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Extended Data Fig. 1. Distribution of metabolic niche volumes for bacteria known for being associated
with a host (in red), and bacteria not defined as being associated with host (in grey), as stored in PATRIC
database.
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Extended Data Fig. 2. Graph of transcriptomic clusters correlation On (a) a general view of the
clusters correlations is represented. Each cluster is a vertex, which size depends on the intra-correlation of
its genes. The width of the edges represents the value of the correlation sum that is computed between
clusters. In (b) more than 60% of the blue module correlation sum is detailed. A ribbon from the blue
ellipse is a correlation that leads to another module and then split into different pathways or directly to a
pathway if not related to one of the five represented modules. The intensity of the correlation is
proportional to the size of the ribbon.
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Extended Data Fig. 3. Correlation heatmap of pathways versus modules

3



Supplementary Text 1: Computational implementation of the metabolic
niche
Genome-scale metabolic networks We applied the metabolic niche formalism on different metabolic
models available in the BiGG database (King et al., 2016). Escherichia coli str. K-12 substr. MG1655 core is
a heterotrophic microbial model organism suitable for bioinformatics benchmarking, comprises 95 reactions of
which 20 are exchanges reactions and 72 metabolites. Phaeodactylum tricornutum CCAP 1055/1 is an ubiqui-
tous eukaryotic organism for which a genome-scale metabolic model is already well described (Broddrick et al.,
2019). Finally, the metabolic niche was computed on several prokaryotic metabolic models reconstructed with
Carveme (Machado et al., 2018) available at the following repository github.com/cdanielmachado/embl_-
gems.

Pipeline From the metabolic network of the considered organism, we identify the exchange reactions (1)
we want to see as parameters of the niche (whose flux will correspond to the axis of the metabolic niche).
With that information, we formulate the problem as a Vector Linear Program (VLP) (2), that once solved,
results in a list of vertices. The vertices fully characterize the niche as a volume (3) in the defined space.

(1) Identification of Significant exchange reactions Exchange reactions are explicit from the metabolic
network description. However, for the sake of simplicity, the metabolic niche definition requires minimizing
the number of exchange reactions. For this purpose, we run a Flux Variability Analysis (FVA) (Heirendt
et al., 2019) with COBRApy that computes both lower and upper bounds of each flux while respecting our
constraints. Our constraints are the same as a classical constraint-based model, plus the survival condition,
which imposes a minimum flux through the biomass reaction. In our formalism, exchange reactions are con-
sidered to have only a reactant and no product. A negative flux describes a consumption by the organism
(the metabolite "appears" in the organism), and a positive flux is a production (the metabolite "disappears"
from the organism). Thus every reaction having a negative FVA minimal bound is a reaction responsible
for consuming a nutrient. This preliminary check allows us to narrow the number of exchange reactions to
consider. For instance, blocked or fixed exchange reactions can bring numerical error in the next step of the
niche computation and should be avoided.

(2) VLP formulation Once identified, the reactions define a space on which we want to project the niche.
From the stoichiometric matrix, the projection matrix, and the reaction bounds, the solver Bensolve (Löhne
& Weißing, 2017) allows us to solve the problem formulated as follow:

{
min Px

subject to a ≤ Qx ≤ b | l ≤ x ≤ s

Where Q = S, a = b = 0 represent the quasi steady states approximation and l and s are respectively
lower and upper bound defined in (5). The matrix P is the one defined in (7), with adjustment because the
x vector considered in Bensolve is our v. The formulation is done through Benpy a python wrapping of
Bensolve that can be found at gitlab.univ-nantes.fr/mbudinich/benpy. This resolution gives us the upper
image of the solution space with the last component that need to be removed. Once removed, only vertices
are relevant as directions come from the last component.

(3) Volume computation The Bensolve solver allows us to get the vertex of the polytope. We then have
the V-representation of the polytope. Depending on the network complexity and the size of the projected
space, the number of vertices might be vast and difficult to manipulate. To avoid that, one can apply
agglomerate clustering to reduce the number of points that simplify the polytope. Once simplified, we can
use lrs (Avis, 2000) that gives us the volume of the defined polygon.
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Supplementary Text 2: Formalization of the metabolic niche pairwise
comparison
Comparing niches As p-dimensional volumes, niches can be compared and characterized with different
measures. To formally compare such volumes, one can use a pseudo distance based on the Jaccard index
(Conci & Kubrusly, 2017). The Jaccard index is a similarity measure applied on ensembles, looking at the
intersection ratio over the union of the two compared ensembles. The distance is computed as follows:

d(Va, Vb) = 1− J(Va, Vb) = 1− |Va ∩ Vb|
|Va ∪ Vb|

, where |.| is an operator measuring the size of the ensemble. For the niche, it is the volume. Biologically
speaking, the intersection of two metabolic niches represents all the conditions (fluxes distribution through
exchange reactions) that allow both species to survive.

