Chemistry–A European Journal

Supporting Information

GNPS-Guided Discovery of Madurastatin Siderophores from the Termite-Associated *Actinomadura* sp. RB99

Seoung Rak Lee, Felix Schalk, Jan W. Schwitalla, Huijuan Guo, Jae Sik Yu, Moonyong Song, Won Hee Jung, Z. Wilhelm de Beer, Christine Beemelmanns,* and Ki Hyun Kim*

Contents

1.	General Experimental Procedures
2.	Cultivation and extraction of Actinomadura sp. RB99
3.	Co-Cultivation Studies7
4.	CAS Activity test
5.	Analytical procedures
6.	Time-resolved analysis of siderophore production in different media
7.	Extraction and Isolation of Compounds
8.	Structure Elucidation of Isolated Compounds
9.	Marfey`s analysis
10.	Physical data of isolated compounds
11.	Analytical Data
12.	Computational analysis
13.	Bioactivities
14.	Biosynthetic Pathway Analysis and Construction of phylogenetic trees
15.	References 106

Figure S1. Exemplary CAS siderophore assay of bacterial extracts (1 mg/mL). Measurement of duplicates of: (1) MeOH (negative control), (2) 1 mM EDTA (positive control), (3-5) extracts derived from cultures grown on (3) ISP5 sea salt, (4) ISP5 sea salt with low Fe-content, and (5) ISP5 sea salt depleted of Fe. A) after 45 min and B) after 90 min. Orange color indicates iron binding activity. Screening was performed Figure S2. CAS siderophore assay of methanolic extracts obtained from bacterial cultures grown under different iron conditions. MeOH was used as negative control and 1 mM EDTA was used as positive Figure S3. Exemplary co-culture analysis and section of zones used for metabolite extraction and Figure S4. Exemplary analysis of co-culture sample (Actinomadura sp. RB99 versus Pseudoxylaria sp. X802) using network cluster analysis via GNPS platform and visualized by Cytoscape (red: bacterial zone, blue inhibition zone, green: fungal mycelium, yellow: methanol blank, see Figure S3). Dereplicated GNPS clusters: A) phosphoethanolamines, B) phosphocholines, C) oligosaccharides, D) Figure S5. Exemplary analysis of co-culture sample (Actinomadura sp. RB99 versus Pseudoxylaria sp. 187) using network cluster analysis via GNPS platform and visualized using Cytoscape (red: bacterial zone, blue inhibition zone, green: fungal mycelium, yellow: methanol blank, see Figure S3. Dereplicated GNPS clusters: A) xylacremolide, B) pseudoxylaramide, C) oligosaccharides, D) phospholipids Figure S6. GNPS cluster from SPE fraction eluted by 40% MeOH and 60% MeOH. Cyan nodes represent the 40% MeOH fraction, and blue nodes represent the 60% MeOH fraction. A) 'oxazoline' containing subcluster (m/z 606.288: madurastatin A1; m/z 592.277: madurastatin C1); B) 'serine' containing subcluster (m/z 624.3: madurastatin A2; C) Fe-adducts of 'oxazoline' containing subcluster: m/z 659.201: Figure S7. LCMS/MS spectra of oxazoline containing derivatives. Red arrow highlights the diagnostic Figure S8. LCMS/MS spectra of serine containing derivatives. Red arrow highlights the diagnostic Figure S10. Quantification of siderophore production by Actinomadura sp. RB99 A) 1 m/z [M+H]⁺ 624.2988, and B) 2 m/z [M+H]⁺ 636.2988 after two, four and eight days of cultivation in different media. Intensity units at 10^6 auc. Error bars indicate ± 0.5 standard deviation, duplicates n=2. C-D) Determination of production tiers for m/z [M+H]⁺ 624.2988 and m/z [M+H]⁺ 624.2988 after eight days when cultivated in media containing different iron concentrations. Error bars indicate ± 0.5 standard Figure S11. Chemical structures of 1 and 2D NMR data and MS/MS fragment ions of 1. The dashed lines show the fragments obtained in a tandem MS experiment. Blue bonds indicate ¹H-¹H COSY correlations and pink arrows indicated HMBC correlations. The depicted numbers indicate the corresponding m/zFigure S12. MS² spectrum of 1 at m/z 624.2998 [M+H]⁺ (C₂₇H₄₂N₇O₁₀⁺, calcd. 624.2993)..... 19 Figure S13. Chemical structure of madurastatin A1 (5) and 2D NMR data of 5 (Ga complex) and MS/MS fragment ions of **5** (apo form). Blue bonds indicate ¹H-¹H COSY correlations and pink arrows indicated Figure S14. 2D NMR data and MS/MS fragment ion pattern of 2. Blue bonds indicate ¹H-¹H COSY Figure S15. 2D NMR data and MS/MS fragment ion pattern of 3. Blue bonds indicate ¹H-¹H COSY Figure S16. 2D NMR data and MS/MS fragment ion pattern of 4. Blue bonds indicate ¹H-¹H COSY Figure S18. MS² spectrum of 6 at m/z 610.2829 [M+H]⁺ (C₂₆H₄₀N₇O₁₀⁺, calcd. 610.2831)...... 25 Figure S19. Comparison of partial MS^2 of 1 (A) and 6 (B) used for confirmation of an alanine to glycine substitution. Corresponding unique key fragments m/z 143.0815 (1, A) and m/z 129.0659 (6, B) are

