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Methods

GOFEE details

For the evolutionary structure search, we employed the GOFEE method which detailed in Ref.31

The machine learned energy landscape was constructed based on the global fingerprint feature

from Oganov and Valle.50 A Gaussian process regression model was built utilizing the same

kernel as in Ref.31 The kernel has two squared exponential terms with different characteris-

tic length scales, whose values together with that of the maximal covariance were found via

optimization of the marginal likelihood.

In the present work, a sample of prior DFT structures replaces the population used in the

original work.31 The sample is constructed with the k-means++ clustering method using the eu-

clidian distance between the global fingerprint features as the distance measure between struc-

tures. All DFT structures with energies within ∆Esample of the most stable structure found

so far are used in the clustering. We use ∆Esample = 5 eV as structures of larger energy are

not expected to represent interesting regions of configuration space. The sample size, Nsample,

was chosen to 10 for the surface oxide structures as this proved efficient. Previous use of the

GOFEE method has been successful with a similar size for the population. For illustrative pur-

poses, Nsample = 5 is used in Fig. 1. Introducing the present k-means based sampling method

as opposed to the original evolving population method eliminates the parameter, kmax, that de-

cides how different a new population member should be from existing population members to

be adopted. Figure S1 displays a comparison of the two methods showing that the k-means

based method is both faster and more reliable than the population based method (for two differ-

ent choices of kmax). Figure S2 illustrates the actual composition of a sample from one of the

conducted GOFEE searches for Sn11O12.

In each episode, 200 new independent candidates were constructed via rattling of the atoms

in the sampled structures. From these, the best candidate according to ELCB = E − κσ, where
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Figure S1: Comparison of k-means based sampling with an evolving population. The search
for the Sn11O12 structure was restarted 300 times using either the new k-means based sampling
or the original evolving population. For the latter, two different criteria for how similar a struc-
ture may be to other population members were used, either having max 0.99 or max 0.999
kernel elements between any two structures. Success is considered achieved when a structure
has a total energy within 0.2 eV of that of the global minimum energy structure. The shaded
regions represent 95% confidence intervals. The new sample-based method is both faster and
more reliable. For instance, ∼67% of the independent restarts find the GM in less than ∼600
episodes, while for the evolving population based approach, ∼800 episodes are needed for the
same fidelity. Similarly, the new method achieves 86% success after 1000 episodes, while the
old method only achieves just short of 75% success. The structure searches were conducted for
GOFEE implemented in a modified code base. They used 24 candidates and one DFT calcu-
lation per episode. The DFT calculation were sped up by having 1 k-point and 300 eV energy
cutoff for the plane waves.

E and σ are the model energy and uncertainty, respectively, was chosen. For the constant, κ we

used the value 2.

In the DFT evaluation step of GOFEE, we employed the original double-step procedure,

where two single-point DFT calculations are performed. First, one is done for the candidate

structure as just emerging from the acquisition. Next, another single-point DFT calculation is

done for the structure modified by F⃗ ∆x, where F⃗ is the DFT force just calculated for the first

structure, and where ∆x is a step length. This proceedure seeks to provide data for the machine
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learned landscape that encodes the proper direction of the energy gradient, and hence enables

efficient relaxation in this surrogate energy landscape.

Population

In the main text Fig. 1, two dimensional tin oxide nano-clusters were used as an accessible

example to present the new population scheme. To support this discussion we here present the

application of the method to the oxidized Pt3Sn(111) surface. This is depicted in Fig. S2, where

the clustering and subsequent population extraction have specifically been applied to the 500

first structures of a GOFEE search for the Sn11O12 surface composition. The figure shows the

data is clustered into families of related structures along with example structures for some of

these families. The families include variations in the number and arrangement of protruding Sn

atoms, variations in the placement of the oxide layer with respect to the underlying metal sur-

face, and alternative arrangements of Sn such as those in a square configuration with alternating

up and down Sn, resembling strips from bulk SnO.

DFT calculations

GOFEE searches were carried out on a fixed support, consisting of two layers of Pt3Sn(111).