The intersection of multidimensional polytope can be computationally intensive, so we developed a method
based on metabolic networks to allow a more simple estimation of the intersection.

Let us consider two different species. We then consider the metabolic networks and the associated stoichio-
metric matrices T ∈ RmT ,nT and B ∈ RmB ,nB . To compute the intersection of the two niches, one need
to make the assumption that they have exchange reactions in common. Let us note R1..Rp the p exchange
reactions we want to consider for the niche computation, and M1..Mp the p corresponding metabolites (for
clarity we are omitting here the subscripts T and B that tell from which organism we are talking about).

We are going to order the matrix T and B, so that the p reactions and metabolites are placed at the top
left of the matrix:

T =

(
−Ip

OmT−p,p
T̃

)
and B =

(
−Ip

OmB−p,p
B̃

)

Here the exchange reactions of the two species are distinct axes in the niche space. We need to modify the
model so that there is only one set of p exchange reactions responsible for the intake of the p metabolites of
both species. Exchange reaction i should look like : MBi +MTi ←→Miex. In term of matrix this gives us:

S =


−Ip

OmT−p,p
T̃ OmT,nB−p

−Ip
OmB−p,p

OmB,nT−p B̃


The model has then mT +mB metabolites and nT + nB − p reactions. The first mT line correspond to the
network T , and the last mB lines to the network B. The corresponding flux vector x will have its first p
component responsible for the intake of the p metabolites in T and B, the following mt− p components will
be the inner mechanism of T that we want to abstract, and the last mB − p lines the ones of B.

Let us see the implication of such a formalism in term of flux bounds. If we rearranged the bounds order to
correspond to the matrix T and B defined earlier we have:

ubT =

(
ubTp

ubT(nT−p)

)
ubB =

(
ubBp

ubB(nB−p)

)
lbT =

(
lbTp

lbT(nT−p)

)
lbB =

(
lbBp

lbB(nB−p)

)
The bounds for the p exchange reactions will be the lbi = max(lbTi, lbBi) and ubi = min(ubTi,ubBi).
The rest of the bounds are defined by the network that possesses the reaction. Thus we have:
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ub =

min(ubTp,ubBp)
ubT(nT−p)

ubB(nB−p)

 lb =

max(lbTp, lbBp)
lbT(nT−p)

lbB(nB−p)


The newly created system can then be formulated as a VLP and the previously described pipeline allows
computation of the solution which is the intersection of the two metabolic niches of T and B computed on
the p exchange reactions.

Pairwise comparison of marine prokaryotes Due to numerical imprecisions or error we made some
approximations to make our results more robust. Inclusion where considered when the intersection was
covering at least 999h of the volume of one of the two considered niches. That means, if we consider niche
i and j, with a volume voli and volj , with an intersection inter the inclusion was determined if:

|1− inter

voli
| < 10−3 or |1− inter

volj
| < 10−3 or dJacquard(i, j) < 10−3

We consider the computation as an error if:

inter

min(voli, volj)
> 1.001

We had 502 species. That means 125751 comparisons. Among those comparisons, 111775 (89%) where
computed correctly, 4286 (less than 4% of computed comparisons) results in error because of an intersection
that were too big. The rest were either not computed because of an error of the solver, or was taking too
long (over than 2 days) during computation (9% of all the comparisons). When computing the inclusion
graph we have 47287 edges, an edge is an inclusion. The inclusion relation is transitive, that means that if
A include B, and B include C, then A include C. We can applied a transitive closure on the graph. When
we do so we have a graph of 56322 edges. This means that around 10000 comparisons (computed or not)
should be inclusion, whereas we got an other results. Half of the newly found edges belongs to not computed
comparisons. 15% of them where found in error, which results in 35% of them that are not inclusion in
our computations (less than 3% of the computed comparisons). Those errors come from the Bensolve solver
during computation of the vertices coordinates or from the Lrs library during computation of the volume.
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Supplementary Text 3: Sampling of Phaeodactylum tricornutum niche
space
Exploring niches The niche flux space investigation emphasizes how the organism allocates its resources
and its energy for the sake of its survival. However, the formal investigation of this space is a challenging task
that we propose to overcome via the use of OptGP sampler (Megchelenbrink et al., 2014) from COBRApy
(Heirendt et al., 2019). This technique computes different points that belong to the niche flux space. Each
point is a distribution of flux values over all the reactions. Considering fluxes as random variables, we
computed pairwise correlations between reactions over the extracted samples to create a weighted correlation
graph. It summarizes the metabolic niche’s organization and highlights dependencies between metabolic
reactions motivated by its survival. As a final metric, we sum all the correlations associated with one
reaction. A high value for a given reaction indicates that this reaction plays a pivotal role as a flux variation
of this reaction will imply large changes in several other reactions.