highlighted in red	. 26
Figure S20. Proposed structure of 7 based on MS ² fragmentation	. 26
Figure S21. Comparison of partial MS ² of 1 (A) and 7 (B) used for confirmation of an alanine to serine	3
substitution. Corresponding unique key fragments m/z 161.0921 (1, A) and m/z 177.0865 (7, B) are	
highlighted in red.	. 27
Figure S22. MS ² spectrum of 7 at m/z 640.2947 [M+H] ⁺ (C ₂₇ H ₄₂ N ₇ O ₁₁ ⁺ , calcd. 640.2937)	. 27
Figure 23. ¹ H NMR spectrum of madurastatin A2 (1) (CD ₃ OD, 800 MHz)	. 35
Figure S24. ¹ H- ¹ H COSY spectrum of madurastatin A2 (1) (CD ₃ OD, 800 MHz)	. 36
Figure S25. HSOC spectrum of madurastatin A2 (1) (CD ₃ OD, 800 MHz)	. 37
Figure S26. HMBC spectrum of madurastatin A2 (1) (CD ₃ OD. 800 MHz)	. 38
Figure S27 ROESY spectrum of madurastatin A2 (1) (CD ₂ OD 800 MHz)	39
Figure 28 ECD spectrum of madurastatin A2 (1) (MeOH)	40
Figure S29, HR-ESIMS spectrum of madurastatin A2 (1)	41
Figure S30 Partial MS ² -spectrum of 1 showing the presence of diagnostic key fragment m/z 161 0921	· 2
and absence of key fragment m/z 177 08647	
Figure S31 ¹ H NMR spectrum of madurastatin E1 (2) (CD ₂ OD 800 MHz)	42
Figure S32 1 H- 1 H COSY spectrum of madurastatin E1 (2) (CD ₃ OD, 800 MHz)	43
Figure S32. HP If COST spectrum of madurastatin E1 (2) (CD ₃ OD, 800 MHz)	5 //
Figure S34 HMBC spectrum of madurastatin E1 (2) (CD ₃ OD, 800 MHz)	. 44
Figure S34. Thribe spectrum of madurastatin E1 (2) (CD3OD, 800 MHZ)	. 45
Figure S35. ECD spectrum of modurastatin E1 (2) (MeOII)	. 40
Figure S30. TIK-ESINIS spectrum of madurastatin E1 (2)	. 47 ло
Figure S37. If NWK spectrum of moduractatin F1 (3) (CD ₃ OD, 800 WHz)	. 40
Figure S30. II- II COST spectrum of madurastatin F1 (3) (CD ₃ OD, 800 MHz)	. 49
Figure S39. ISQC spectrum of modurestatin F1 (3) (CD $_{3}$ OD, 800 MHz)	. 50
Figure S40. HMDC spectrum of modurestatin F1 (3) (CD ₃ OD, 800 MHZ)	. 51
Figure S41. ECD spectrum of madurastatin F1 (3) (MeOH).	. 52
Figure S42. HR-ESHVIS spectrum of modurestatin C1 (4) (CD OD 800 MHz)	. 55
Figure S43. H NMK spectrum of madurastatin G1 (4) (CD ₃ OD, 800 MHz)	. 54
Figure S44. 'H-'H COSY spectrum of madurastatin GI (4) (CD $_{3}$ OD, 800 MHz)	. 55
Figure S45. HSQC spectrum of madurastatin G1 (4) (CD ₃ OD, 800 MHz)	. 56
Figure S46. HMBC spectrum of madurastatin GI (4) (CD ₃ OD, 800 MHz)	. 57
Figure S47. HRESI-MS spectrum of madurastatin GI (4).	. 58
Figure S48. ¹ H NMR spectrum of synthetic salicyl-D-Ser-Ala-BAla-OH (4a) (CD ₃ OD, 600 MHz, 300	K)
$\mathbf{E}^{*}_{1} = \mathbf{E}^{*}_{1} \mathbf$. 59
Figure 849. ¹⁵ C NMR spectrum of synthetic salicyl-D-Ser-Ala-BAla-OH (4a) (CD ₃ OD, 150 MHz, 300	(K)
Example S50 DEDT125 NMD superturn of cumthering calibration \mathcal{D} Sec. Als. OAL OUT (As) (CD, OD, 150 MI	. 60 I-
Figure S50. DEPT135 NMR spectrum of synthetic salicy1-D-Ser-Ala-BAla-OH ($4a$) (CD ₃ OD, 150 MF	1Z,
500 K)	. 61
Figure S51. H- $H COS Y$ NMR spectrum of synthetic saficyi-D-Ser-Ala-bAla-OH (4a) (CD ₃ OD, 600 MHz 200 K)	62
MHZ, 500 K)	. 62
Figure 552. HSQC NMR spectrum of synthetic safetyi-D-Ser-Ala-bAla-OH (4a) (CD ₃ OD, 600 MHz, 200 K)	62
SUUR)	. 03
Figure 555. HMDC NMR spectrum of synthetic sancyi-D-Sef-Ala-DAla-OH ($4a$) (CD ₃ OD, 000 MHZ, 200 K)	,
Figure S54 ¹ H NMP spectrum of synthetic solicy! I. Sor Ale BAle OH (Ab) (CD, OD, 600 MHz, 300	. 04 IZ)
Figure 554. If NWIK spectrum of synthetic sancyr-L-Ser-Ala-DAla-Off (4D) (CD ₃ OD, 000 MHz, 500	K) 65
Figure S55 ¹³ C NMR spectrum of synthetic salicy1-L-Ser-Ala-BAla-OH (4b) (CD ₂ OD 150 MHz 300	. 05
	. 66
Figure S56. DEPT135 NMR spectrum of synthetic salicyl-L-Ser-Ala-BAla-OH (4h) (CD ₂ OD 150 MF	Hz.
300 K)	. 67
Figure S57. ¹ H- ¹ H COSY NMR spectrum of synthetic salicyl-L-Ser-Ala-BAla-OH (4b) (CD ₃ OD, 600)	
MHz, 300 K)	. 68
Figure S58. HSQC NMR spectrum of synthetic salicyl-L-Ser-Ala-BAla-OH (4b) (CD ₃ OD, 600 MHz,	300

K)	. 69
Figure S59. HMBC NMR spectrum of synthetic salicyl-L-Ser-Ala-BAla-OH (4b) (CD ₃ OD, 600 MHz,	
300 K)	. 70
Figure S60. ECD spectrum of madurastatin G1 (4a) (MeOH)	. 71
Figure S61. ¹ H NMR spectrum of Ga ³⁺ -madurastatin A1 (5) (DMSO- <i>d</i> ₆ , 600 MHz, 300 K)	. 72
Figure S62. ¹³ C NMR spectrum of Ga ³⁺ -madurastatin A1 (5) (DMSO- <i>d</i> ₆ , 150 MHz, 300 K)	. 73
Figure S63. DEPT135 NMR spectrum of Ga ³⁺ -madurastatin A1 (5) (DMSO-d ₆ , 150 MHz, 300 K)	. 74
Figure S64. ¹ H- ¹ H COSY NMR spectrum of Ga ³⁺ -madurastatin A1 (5) (DMSO- <i>d</i> ₆ , 600 MHz, 300 K)	. 75
Figure S65. HSQC NMR spectrum of Ga ³⁺ -madurastatin A1 (5) (DMSO-d ₆ , 600 MHz, 300 K)	. 76
Figure S66. HMBC NMR spectrum of Ga-madurastatin A1 (5) (DMSO-d ₆ , 600 MHz, 300 K)	. 77
Figure S67. LC-HRESI-MS chromatogram of compound 5 enriched HPLC fraction. A) Total ion	
chromatogram (TIC); B) Extracted ion chromatogram (EIC) of Ga ³⁺ complex of 5 for m/z 672.1891; C)
Extract ion chromatogram (EIC) of Fe ³⁺ complex of 5 for m/z 659.1984; D) Extracted ion chromatogram	m
(EIC) of apo- 5 for <i>m</i> / <i>z</i> 606.2866	. 78
Figure S68. LC-HRESI-MS spectrum of Ga ³⁺ complex of 5, positive mode	. 79
Figure S69. LC-HRESI-MS spectrum of Fe complex of 5, positive mode	. 80
Figure S70. LC-HRESI-MS spectrum of apo form of 5, positive mode.	. 81
Figure S71. LC-HRESI-MS/MS spectrum of apo form of 5, positive mode	. 82
Figure S72. Retention times of the L-FDAA derivatized amino acids of standards	. 86
Figure S73. The retention times of the L-FDAA derivatized amino acids from compound 1	. 88
Figure S74. LC-HRESI(+)-MS chromatogram of 5 from Marfey's reaction. A) Extract ion count (EIC))
mode of 5 under <i>m</i> / <i>z</i> 342.1038; B) EIC of 5 for <i>m</i> / <i>z</i> 358.0958; C) EIC of 5 for <i>m</i> / <i>z</i> 385.1461; D) EIC of	f L-
alanine for <i>m</i> / <i>z</i> 342.1038; e) EIC of β-alanine for <i>m</i> / <i>z</i> 342.1038; F) EIC of D-serine for <i>m</i> / <i>z</i> 358.0987; C	J)
EIC of L-ornithine for m/z 385.1461; H) EIC of D-ornithine for m/z 385.1461	. 89
Figure S75. Phylogenetic analysis of Condensation Domains (C-domains of the rene cluster and the ma	ad
cluster are marked with a star).C-domains were aligned using ClustalW. The tree was created with fast	ree
2 (green: heterocyclization domains marked with Cyc; pink: condensation domains for the condensatio	n
of a D- and an L-amino acid (${}^{P}C_{L}$), blue: Condensation domains for the condensation of two L-amino	~ ~
acids (C_L).	. 99
Figure S/6. Phylogenetic analysis of Adenylation Domains (A-domains of the <i>rene</i> cluster and the <i>mac</i>	1
cluster are marked with a star). A-domains were aligned using Clustal W. The free was created with	
Tastree 2 (yenow: A-domains with a specificity of Cys, blue: A-domains for glycine, orange: ornithine	100
and derivatives thereoi, red: deta-alanine)	100