DFT evaluations during the searches were performed using the Atomic Simulation Environ-

ment (ASE)51 with the grid-based projector-augmented wave (GPAW) code52, 53 in plane wave

mode with an energy cutoff of 400 eV and a (2× 2× 1) k-point grid. Generalized gradient ap-

proximation (GGA) with the PBE functional54 was used to describe the exchange–correlation

interaction. The four best candidates for each composition was subsequently transferred to a

five layer support and relaxed, fixing only the bottom two layers, using a (4 × 4 × 1) k-point

grid and a 500 eV energy cutoff until all atomic forces were below 0.05 eV/Å. Fig. 3 reports the

best candidate for each composition.

Four independent GOFEE searches were carried out for each of the 16 compositions, to al-
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Figure S2: Sketch of the adopted population scheme applied to data from the first 250 iter-
ations (500 structures) of a GOFEE search on the Sn11O12 surface composition. The scheme
considers all structures evaluated so far, with an energy within ∆Esample = 5 eV of the cur-
rently lowest energy structure found. The upper left plot depicts a feature space representation
of these structures, projected onto two dimensions using principal component analysis (PCA),
and colored according to energy. In the center, the same structures are colored according to a
clustering performed in the full feature space using the k-means algorithm. Example structures
are shown for some of the clusters with atoms in the slab dimmed to highlight structural dif-
ferences. The population is formed by selecting the lowest-energy structure from each cluster.
The five enumerated example structures are part of the population for this particular data set
and clustering. The enumeration is according to energy, with structure 1 being lowest in en-
ergy. This is coincidentally also the global minimum structure for this composition. The PCA
dimensionality reduction captures 76% of the variance in the data, with the remainder (the other
dimensions) accounting for the apparent overlap of clusters in the figure.

low the consistency of the searches to be evaluated. For most compositions, the assumed global

minimum structure was identified in all four searches. As exceptions, it was only reproduced

thrice for Sn9O13, twice for Sn9O11 and once for Sn9O14.
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Stability comparison

To compare the thermodynamic stability across the different compositions, and following Reuter

and Scheffler,55 the surface γ free energy was calculated for each structure, as

γ =
1

A
[Eslab(T, p)−NSnµSn(T, p)−NOµO(T, p)− PV − TS] (1)

where A is the surface area in the computational cell, Eslab is the total energy of the relaxed

surface slab, NSn and NO denote, respectively, the number of tin and oxygen atoms in the slab,

and finally µSn and µO denote the corresponding chemical potentials. Contributions from the

pressure and entropy terms are neglected.55 Similarly, temperature and pressure contributions

are neglected when evaluating the chemical potential of µSn, such that µSn(T, p) = µSn. With

this, the surface free energy can be simplified to

γ =
1

A
[Eslab(T, p)−NSnµSn −NOµO(T, p)] (2)

To estimate µSn, we assume the surface to be in equilibrium with the Pt3Sn bulk phase, which

supplies the tin atoms and turns into bulk Pt7Sn. This gives

µSn = (7 ∗ EPt3Sn − 3 ∗ EPt7Sn)/4 (3)

Finally, assuming the O2 atmosphere to form an ideal gas reservoir, the chemical potential of

oxygen is taken from55 to be

µO =
1

2
EO2 +∆µO(T, p

0) +
1

2
kBT ln(

p

p0
) (4)

where EO2 is the energy of the isolated molecule and ∆µO(T, p
0) is the size of the temperature

and pressure dependent contribution to the chemical potential at temperature T and pressure p0,

which is tabulated in.55

The surface free energy, γ, is related to the free energy per (4 × 4) cell, as given in Fig. 3,

by

γ = E4×4/A4×4. (5)

5



Surface X-ray diffraction

Figure S3: Structure of the (4×4) Sn11O12 surface oxide (a) Top view of the (4×4) phase,
showing the unit cell and the locations of 3-fold symmetry axes. (b) Side view of the (4×4)
phase, shown with expanded z-coordinates to highlight corrugation within the layers. c) Indi-
vidual layers in the structure. Labels indicate symmetrically distinct atoms with coordinates
given in Table S1.