Problem description When formalizing the niche we have a well defined space. The characterization of
this space can be done through the interdependences of each pair of reactions. This can be directly measured
with the correlation. Method relying on kernel analysis has been proposed to compute correlation between
each reaction (Schwartz et al., 2019). But this method did not take into account the boundaries of the
system, which is for us one key component of our formalism. A way to circumvent this issue is to compute
the correlation between reactions through a sampling method. But sampling such a high dimensional volume
is not an easy thing to do.

Tools and approximation We used the OptGP sampler (Megchelenbrink et al., 2014) embedded in
COBRApy to obtain enough points to compute the correlation. We sampled 105 points with a fitting of 105.
This allow a convergence of the sampled distribution. We verified the convergence by making 10 batches
with the same parameters and look at the variance of each correlation. The sampling has been done with
the integration of the survival condition in the model, meaning that the lower bound of the flux through
the biomass reaction was set to 0.01. When we sampled the niche space we did not get rid of biomass
reactions, whereas a strict sampling of the niche space should be a sampling without the biomass reactions
that introduce a bias on the distribution. Indeed the biomass reaction is a constraint, it models the survival
of the organism, but the niche definition does not need to have its value, as long as it is above the threshold.
Unfortunately the OptGP sampler would requires some heavy modifications to allow this sampling.

Visualization Once we have the correlation graph, we need a proper algorithms to visualize it. We used
the Graph-Tool library (Peixoto, 2014a). The library implements a hierarchical block structures algorithm
(Peixoto, 2014b) which is of great help for module detection in huge graph.
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Supplementary Text 4: Metabolic niche versus other niche modelings

Genome scale models

Environmental data,
Occurrence,
Abundance,

Environmental
data,

kinetic parameters

Statistical Niche
based model

Trait based model
Omics descriptions

(genome,
transcriptome,

metabolome, ...)

Computational
Implementations

Concepts or
formal

descriptions
Data used by

models

Links proposed
by the metabolic
niche

Links as proposed
in the literature

Multi-Objective Linear
Program

NichePhenotype

Extended Data Fig. 4. Illustration of the genome-scale modeling contribution to the concept of
niche.

In addition to existing implementations of niche models, the metabolic niche relies on Genome-Scale Models
(Price et al., 2004) that are available thanks to recent high-throughput data and systems biology theo-
ries. These models aim at abstracting metabolic phenotypes (i.e., Extended Data Fig. 4., left panels). The
phenotype is the set of observable characteristics or traits of an organism1. The term covers the organ-
ism’s morphology or physical form and structure, its developmental processes, biochemical and physiological
properties, behavior, and the organism’s effect on the environment. By focusing only on biochemical and
physiological properties, metabolic modeling aims to investigate properties that can be linked to metabolic
processes called the metabolic phenotype (i.e., no consideration for morphology).

Metabolic engineering targets understanding of internal machinery of organisms described originally via their
gene content. This knowledge is then synthesized into the organism’s metabolic network. It regroups all
the metabolic reactions encoded in the genotype and the modeling reactions, such as biomass and exchange
reactions, where the biomass reaction models the growth rate of the organism and exchange reactions model
the interaction of the organism with its environment. Since the metabolic network models the organism’s
metabolic phenotype, we used this modeling and focused on the sole exchange flux values satisfying a minimal
flux through the biomass reaction. This reduction allows to reach a niche formulation, called the metabolic
niche. Indeed, this formulation is inspired by the central niche concept in ecology and proposed by the seminal
work of Hutchinson, where the fundamental niche defines environmental conditions that allow an organism
to survive. This concept inherently removes the mechanistic understanding of the organism’s physiology for
characterizing a relationship between the growth (or at least the survival) and its abiotic environment.