Table S1. Medium compositions	6
Table S2. Determination of inhibition zones during growth inhibition assay	7
Table S3. Fungus-bacterium co-culture (Actinomadura sp. RB99 versus Pseudoxylaria sp. X802) gro	wn
on PDA agar plates showing inhibition of fungal growth towards the bacterial colony	8
Table S4. ¹ H NMR (800 MHz) data of compounds 1–4 in MeOH-d ₄ . ^a	31
Table S5. ¹³ C NMR (200 MHz) data of compounds 1–4 in MeOH-d ₄ . ^a	32
Table S6. NMR Data (DMSO-d ₆ , at 300 K) for madurastatin A1 (5, Ga ³⁺ -complex). ^a	33
Table S7. NMR Data (CD ₃ OD, at 300 K) for synthetic salicyl-D-Ser-Ala-BAla-OH (4a) and salicyl-L	-
Ser-Ala-BAla-OH (4b) ^{a,b, c}	34
Table S8. Computationally calculated ¹ H and ¹³ C chemical shifts of 2a and 2b by utilizing computation	onal
analysis	92
Table S9. Computationally calculated ¹ H and ¹³ C chemical shifts of 3a and 3b	94
Table S10. Computationally calculated ¹ H and ¹³ C chemical shifts of 4a and 4b	96
Table S11. Comparison of adenylation domain active side residues extracted by NRPSPredictor 2base	ed
on Amino acid sequences from known NRPS's	98
Table S12. Top BLAST hits of genes in genomic region of putative madurastatin cluster in Actinomat	lura
sp. RB99	101

1. General Experimental Procedures

Optical rotations were calculated using a Jasco P-1020 polarimeter (Jasco, Easton, MD, USA). Ultraviolet (UV) spectra were acquired on an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA). Experimental ECD spectra in MeOH were acquired in a quartz cuvette of 1 mm optical path length on a JASCO J-1500 spectropolarimeter (Tokyo, Japan). NMR spectra, including ¹H-¹H COSY, HSQC, HMBC, and ROESY experiments, were carried out using a Varian UNITY INOVA 800 NMR spectrometer operating at 800 MHz (¹H) and 200 MHz (¹³C), with chemical shifts given in ppm (δ). NMR spectra for **5** were recorded on a Varian UNITY INOVA 600 NMR spectrometer operating at 600 MHz (¹H) and 150 MHz (¹³C), with chemical shifts given in ppm (δ).

Silica gel 60 (Merck, 230-400 mesh) and RP-C18 silica gel (Merck, 230-400 mesh) were used for column chromatography. Merck precoated silica gel F₂₅₄ plates and RP-18 F_{254s} plates were used for thin layer chromatography (TLC). Spots were detected on TLC under UV light or by heating after spraying with anisaldehyde-sulfuric acid. Semi-preparative HPLC used a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence HPLC UV-Vis Detectors (Shimadzu, Tokyo, Japan). Preparative high-performance liquid chromatography (HPLC) utilized a Waters 1525 Binary HPLC pump with Waters 996 Photodiode Array Detector (Waters Corporation, Milford, CT, USA).

Low-resolution high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was carried out on an Agilent 1200 Series HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array detector and a 6130 Series ESI mass spectrometer by using an analytical Kinetex ($4.6 \times 100 \text{ mm}$, $3.5 \mu \text{m}$). High-resolution (HR) HPLC-MS and HR-tandem HPLC-MS were carried out on an Agilent 6545 Accurate-Mass quadrupole time-of-flight (QTof)-HPLC-MS, consisting of a 1290 Infinity Series HPLC system, an automated liquid sampler, a diode array detector, a JetStream ESI source, and the 6545 Series QTof by using an Agilent EclipsePlus C18 column ($2.1 \text{ mm} \times 50 \text{ mm}$, RRHD 1.8 μm , Agilent Technologies).

UHPLC-HESI-HRMS measurement was performed on a Dionex Ultimate3000 system combined with a Q-Exactive Plus mass spectrometer (Thermo Scientific) with a heated electrospray ion source (HESI). Metabolite separation was carried out by reverse phase liquid chromatography at 40 °C using a Luna Omega C18 column (100 \times 2.1 mm, 1.6 μ m, 100 Å, Phenomenex) preceded by a SecurityGuardTM ULTRA guard cartridge (2 \times 2.1 mm, Phenomenex). Mobile phases were acidified with 0.1% formic acid and consisted of H₂O (A) and acetonitrile (B).

2. Cultivation and extraction of Actinomadura sp. RB99

Actinomadura sp. RB99 was cultivated in 25 mL liquid cultures in a shaker at 150 rpm and 28 °C for up to elven days and used as inoculum.