SXRD measurements were performed at the I07 beamline at Diamond Light Source, where

the sample was prepared and characterized in an ultra-high vacuum system equipped with facil-

ities for ion sputtering, annealing and low-pressure gas exposure.56 The sample was a 6 mm di-

ameter Pt3Sn(111) single crystal (Mateck, GmbH) prepared by cycles of Ar+ sputtering (1 keV)

and annealing (∼800◦C, 5 min) followed by oxygen exposure (10−5 mbar, ∼600◦C, 15 min) to

form the (4× 4) surface oxide. Pt3Sn(111) prepared under these conditions consists of a com-

bination of bulklike grains as well as tin-depleted inclusions consisting essentially of Pt(111)
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terminated by a characteristic (
√
3×

√
3R30◦) surface alloy.11 These phases, as well as su-

perstructures formed on them, can be distinguished in SXRD due to the difference in lattice

parameter and only diffraction signals from the Pt3Sn(111) surfaces were used for the analysis

here. SXRD measurements were acquired at room temperature. Crystal truncation rods and

superstructure rods were measured with stationary L-scans using a Pilatus 100K area detector.

Structure factors were extracted by integration of the 2D peak in each image corresponding to

the intersection of the diffraction rod with the Ewald sphere, using a ‘seed-skew’ peak search

algorithm as described by Drnec et al.57 Structure factors were derived from raw intensities

after application of the appropriate polarization and Lorentz correction factors.57, 58 In-plane

structure factors were extracted from rocking scans taken at L = 0.5.

Fitting of SXRD data was performed using a kinematic computation of the surface structure

factors59 and least-squares minimization as implemented in SciPy.60 Atomic coordinates were

constrained to p3 symmetry during optimization, with the initial positions derived from the

DFT-optimized coordinates after symmetric averaging. The formation of p3 overlayers on the

p3m1 Pt3Sn(111) surface implies the presence of two mirrored domains producing overlapping

diffraction rods, and the fitted curves are computed as incoherent superpositions of the structure

factors for the two domains. Individual intensity factors were included in the fitting of each

rod and a single Debye-Waller parameter was assumed for all atoms. Due to their relatively

small contribution to the overall X-ray scattering cross sections, the oxygen coordinates were

constrained to those of the DFT optimization, except for an allowed vertical relaxation of the O

layer as a whole. For the purpose of fitting, constant uncertainties in the measured values of 20%

were assumed. The resulting rod fit yielded a reduced χ2 = 0.7. In-plane structure factors were

fitted afterward, using the final, fixed coordinates from the rod fitting and allowed variation of

only an overall intensity factor and an in-plane Debye-Waller parameter. The correspondence

between experimental and simulated patterns for the structure is good, with R = 0.15. The

best-fit structure is depicted in Figure S3, with coordinates presented in Table S1. Fits to SXRD
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# Element x (Å) y (Å) z (Å) x (fract.) y (fract.) z (fract.)
1 Sn 0.00 6.52 6.69 0.333 0.667 0.967
2 Sn -0.53 3.48 8.96 0.131 0.356 1.296
3 Sn 2.46 4.47 6.98 0.447 0.457 1.010
4 Sn 0.00 0.00 6.95 0.000 0.000 1.005
5 Sn 2.93 1.13 6.87 0.318 0.116 0.994
6 O 0.64 4.85 7.71 0.304 0.496 1.115
7 O 3.53 5.87 7.92 0.613 0.600 1.145
8 O -0.78 1.64 7.85 0.014 0.168 1.135
9 O 2.73 2.80 7.92 0.385 0.287 1.145

10 Pt 1.46 5.73 4.62 0.422 0.586 0.668
11 Pt 4.27 5.69 4.66 0.669 0.582 0.674
12 Sn -0.02 3.22 4.43 0.163 0.329 0.641
13 Pt 2.84 3.32 4.61 0.421 0.340 0.667
14 Sn 5.65 3.26 4.56 0.667 0.333 0.659
15 Pt 1.34 0.85 4.71 0.162 0.086 0.681
16 Sn 0.00 6.52 2.34 0.333 0.667 0.339
17 Pt 2.84 6.50 2.28 0.584 0.664 0.330
18 Pt 1.41 4.10 2.25 0.334 0.419 0.325
19 Pt 4.23 4.07 2.28 0.583 0.417 0.330
20 Pt 0.00 1.61 2.27 0.082 0.165 0.328
21 Sn 2.78 1.64 2.39 0.330 0.168 0.346
22 Sn 0.00 0.00 0.00 0.000 0.000 0.000