For decades, in practice, the niche was approximated or computationally implemented through two different
types of modeling, relying on different types of data (i.e., Extended Data Fig. 4. right panels). Mainly from
the estimation of kinetic parameters, trait-based modeling proposes a quantitative estimation of the organism
abundance. Through various measures and observations on an organism, traits are inferred and modeled
to assess the phenotypic plasticity of organisms. Thus, as discussed in Rebuilding community ecology from
functional traits(McGill et al., 2006), McGill et al. define a trait as a measurable property of an organism
that can be linked to its performance. A trait is thus to be linked with optimization features, sometimes
called fitness, for seeking parameters values that approximate accurate growth rates or other observations
from given environmental conditions. On the other hand, from occurrence data, statistical niche-based
modelings describe the niche through a statistical inference between environmental conditions and organism
occurrences. Worth noticing, the link between traits and statistical niche-based models has been investigated
in several studies(Thuiller et al., 2010; Nagaraju et al., 2013).

Contrary to those standard niche modelings, the metabolic niche does not follow an optimal assumption
(i.e., an organismal objective to maximize) but explores all exchanges fluxes values that allow an organism
to survive. In this context, the metabolic niche is an abstraction of the phenotype’s fundamental niche.

1https://www.nature.com/scitable/definition/phenotype-phenotypes-35/
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However, solutions associated with trait-based models are included in the solution space. Trait-based models
often rely on one or more criteria to maximize. Those criteria can be translated into additional constraints in
our approach, leading to sub-spaces of the niche situated on the external niche envelope (i.e., corresponding
to the maximal biomass fluxes). So there is an explicit dependency between the trait-based models and the
metabolic niche formulation (i.e., the inclusion of metabolic trait-based model solutions in the metabolic
niche space). However, we can still implement the metabolic niche without maximizing the biomass flux.

Formally, the metabolic niche reformulates semi-quantitative knowledge (i.e., presence/absence of genes or
relative abundance of gene transcripts) into a quantitative framework to fit the fundamental niche expec-
tation, which is quantitative by nature. This change of abstraction from semi-quantitative to quantitative
is a theoretical and computational challenge necessary and recurrent in omics data. The metabolic niche
contributes to this general effort by resolving a complicated mathematical problem and assuming the bio-
logical system in quasi-steady-state conditions. It is a strong assumption for modeling a biological system in
its environment, but it remains coherent with preliminary metabolic engineering studies. Indeed, previous
experimental results showed that microbial metabolisms adapt themselves within an hour. Complementary,
other constraint-based modeling techniques take benefit from this assumption for simulating an organisms’
adaptation by computing different metabolic fluxes following the evolution of substrates at the minute time-
scale (i.e., the systems being at quasi-steady states every minute) (Bulović et al., 2019). These points
advocate for the quasi-steady-state assumption and the accuracy of the metabolic niche to investigate the
adaptation or acclimation of organisms in environmental conditions.

Limits and approximations Like most models, the metabolic niche has approximations and limits.
Major metabolic niche approximations come from the genome-scale metabolic model definition. Among
others are the biomass reaction, the temperature, and the metabolic network per se. The metabolic niche is
sensitive to the biomass reaction, as its composition would likely change metabolic needs. The temperature
is not a parameter of our model as we cannot exhibit differences in metabolic needs depending on the
environment’s temperature. Indeed, genome-scale metabolic models do not apprehend the temperature as a
parameter but use it during the network reconstruction step. The temperature is then used to determine the
reversibility of reactions and their bounds that are involved in (2). Hence, our modeling framework heavily
relies on GSMs, and their critical reconstruction. To allow (1) we had to assume that the system was at
quasi-steady-states which is common in systems biology (Varma & Palsson, 1994). Finally, the metabolic
niche needs one parameter value, which is the death rate of the organism. The impact of this value in the
metabolic niche computation is straightforward, as a metabolic niche with a lower death rate will increase
its metabolic niche space.

The computational limits lie in the dimension of the niche space and the size of the network. As the
resolution of (7) is sensible to the number of dimensions of N , and because the solver is computing vertices,
computation of the niche on too many dimensions will cause a high computation time and ask for lots of
RAM.
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