Table S1. Medium compositions

Compound	Concentration			
ISP2 medium, pH 7.2				
Yeast extract	4 g/L			
Malt extract	10 g/L			
Glucose	4 g/L			
ISP5 medium				
L-Asparagine * 1H ₂ O	1.14 g/L			
Glycerol	10 g/L			
KH ₂ PO ₄	1 g/L			
Trace elements FeSO ₄ * 7 H ₂ O	$(1; 0.5; 0) \mu g/L$ for (standard; low Iron; no Iron)			
Trace elements MnCl ₂ * 4 H ₂ O	1 µg/L			
Trace elements ZnSO ₄ * 7 H ₂ O	1 µg/L			

ISP5 sea salt medium with different iron concentrations, sea salt stock solution was autoclaved separately and added before inoculation

L-Asparagine * 1H ₂ O	1.14 g/L
Glycerol	10 g/L
KH ₂ PO ₄	1 g/L
Sea salt solution (10% w/v)	16 ml/L
Trace elements FeSO ₄ * 7 H ₂ O	$(1_{standard}; 0.5_{low iron}; 0_{no iron}) \mu g/L$
Trace elements MnCl ₂ * 4 H ₂ O	1 μg/L
Trace elements ZnSO ₄ * 7 H ₂ O	1 μg/L

3. Co-Cultivation Studies

Table S2. Determination of inhibition zones during growth inhibition assay.

	9 days			12 days			14 days		
Strains	Т	Α	R=A/T	Т	Α	R=A/T	Т	Α	R=A/T
RB99 X187	150.50	330.00	2.19	177.60	536.40	3.02	126.00	483.00	3.83
RB99 X187#2	164.80	348.00	2.11	246.50	525.20	2.13	260.00	512.10	1.97
RB99 X187#3	194.00	280.00	1.44	282.00	480.80	1.70	268.80	511.30	1.90
RB99 X802	177.00	471.00	2.66	192.00	858.10	4.47	153.00	807.10	5.28
RB99 X802#2	180.20	585.00	3.25	182.50	836.50	4.58	146.30	858.10	5.87
RB99 X802#3	385.20	621.10	1.61	387.10	867.00	2.24	336.10	878.20	2.61
X187									
[control]	433.00	435.00	1.00	517.00	523.30	1.01	681.50	683.70	1.00
X802									
[control]	401.60	415.90	1.04	575.20	538.60	0.94	687.00	666.00	0.97

Days	Actinomadura sp. RB99 versus Pseudoxylaria sp. X802	Actinomadura sp. RB99 versus Pseudoxylaria sp. X187
0	E B JJ	12 05:03:
2	201 12 2010	500 FR. 5000
5	22+ 12 0101	IZ OSOF
7	34 150 201	L. Litera
9		IZ as of

Table S3. Fungus-bacterium co-culture (*Actinomadura* sp. RB99 versus *Pseudoxylaria* sp. X802) grown on PDA agar plates showing inhibition of fungal growth towards the bacterial colony.

Table S3-1. Fungus-bacterium co-culture (*Actinomadura* sp. RB99 versus *Termitomyces* sp. T153) grown on PDA agar plates showing inhibition of fungal growth towards the bacterial colony.

4. CAS Activity test

Figure S1. Exemplary CAS siderophore assay of bacterial extracts (1 mg/mL). Measurement of duplicates of: (1) MeOH (negative control), (2) 1 mM EDTA (positive control), (3-5) extracts derived from cultures grown on (3) ISP5 sea salt, (4) ISP5 sea salt with low Fe-content, and (5) ISP5 sea salt depleted of Fe. A) after 45 min and B) after 90 min. Orange color indicates iron binding activity. Screening was performed in duplicates, n= 2.

Figure S2. CAS siderophore assay of methanolic extracts obtained from bacterial cultures grown under different iron conditions. MeOH was used as negative control and 1 mM EDTA was used as positive control. Error bars indicate ± 0.5 standard deviation, n = 2.

5. Analytical procedures

General extraction procedure: C₁₈-ec SPE cartridges (6 mL, 1 g, Macherey-Nagel) were washed and prepared for extraction according to the manufacturer's manual. Cartridges were equilibrated with 5 % MeOH in ddH₂O. Cell free culture supernatant (20 mL, 5 % MeOH) was loaded onto the cartridge. The samples were washed with one column volume 10% MeOH followed by one column volume 20 % MeOH. Subsequently, analytes of interest were eluted with 10 mL 50 % MeOH followed by 10 mL 100 % MeOH. Eluates were combined in weighed glass vials and dried *in vacuo*. Residues were weighed and resuspended in MeOH (1 mg/mL) using ultra-sonication. Concentrated samples were stored in the dark at -20 °C for up to one week. Analytic sub-samples were cleaned from particles *via* centrifugation for 15 min, 13.000 rpm, diluted to a final concentration of 75 μ g/mL with MeOH and submitted to UPLC-HRMS based analysis.

MS² and GNPS-based discovery of madurastatin congeners

workflow Α molecular network created online was using the (https://ccmsucsd.github.io/GNPSDocumentation) on the GNPS website (http://gnps.ucsd.edu). The data was filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50Da window throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da and a MS/MS fragment ion tolerance of 0.02 Da. A network was then created where edges were filtered to have a cosine score above 0.7 and more than 6 matched peaks. Further, edges between two nodes were kept in the network if and only if each of the nodes appeared in each other's respective top 10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and the lowest scoring edges were removed from molecular families until the molecular family size was below this threshold. The spectra in the network were then searched against GNPS' spectral libraries. The library spectra were filtered in the same manner as the input data. All matches kept between network spectra and library spectra were required to have a score above 0.7 and at least 6 matched peaks.

Figure S3. Exemplary co-culture analysis and section of zones used for metabolite extraction and analysis.

Figure S4. Exemplary analysis of co-culture sample (*Actinomadura* sp. RB99 versus *Pseudoxylaria* sp. X802) using network cluster analysis via GNPS platform and visualized by Cytoscape (red: bacterial zone, blue inhibition zone, green: fungal mycelium, yellow: methanol blank, see **Figure S3**). Dereplicated GNPS clusters: A) phosphoethanolamines, B) phosphocholines, C) oligosaccharides, D) pseudoxylallemycins, and E) cytochalasins.

Figure S5. Exemplary analysis of co-culture sample (*Actinomadura* sp. RB99 versus *Pseudoxylaria* sp. 187) using network cluster analysis via GNPS platform and visualized using Cytoscape (red: bacterial zone, blue inhibition zone, green: fungal mycelium, yellow: methanol blank, see Figure S3. Dereplicated GNPS clusters: A) xylacremolide, B) pseudoxylaramide, C) oligosaccharides, D) phospholipids (phosphoethanolamines).

