcinoma progression, suggesting that CHP2 may be an attractive target for biological
anticancer therapy.”

Jin, Q.; Kong, B.; Yang, X.; Cui, B.; Wei, Y.; Yang, Q. Overexpression of CHP2 enhances tumor cell growth,
invasion and metastasis in ovarian cancer. In VIvo, 2007, 21(4), 593-598.
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CRABP2 “Although overexpression of CRABP2 is described in several cancers, it has not yet been studied
in MPNSTs. (. . . ) Knockdown of CRABP2 in MPNSTs that resulted in reduced viability and proliferation.
Its loss reduces viability and proliferation and induces apoptosis, cytotoxicity and interferon-signaling in ma-
lignant peripheral nerves heath tumors. (. . . ) We found expression of CRABP2 in human tumor Schwann
cells and that loss of CRABP2 in MPNSTs reduces viability and proliferation but induces apoptosis, cy-
totoxicity, and interferon-alpha signaling. This study suggests that CRABP2 may be mandatory for cell
survival.”

Fischer-Huchzermeyer, S.; Dombrowski, A.; Hagel, C.; Mautner, V.F.; Schittenhelm, J.; Harder, A. The
Cellular Retinoic Acid Binding Protein 2 Promotes Survival of Malignant Peripheral Nerve Sheath Tumor
Cells. Am. J.Pathol. 2017, 187, 1623–1632.
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QPRT “QPRT was identified as a caspase-3 binding protein using double layer fluorescent zymography,
but was not a substrate for caspase-3. (. . . ) Depletion of QPRT resulted in increases in active-caspase-3
with a resultant increase in spontaneous cell death. Such a role poses an alternative function for QPRT
protein in addition to its key role in de novo NAD+ synthesis.”

Ishidoh, K.; Kamemura, N.; Imagawa, T.; Oda, M.; Sakurai, J.; Katunuma, N. Quinolinate phosphoribosyl
transferase, a key enzyme in de novo NAD(+) synthesis, suppresses spontaneous cell death by inhibiting
over production of active-caspase-3. Biochim. Biophys.Acta 2010, 1803, 527–533.

********

5.0

7.5

10.0

12.5

15.0

Healthy Ady. Tumor Tumor R.

Q
P

R
T

Welch Anova, F (2,81.99) = 17.32, p = <0.0001

TCGA−PRAD

pwc: T test ; p.adjust: Bonferroni

5

6

7

8

Healthy Healthy Ady. Pr. PCa Met. PCa

Q
P

R
T

Welch Anova, F (3,55.61) = 2.24, p = 0.094

GDS2545

pwc: T test ; p.adjust: Bonferroni

Healthy Ady.

Tumor

Tumor R.

51

51

427

Healthy

Healthy Ady.

Met. PCa

Pr. PCa

18

63

25

57

Expression of QPRT

39



PON3 “PON3 is found overexpressed in various human tumors and diminishes mitochondrial superoxide
formation. It directly interacts with coenzyme Q10 and presumably acts by sequestering ubisemiquinone,
leading to enhanced cell death resistance. Localized to the endoplasmic reticulum (ER) and mitochondria,
PON3 abrogates apoptosis in response to DNA damage or intrinsic but not extrinsic stimulation. (. . . ) In
concordance with the effect of PON3 on JNK/CHOP, and CHOP’s role in cell death, PON3 also abrogated
tunicamycin-induced cell death, that is, caspase-3 activation.”

Schweikert, E.M.; Devarajan, A.; Witte, I.; Wilgenbus, P.; Amort, J.; Förstermann, U.; Shabazian,A.;
Grijalva, V.; Shih, D.M.; Farias-Eisner, R.; Teiber, J.F.; Reddy, S.T.; Horke, S. PON3 is upregulated in
cancer tissues and protects against mitochondrial superoxide-mediated cell death. Cell DeathDiffer. 2012,
19, 1549-1560.
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CA14 It is usually upregulated in cancer and linked with deacidification.

Xu, K.; Mao, X.; Mehta, M.; Cui, J.; Zhang, C.; Mao, F.; Xu, Y. Elucidation of how cancer cells avoid
acidosis through comparative transcriptomic data analysis. PLoS ONE 2013, 8, e71177.
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