

Supplementary Material

3D Ultrasound Measurements Are Highly Sensitive to Monitor Formation and Progression of Abdominal Aortic Aneurysms in Mouse Models

Nahla Ibrahim¹, Sonja Bleichert¹, Johannes Klopf¹, Gabriel Kurzreiter¹, Viktoria Knöbl¹, Hubert Hayden¹, Albert Busch², Alexander Stiglbauer-Tscholakoff³, Wolf Eilenberg¹, Christoph Neumayer¹, Marc A. Bailey^{4,5}, and Christine Brostjan¹*

¹Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and Vienna General Hospital, Vienna, Austria

²Department for Visceral, Thoracic and Vascular Surgery, Technical University of Dresden and University Hospital Carl-Gustav Carus, Dresden, Germany

³Division of Cardiovascular and Interventional Radiology, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna and Vienna General Hospital, Vienna, Austria

⁴Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom

⁵Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds, United Kingdom

* **Correspondence:** Prof. Christine Brostjan, PhD christine.brostjan@meduniwien.ac.at

SUPPLEMENTARY FIGURE LEGENDS

Suppl. Figure 1: Interobserver correlations in the AngII model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume $[mm^3]$. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline]. Spearman coefficient of correlation r and Lin's concordance correlation coefficient ρ with 95% confidence intervals (95% CI) are given.

Suppl. Figure 2: Interobserver correlations in the ePPE model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume $[mm^3]$. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline]. Spearman coefficient of correlation r and Lin's concordance correlation coefficient ρ with 95% confidence intervals (95% CI) are given.

Suppl. Figure 3: Interobserver correlations in the ePPE+BAPN model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume $[mm^3]$. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline]. Spearman coefficient of correlation r and Lin's concordance correlation coefficient ρ with 95% confidence intervals (95% CI) are given.

Suppl. Figure 4: Interobserver correlations in the PPE model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume $[mm^3]$. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline]. Spearman coefficient of correlation r and Lin's concordance correlation coefficient ρ with 95% confidence intervals (95% CI) are given.

Suppl. Figure 5: Interobserver differences depicted by Bland Altman plots for the AngII model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume [mm³]. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline].

Suppl. Figure 6: Interobserver differences depicted by Bland Altman plots for the ePPE model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume [mm³]. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline].

Suppl. Figure 7: Interobserver differences depicted by Bland Altman plots for the ePPE+BAPN model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume [mm³]. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline].

Suppl. Figure 8: Interobserver differences depicted by Bland Altman plots for the PPE model regarding four aortic parameters in 3D ultrasound analysis. A | Absolute volume [mm³]. B | Absolute diameter [mm]. C | Relative volume [% of baseline]. D | Relative diameter [% of baseline].

Suppl. Figure 9: Development of suprarenal AAAs over time in the AngII model. The development of a suprarenal AAA over time was investigated in the AngII model as measured by A | absolute volume $[mm^3]$, B | absolute diameter [mm], C | relative volume [% of baseline] and D | relative diameter [% of baseline]. Displayed are mean \pm standard deviation and single data points (n=38/23/23 mice). LMEM analysis with time as metric covariate is summarized by beta values (fixed effect estimates), 95% confidence limits (95% CI) and random effect variance. P-values indicated in graphs by * p<0.05, ** p<0.01, *** p<0.001 refer to LMEM analysis with time as categorical factor for comparison of individual time points.

Suppl. Figure 10: Development of infrarenal AAAs over time in the ePPE model. The development of an infrarenal AAA over time was investigated in the ePPE model (n=20 mice) as measured by A | absolute volume $[mm^3]$, B | absolute diameter [mm], C | relative volume [% of baseline] and D | relative diameter [% of baseline]. LMEM analysis with time as metric covariate is summarized by beta values (fixed effect estimates), 95% confidence limits (95% CI) and random effect variance. P-values indicated in graphs by * p<0.05, ** p<0.01, *** p<0.001 refer to LMEM analysis with time as categorical factor for comparison of individual time points.

Suppl. Figure 11: Development of infrarenal AAAs over time in the ePPE+BAPN model. The development of an infrarenal AAA over time was investigated in the ePPE+BAPN model (n=8 mice) as measured by A | absolute volume [mm³], B | absolute diameter [mm], C | relative volume [% of baseline] and D | relative diameter [% of baseline]. LMEM analysis with time as metric covariate is summarized by beta values (fixed effect estimates), 95% confidence limits (95% CI) and random effect variance. P-values indicated in graphs by * p<0.05, ** p<0.01, *** p<0.001 refer to LMEM analysis with time as categorical factor for comparison of individual time points.

Suppl. Figure 12: Development of infrarenal AAAs over time in the PPE model. The development of an infrarenal AAA over time was investigated in the PPE model as measured by A | absolute volume [mm³], B | absolute diameter [mm], C | relative volume [% of baseline] and D | relative diameter [% of baseline]. Displayed are mean \pm standard deviation and single data points (n=17/10/10 mice). LMEM analysis with time as metric covariate is summarized by beta values (fixed effect estimates), 95% confidence limits (95% CI) and random effect variance. P-values indicated in graphs by * p<0.05, ** p<0.01, *** p<0.001 refer to LMEM analysis with time as categorical factor for comparison of individual time points (ns, not significant).

Suppl. Figure 13: *Ex vivo* measurements of AAA volume compared to ultrasound derived aneurysm volume. The correlation between aneurysm volume as measured by 3D US or determined *ex vivo* by serial diameter measurements in the A | AngII model (n=25) and B | PPE model (n=7) were evaluated by Spearman coefficient of correlation.

Supplementary Material

LMEM	P-value	Beta	Lower 95% CI	Upper 95% CI	Random effect
A	< 0.001	0.492	0.359	0.625	15.416
В	< 0.001	0.027	0.021	0.033	0.027
С	< 0.001	5.062	3.787	6.337	1143.39
D	< 0.001	2.266	1.763	2.770	105.76

Supplementary Material

LMEM	P-value	Beta	Lower 95% CI	Upper 95% CI	Random effect
A	< 0.001	0.669	0.588	0.750	0.662
В	< 0.001	0.055	0.049	0.062	0.000
С	< 0.001	19.369	16.527	22.212	949.06
D	< 0.001	8.184	7.128	9.240	100.02

Supplementary Material

Lower

95% CI

0.886

0.057

22.320

8.216

P-value

< 0.001

< 0.001

< 0.001

< 0.001

Beta

1.113

0.068

27.596

9.872

Upper

95% CI

1.339

0.078

32.872

11.527

Random

effect

14.745

0.016

7435.82

723.53

Suppl. Fig. 11

14

LMEM	P-value	Beta	Lower 95% CI	Upper 95% CI	Random effect
A	< 0.001	0.135	0.085	0.185	0.207
В	< 0.001	0.022	0.015	0.028	0.003
С	< 0.001	3.786	2.330	5.243	224.40
D	< 0.001	3.268	2.203	4.333	110.02