Figure S6. GNPS cluster from SPE fraction eluted by 40% MeOH and 60% MeOH. Cyan nodes represent the 40% MeOH fraction, and blue nodes represent the 60% MeOH fraction. A) 'oxazoline' containing subcluster (m/z 606.288: madurastatin A1; m/z 592.277: madurastatin C1); B) 'serine' containing subcluster (m/z 624.3: madurastatin A2; C) Fe-adducts of 'oxazoline' containing subcluster: m/z 659.201: Fe-madurastatin A1)

Figure S7. LCMS/MS spectra of oxazoline containing derivatives. Red arrow highlights the diagnostic fragment ion at m/z 162.0551.

Figure S8. LCMS/MS spectra of serine containing derivatives. Red arrow highlights the diagnostic fragment ion at m/z 208.0607.

Figure S9. LCMS/MS spectra of Fe adduct of oxazoline containing derivatives.

6. Time-resolved analysis of siderophore production in different media

Figure S10. Quantification of siderophore production by *Actinomadura* sp. RB99 A) **1** m/z [M+H]⁺ 624.2988, and B) **2** m/z [M+H]⁺ 636.2988 after two, four and eight days of cultivation in different media. Intensity units at 10⁶ auc. Error bars indicate ± 0.5 standard deviation, duplicates n=2. C-D) Determination of production tiers for m/z [M+H]⁺ 624.2988 and m/z [M+H]⁺ 624.2988 after eight days when cultivated in media containing different iron concentrations. Error bars indicate ± 0.5 standard deviation, triplicates n=3.

7. Extraction and Isolation of Compounds

Actinomadura sp. RB99 was grown in 50 mL ISP-2 broth for seven days at 30°C (pre-culture) and used to inoculate 100 ISP-2 agar plates. Plates were incubated for 10 days at 30°C, cut into small pieces, consolidated, and immersed overnight in MeOH. The MeOH phase was filtered and evaporated in vacuo. The resultant MeOH extract (11 g) was dissolved in distilled water (700 mL) and then solvent-partitioned with EtOAc (700 mL) three times, providing 4.5 g of residue. The EtOAc-soluble fraction (4.5 g) was loaded onto a silica gel column for open column chromatography and fractionated with a gradient solvent system of CH₂Cl₂-MeOH (50:1 to 0:1, v/v) to afford seven fractions (A-G). Fraction E (110 mg) was subjected to preparative reversed-phase HPLC (Phenomenex Luna C18, 250×21.2 mm i.d., 5 µm) using MeOH-H₂O (1:9–1:0, v/v, gradient system, flow rate: 5 mL/min) to give four subfractions (E1-E4). Compound 4 (2.0 mg, $t_{\rm R}$ = 29.0 min) was purified from subfraction E3 (20 mg) by semi-preparative reversed-phase HPLC eluting 28% MeOH/H2O (isocratic system, flow rate: 2 mL/min). Fraction F (490 mg) was separated by using preparative reversed-phase HPLC (Phenomenex Luna C18, 250×21.2 mm i.d., 5 µm) using CH₃CN-H₂O (0.5:9.5-1:0, v/v, gradient system, flow rate: 5 mL/min) to give four subfractions (F1-F4). Subfraction F3 (50 mg) was isolated by semi-preparative reversed-phase HPLC eluting 30% MeOH/H₂O (isocratic system, flow rate: 2 mL/min), affording compounds 2 (2.3 mg, $t_{\rm R}$ = 50.0 min) and 3 (1.4 mg, $t_{\rm R}$ = 55.0 min). Five subfractions (G1-G5) were acquired from fraction G (300 mg) using preparative reversed-phase HPLC (Phenomenex Luna C18, 250×21.2 mm i.d., 5 µm) using CH₃CN -H₂O (1:9–1:0, v/v, gradient system, flow rate: 5 mL/min). Compound 1 (4.3 mg, $t_R = 15.0$ min) was isolated from subfraction G2 (45 mg) by semi-preparative reversed-phase HPLC eluting 19% MeOH/H₂O (isocratic system, flow rate: 2 mL/min).

For isolation of Fe-siderophore complex of 5

The resultant MeOH extract was dissolved in 10% MeOH/90% H₂O and loaded on a conditioned SPE-C18 cartridge (5 g/45 mL), and then fractioned by step-gradient of MeOH and H₂O mixture (20 mL/fraction). The resultant fractions were concentrated under reduced pressure and submitted to LCMS analysis. The fraction eluted at 40% MeOH contained the apo-siderophore (1) with the *m/z* at 624.2977 [M+H]⁺ as well as a Fe-siderophore complex with an *m/z* of 659.1983 [M+H]⁺. Then, the 40% MeOH fraction was subjected to Sephadex LH20 purification and metabolites eluted using 50% MeOH. MS-guided analysis indicated that the Fe-siderophore complex was enriched in Fr. 12. This fraction was titrated with a 100 mM Ga(NO₃)₃ aq. solution to exchange Fe³⁺ with Ga³⁺ yielding a siderophore complex with an *m/z* of 672.1894 [M+H]⁺. The complex was separated by semipreparative HPLC (Phenomenex Synergi-HydroRP, 250 × 10 mm i.d., 5 µm) using CH₃CN/0.1% FA gradient (0-5 min, 10% CH₃CN/90% H₂O (0.1% FA); 5-40 min, 10% CH₃CN/90% H₂O (0.1% FA)-28% CH₃CN/72% H₂O (0.1% FA), flow rate at 2 mL/min), affording compound **5** (1.0 mg; *t*_R = 20.0 min).