Table S1: Atomic coordinates of the Sn11O12 structure. Fractional coordinates given with
respect to the hexagonal unit cell indicated in Fig. S3, with a = b = 11.29 Å, c = 6.92 Å,
α = β = 90◦, γ = 120◦. Grayed values indicate parameters that were fixed during fitting. In
the case of the oxygen atoms, lateral positions were fixed to those of the DFT structure, while a
single displacement parameter was allowed to shift the positions in the vertical direction.
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data were also attempted for a platinum-skin model, where Sn in the topmost metallic layer is

substituted with Pt. The fit result was notably worse, with χ2 increasing by 70%, to 1.1, and

R = 0.26 for the in-plane structure factors. Although experiments indicate that a similar (4×4)

phase is formed on pure platinum surfaces9 which is probably the same Sn11O12 phase found

here, under our experimental conditions the oxide forms atop bulk-terminated Pt3Sn(111).

STM and AFM measurements

Figure S4: AFM/STM measurements with varying tip heights. Sequence of AFM images ac-
quired in constant-height mode as the tip was stepped successively closer to the sample surface.
Tip heights are given relative to that acquired at the smallest distance. Short-range interactions
are exclusively repulsive between the tip and the protruding Sn, as indicated by the increasingly
positive frequency shift (bright contrast).

Scanning tunneling microscopy (STM) characterization was performed using an Omicron

VT STM located at the MAX IV Laboratory, Lund, Sweden. Measurements were acquried at

room temperature with an etched W tip in constant current mode. The sample was prepared in
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the same manner as in the SXRD experiments.

Atomic force microscopy (AFM) was performed at the Vienna University of Technology

(TU Wien) using an Omicron LT-STM equipped with a qPlus sensor, a W tip, and custom

preamplifier.61 Measurements were acquired at ∼5 K after a similar sample preparation proce-

dure. At short tip-sample distances (bottom images in Fig. S4), frequency shift images showed

an array of protrusions matching what is imaged by STM, and the interactions of the tip with

these atoms was exclusively repulsive.

For the AFM simulations, the Sn11O12 structure was modeled with DFT calculations using

the Vienna Ab initio Simulation Package (VASP)62, 63 using the generalized gradient approx-

imation (GGA) within the Perdew, Burke, and Ernzerhof parametrization.54 The slab con-

tained 48 Pt atoms, 27 Sn atoms, and 12 O atoms, placed in a 11.29×11.29×35.0 Å3 cell, with

11.29×11.29×23.5 Å3 volume of vacuum. The reciprocal space was mapped with a 4×4×1

mesh of k-points. The 6s15d9 Pt, 5s25p2 Sn, and 2s22p4 O valence electrons were explicitly

modeled, while the remaining (core) electrons were modeled using the corresponding, element-

specific pseudo-potentials. The criterium for ionic convergence was set to 0.01 eV/Å, together

with the strong criterium for electronic convergence. The electrostatic potential was generated

such that it includes the ionic potential, the Hartree contribution and the exchange-correlation

potential.

Constant-height AFM images were simulated by calculating the force acting on the vir-

tual AFM tip over a range of distances from the surface. The force maps were subsequently

transformed into frequency shifts according to the small oscillation amplitude approximation.64

Three different simulations methods were applied: (i) Probing the DFT-optimized electrostatic

potential above the surface with a unit point charge; (ii) the Probe Particle Model with an

empirical Lennard-Jones potential modeling the interaction between the surface atoms and a

negatively charged, oxygen-terminated tip;65 and (iii) explicitly calculated DFT force-distance

curves between a CO molecule above the top-protruding Sn atom of the surface, according to a
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procedure implemented in ref.39 (Here an increased vacuum volume was used.) In each case the

resulting simulated AFM image corresponds well to the measured AFM images. The simulated

image shown in Fig. 4c in the main text was created with method (iii) 3.9 Å away from the

protruding Sn atoms.
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