8. Structure Elucidation of Isolated Compounds

Structure elucidation of 1

Compound 1 was obtained as an amorphous powder and its molecular formula was determined to be $C_{27}H_{41}N_7O_{10}$ on the basis of the positive-ion mode HR-ESIMS data, which exhibited a protonated ion peak at m/z 624.3022 [M+H]⁺ (Calcd. for C₂₇H₄₂N₇O₁₀⁺, 624.2993). The ¹H NMR data (**Table S4**) of **1** showed two methyls [$\delta_{\rm H}$ 1.38 (3H, d, J = 7.0 Hz, H-12) and 2.55 (3H, s, H-1')], nine methylenes [$\delta_{\rm H}$ 1.75 (2H, m, H-18), 1.77 (2H, m, H-19), 1.84 (1H, m, H-24a), 1.98 (1H, m, H-25a), 2.03 (1H, m, H-25b), 2.07 (1H, m, H-24b), 2.54 (2H, m, H-15), 3.43 (1H, m, H-14a), 3.49 (1H, m, H-14b), 3.59 (1H, m, H-26a), 3.61 (2H, m, H-17), 3.64 (1H, m, H-26b), 3.90 (1H, dd, J = 11.0, 4.5 Hz, H-9a), and 3.95 (1H, dd, J = 10.011.0, 5.0 Hz, H-9b)], four methines [$\delta_{\rm H}$ 3.56 (1H, m, H-20), 4.32 (1H, q, J = 7.0 Hz, H-11), 4.50 (1H, m, H-23), and 4.59 (1H, dd, J = 5.0, 4.5 Hz, H-8)], and four aromatic protons [$\delta_{\rm H}$ 6.92 (1H, t, J = 7.5 Hz, H-2), 6.93 (1H, dd, J = 7.5, 1.0 Hz, H-4), 7.39 (1H, t, J = 7.5 Hz, H-3), and 7.91 (1H, dd, J = 7.5, 1.0 Hz, H-1)]. The ¹³C NMR spectrum displayed a total of 27 carbon signals, including two methyls ($\delta_{\rm C}$ 17.4 and 32.6), nine methylenes ($\delta_{\rm C}$ 21.4, 22.6, 28.1, 28.9, 36.1, 32.6, 47.7, 52.2, and 62.5), four methines ($\delta_{\rm C}$ 50.5, 51.2, 57.1, and 62.8), four aromatic carbons ($\delta_{\rm C}$ 117.8, 120.1, 130.1, and 134.6), two non-protonated aromatic carbons ($\delta_{\rm C}$ 110.9 and 160.1), and six carbonyl carbons ($\delta_{\rm C}$ 165.5, 170.1, 172.7, 173.9, 174.1, and 174.7). 1D and 2D NMR (1H-1H COSY, HSQC, and HMBC data) analysis of 1 revealed five amino acid spin systems, namely, serine, α -alanine, β -alanine, and two modified ornithines, along with salicylic acid unit, coupling structure of which was same to madurastatin A2, identified from the culture broth of a pathogenic Actinomadura madurae IFM 0745 strain.¹ HRESI-MS/MS² analysis of 1 showed distinctive fragment ions at *m/z* 121.0286, 131.0817, 161,0921, 208.0604, 275.1712, 346.2085, 350.1350, 417.2457 and 504.2777 due to the sequential cleavage of amide bonds of a linear peptide. The structure was also confirmed by the comparison of the experimental HRESI-MS/MS spectrum of 1 with its predicted HRESI-MS/MS spectrum obtained from Competitive Fragmentation Modeling-ID (CFM-ID) 3.0. The detected fragment ions in the experimental HRESI-MS/MS spectrum of 1 matched to corresponding ions in the predicted HRESI-MS/MS spectrum from CFM-ID 3.0. To verify the absolute configurations of 1, acidic hydrolysis followed by advanced Marfey's method was employed. The acid hydrolysates of 1 and standard amino acids (L/D-Ala, Ser, and Orn, and N-methyl-L-Orn) were derivatized with 1-fluoro-2,4dinitrophenyl-5-L-alanineamide (L-FDAA), and the resultants were analyzed by LC/MS, which showed that the absolute configurations of Ala, Orn, and N-methyl-Orn moieties are L-forms while Ser has the absolute configuration of D-form.

Figure S11. Chemical structures of **1** and 2D NMR data and MS/MS fragment ions of **1**. The dashed lines show the fragments obtained in a tandem MS experiment. Blue bonds indicate ${}^{1}\text{H}{}^{-1}\text{H}$ COSY correlations and pink arrows indicated HMBC correlations. The depicted numbers indicate the corresponding *m*/*z* values.

Figure S12. MS² spectrum of **1** at m/z 624.2998 [M+H]⁺ (C₂₇H₄₂N₇O₁₀⁺, calcd. 624.2993).

Structure elucidation of Ga-Complex of 5

The molecular formula of **5** was deduced from HRESI-MS analysis with the observation of pseudomolecular ion peak at m/z 672.1891 [M+H]⁺ (Calcd. for C₂₇H₃₇N₇O₉Ga, 672.1909), and isotope distribution of Ga (⁶⁹Ga:⁷¹Ga 5:3). LC-HRMS analysis showed very closed minor peaks at m/z 659.1984 [M+H]⁺ (Calcd. for C₂₇H₃₇N₇O₉Fe, 659.1997), with the isotope distribution of Fe (⁵⁴Fe:⁵⁶Fe 6:100). This led to the prediction of apo-siderophore of compound **5** with the molecular formula of C₂₇H₃₆N₇O₉. Detailed analysis of HPLC fraction containing major compound **5** allowed to detect trace amount of aposiderophore of **5** at m/z 606.2866 [M+H]⁺ (Calcd. for C₂₇H₄₀N₇O₉⁺, 606.2882). Detailed analysis of HRMS/MS of apo-siderophore at showed high similarity with compound **1**. The major difference between compound **5** and compound **1** was the absence of fragment ions at m/z 180.0655 and 208.0604 from **1** and the presence of fragment ions at m/z 162.0551, 233.0921, 261.0871 and 332.1241 from **5**. This led to the hypothesis that apo-siderophore **5** was present as oxazoline form, by losing water molecule from the serine moiety of compound **1**. ¹H NMR spectrum indicated the two sets of proton signals, represent the major Ga adduct and minor Fe adduct. Overall, the ¹H NMR spectrum exhibited very similar signals with compound **1**, and the presence of cyclic oxazoline was proved by the observation of HMBC correlation of H₂-9 ($\delta_{\rm H}$ 4.69 and 4.43) to C-7 ($\delta_{\rm C}$ 170.46).

Figure S13. Chemical structure of madurastatin A1 (**5**) and 2D NMR data of **5** (Ga complex) and MS/MS fragment ions of **5** (apo form). Blue bonds indicate ¹H-¹H COSY correlations and pink arrows indicated HMBC correlations.

Structure elucidation of 2

Compound **2** was isolated as an amorphous powder and its molecular formula of $C_{28}H_{41}N_7O_{10}$ was suggested by the positive-ion mode HRESI-MS data at m/z 636.3017 [M+H]⁺ (Calcd. for $C_{28}H_{42}N_7O_{10}^+$, 636.2993). Detailed analysis of 1D and 2D NMR spectra revealed that spectroscopic values of **2** were almost identical of those of **1**, except for the presence of an additional methylene [δ_H 3.77 (1H, d, J = 4.0 Hz, H-2'a) and 4.34 (1H, d, J = 4.0 Hz, H-2'b); δ_C 68.0]. The HMBC correlations of H₃-1'/C-20, H₃-1'/C-2', H-2'/C-20, H-2'/C-21, H-23/C-2', and H-23/C-21 afforded the construction of 4-imidazolidinone conjugated to *N*-methyl-L-Orn moiety. The analysis of HRESI-MS/MS data of **2** verified the NMR-based structural characterization, which was also supported by comparison with its predicted HRESI-MS/MS spectrum proposed from CFM-ID 3.0.

Figure S14. 2D NMR data and MS/MS fragment ion pattern of 2. Blue bonds indicate ¹H-¹H COSY S21

correlations and pink arrows indicated HMBC correlations.

Structure elucidation of 3

The molecular formula of compound **3** was determined to be $C_{27}H_{38}N_6O_{10}$ based on the deprotonated ion peak at m/z 605.2568 [M-H]⁻ (Calcd. for C₂₇H₃₇N₆O₁₀, 605.2571) in the negative-ion mode HR-ESIMS. Inspection of ¹H and ¹³C NMR spectra of **3** indicated that the NMR data of **3** was similar with that of **1** except for some discrepancies. The major difference was that the N-methyl group in 2 was absent at C-20 ($\delta_{\rm C}$ 36.7) in 3. The ³J_{HH} vicinal correlations from H₂-17 to H₂-20 in ¹H-¹H-COSY as well as HMBC correlations of H₂-19/C-21 and H-23/C-21 supported the converted substructure in **3.** In addition, HMBC correlations from H₃-1' ($\delta_{\rm H}$ 2.94) to C-21 and C-23 led to the confirmation of N-methylation at nitrogen between C-21 and C-23. Another difference was present in the terminal ornithine moiety; an interesting oxygenated methine [$\delta_{\rm H}$ 5.75 (1H, brs); $\delta_{\rm C}$ 82.0] was assigned at C-26 by COSY correlations from H-23 to H-26 as well as a HMBC correlation from H₂-24 to C-26. According to the molecular formula of 3, C₂₇H₃₈N₆O₁₀, 12 unsaturation degrees of 3 was deduced, which suggested one additional unsaturation degree in the terminal ornithine moiety of 3. To allocate one unsaturation degree in the terminal ornithine moiety, the presence of epoxide ring was deduced between C-26 and nitrogen atom, affording the elucidation of novel structural moiety, 7-oxa-1-azabicyclo[4.1.0]heptan-2-one, which has rarely been reported. The proposed substructure was also verified by the analysis of its HRESI-MS/MS fragmentation data where detection of the characteristic ion at m/z 143.0814 confirmed the assignment of 7-oxa-1azabicyclo[4.1.0]heptan-2-one residue, which was also supported by comparison with its predicted HRESI-MS/MS spectrum proposed from CFM-ID 3.0. The stereochemistry of 3 at C-8, C-11, and C-23 was determined as same to compound 2 by the consideration of spectroscopic data patterns and deduced from the same biosynthetic logic.

Figure S15. 2D NMR data and MS/MS fragment ion pattern of **3**. Blue bonds indicate ¹H-¹H COSY correlations and pink arrows indicated HMBC correlations.

Structure elucidation of 4

HRESI-MS analysis of **4** suggested a molecular formula of $C_{16}H_{21}N_3O_7$ from a pseudomolecular ion peak at m/z 368.1451 [M+H]⁺ ($C_{16}H_{22}N_3O_7^+$, calcd. 368.1458). Comparison of spectra obtained for **4** and **1** proposed that the structure of **4** shares the salicylic acid, serine, α -alanine, and β -alanine units of **1**. This deduction was verified by 2D NMR (¹H-¹H COSY, HSQC, and HMBC data) of **4** especially, not only ³*J*_{HH} vicinal correlations between H₂-14 and H₂-15 in ¹H-¹H COSY but also HMBC correlations of H₂-14/C-13, H₂-14/C-16, and H₂-15/C-16. In addition, distinctive fragment ions observed in HRESI-MS/MS data clearly supported the amino acid sequence of **4**.

Figure S16. 2D NMR data and MS/MS fragment ion pattern of **4**. Blue bonds indicate ¹H-¹H COSY correlations and pink arrows indicated HMBC correlations.

Structure prediction of derivative 6 with an *m/z* 610.2831

Figure S17. Proposed structure of 6 based on MS² fragmentation.

Derivative **6** (m/z 610.2829) was assigned the molecular formula C₂₆H₃₉N₇O₁₀, corresponding to loss of a CH₂ unit ($\Delta m/z = 14.016$) compared to **1** ([M+H]⁺ C₂₇H₄₂N₇O₁₀⁺, calcd. 624.2993). Identical fragments with m/z 121.0286, m/z 180.0656 and m/z 208.0606 confirm the link between salicylic acid and serine unit like in **1**. Fragment m/z 275.1714 confirms no changes on the double ornithine part on the right side of the molecule. Other fragments for **6** that occur either during neutral loss of salicylic acid and the first serine moiety (m/z 490.254 and m/z 403.2291), or during fragment loss of the ornithine moieties (m/z 452.2114 and m/z 336.1194) are replaced and shifted by $\Delta m/z = 14.016$ compared to their counterparts in **1**. This corresponds to loss of a CH₂ unit which was localized as a substitution of glycine instead of alanine. The presence of β -alanine can be confirmed by a small fragment formed from β -alanine and ornithine (m/z 145.0972) residues, which exists for MS/MS spectra of both **1** and **6**. Alanine however, is replaced by glycine which is indicated by a very dominant key fragment (m/z 129.0659) that only occurs during fragmentation of **6** but not for **1**. *Vice versa*, the corresponding alanine fragment (m/z 143.0815) can only be detected during fragmentation of **1** but not for **6**.

Figure S18. MS² spectrum of 6 at m/z 610.2829 [M+H]⁺ (C₂₆H₄₀N₇O₁₀⁺, calcd. 610.2831).

Figure S19. Comparison of partial MS² of 1 (A) and 6 (B) used for confirmation of an alanine to glycine substitution. Corresponding unique key fragments m/z 143.0815 (1, A) and m/z 129.0659 (6, B) are highlighted in red.

Structure prediction of derivative 7 with an m/z 640.2933

Figure S20. Proposed structure of 7 based on MS² fragmentation.

Compound 7 with HRESI-MS m/z [M+H]⁺ 640.2947 is assigned the chemical formula C₂₇H₄₁N₇O₁₁, (C₂₇H₄₂N₇O₁₁⁺, calcd. 640.2937). Fragments with m/z 121.0286, 180.0654 and 208.0604 occur in MS/MS spectra for both compounds (7 and 1) and confirm the intact salicylic acid and first serine moiety. Fragments found in both spectra with m/z 346.2085 and 275.1712 represent moieties carrying hydroxylated ornithine, *N*-methyl ornithine and β -alanine, respectively. In contrast to the spectra of 1, the MS/MS spectra of 7 features new fragments corresponding to parts of the parent ion containing an additional serine moiety in place of alanine. Accordingly, those fragments are consequently shifted by $\Delta m/z = 15.995$ (Oxygen) compared to their counterparts found in 1 (e.g. m/z 504.2777 \rightarrow 520.2690, 417.2457 \rightarrow 433.2440, 448.2199 \rightarrow 464.2101 and 143.0815 \rightarrow 159.0765). The location of oxygen changing the alanine (1) into a serine (7) was determined based on comparison of key fragments m/z 161.0921 unique for MS/MS of 1 and m/z 177.0865 unique for MS/MS of 7.

Figure S21. Comparison of partial MS² of 1 (A) and 7 (B) used for confirmation of an alanine to serine substitution. Corresponding unique key fragments m/z 161.0921 (1, A) and m/z 177.0865 (7, B) are highlighted in red.

Figure S22. MS² spectrum of **7** at m/z 640.2947 [M+H]⁺ (C₂₇H₄₂N₇O₁₁⁺, calcd. 640.2937).

9. Marfey`s analysis

Determination of the absolute configuration of amino acids of compound 1 (Marfey's Derivatization Reaction).

Compound 1 (0.3 mg) was hydrolyzed with 6 N HCl (500 μ L) for 1 h at 110 °C. After cooling to room temperature, the hydrolysate of 1 was evaporated in vacuo to eliminate traces of HCl. Distilled water (400 μ L) was added to the hydrolysate mixture and then evaporated to remove traces of HCl; this procedure was carried out three times. The dried hydrolysate mixture of 1, as well as the standard amino acids (L/D-Ala, Orn, and Ser, and N-Me-L-Orn), were dissolved in 1 N NaHCO₃ (100 µL) and then reacted with 50 µL of L-FDAA (10 mg/mL in acetone). Each hydrolysate was heated for 10 min at 80°C. Each mixture was quenched with 2 N HCl (50 μ L) and evaporated *in vacuo*. The residue was dissolved in 200 μ L of MeOH. Each aliquot (5 µL) acquired from the hydrolysate mixtures was directly injected onto the LC/MS (Phenomenex Luna C18, 4.6×100 mm, 3.5μ m, flow rate: 0.3 mL/min), and a full scan in negative ion mode (scan range from m/z 100 to 1200) was applied to confirm the retention times of the L-FDAAderivatized amino acids. The mobile phase, consisting of formic acid in distilled water (0.1% v/v) (A) and acetonitrile (B), was performed with a gradient solvent system as follows: 20-40% (B) for 10 min, 100% (B) isocratic for 5 min, and then 20% (B) isocratic for 5 min, to conduct a post-run washing procedure for the column. The retention times of the L-FDAA derivatized amino acids used as standards were 18.2 min (L-Ala, m/z 340 [M-H]⁻), 20.2 min (D-Ala, m/z 340 [M-H]⁻), 25.4 min (L-Orn, m/z 635 [M-H]⁻), 24.0 min (D-Orn, *m/z* 635 [M-H]⁻), 14.9 min (L-Ser, *m/z* 357 [M-H]⁻), 20.7 min (D-Ser, *m/z* 357 [M-H]⁻), and 25.8 min (N-Me-L-Orn, m/z 649 [M-H]⁻), The retention times of the derivatized hydrolysate of 1 were L-Ala (18.2 min), L-Orn (25.4 min), D-Ser (20.7 min), and N-Me-L-Orn (25.8 min).

Determination of the Absolute Configuration of Amino Acids in 5 (Marfey's Derivatization Reaction).

Ga-complex of **5** (0.1 mg) was hydrolyzed in 6N HCl (500 μ L) for 5 h at 90 °C. After cool down at room temperature, the hydrolysate mixture was diluted by H₂O (5 mL) and residue HCl was removed under reduced pressure. The trace HCl was removed by repeated the procedure (5 mL of H₂O) for three times. Afterwards, the hydrolysate was lyophilized for 30 min. Marfey's reaction was performed by adding 100 μ L of 1 M of NaHCO₃ aq. solution, as well as 50 μ L of L-FDAA in acetone as 10 mg/mL (fresh preparation), and the mixture was heated at 50 °C for 45 min under shaking at 600 rpm. The reaction was quenched by adding 40 μ L of 2 N HCl aq. solution, adjust the pH at 7. Neutralized reaction mixture was diluted by 1:1 v/v of 50% MeCN/H₂O (LCMS grade). The final mixture was diluted with 1:100 in 50% MeCN/H₂O and ready for LC-HRMS analysis. 0.1 mg of standard amino acids: L-serine, D-serine, L-alanine, D-alanine, β-alanine, L-ornithine, D-ornithine were subjected to Marfey's reaction by the same procedure as described above.

LC-ESI-HRMS were performed on a Dionex Ultimate3000 system coupled with a Luna Omega C18 column (100×2.1 mm, particle size 1.6 µm, pore diameter 100 Å, Phenomenex) combined with Q-Exactive Plus mass spectrometer (Thermo Scientific) equipped with an electrospray ion (HESI) source.

Column oven was set to 40 °C; scan range of full MS was set to m/z 150 to 2,000 with resolution of 70,000 and AGC target 3e6 and maximum IT 100 ms under positive and negative mode with centroid data type. MS² was performed to choose top10 intensive ions under positive mode with resolution of 17,500 and AGC target 1e5 and maximum IT 50 ms and (N)CE 28 with centroid data type. The spray voltage (+) was set to 4000 Volt, and (-) was set to 3300 Volt. The capillary temperature (+/-) was set to 340 °C and probe heater temperature (+/-) was set to 200 °C. The sheath gas flow (+-) was set to 35 L/min and Aux gas flow (+/-) to 5 L/min. Max spray current (+) and (-) was set to 100 Volt. S-Lens RF level was set to 50. The FDAA derivatives were separated under the gradient: 0 – 0.5 min, 5% B; 0.5 – 9 min, 5% – 97% B; 9 – 12 min, 97% B; 12 – 13 min, 97% – 5% B; 13 – 18 min, 5% B (A: 0.1% FA; B: MeCN with 0.1% FA), with flow rate of 0.3 mL/min and injection volume is 5 µL. The retention times of the L-FDAA derivatized amino acids used as standards were 5.94 min (L-Ala, m/z 342.1038 [M+H]⁺), 6.23 min (D-Ala, m/z 342.1038 [M+H]⁺), 5.91 min (B-Ala, m/z 385.1461 [M+H]⁺), 5.36 min (L-Ser, m/z 358.0987 [M+H]⁺). The retention times of the derivatized hydrolysate of **5** were L-Ala (5.94 min), B-Ala (5.91 min), L-Orn (4.72 min), D-Ser (5.42 min).

10. Physical data of isolated compounds

Madurastatin A2 (1). Amorphous powder; [α]^{25,D}-12.1 (*c* 0.05, MeOH); UV (MeOH) λ_{max} (log ε) 202 (4.23), 238 (1.31), 299 (0.76) nm; ¹H (800 MHz) and ¹³C NMR (200 MHz), see Table S4 and Table S5, respectively; positive-mode HR-ESI-MS *m/z* 624.3022 [M+H]⁺ (Calcd. for C₂₇H₄₂N₇O_{10⁺}, 624.2993).

Madurastatin E1 (2). Amorphous powder; $[\alpha]^{25,D}$ -8.6 (*c* 0.04, MeOH); UV (MeOH) λ_{max} (log ε) 202 (4.20), 238 (1.25), 299 (0.73) nm; ¹H (800 MHz) and ¹³C NMR (200 MHz), see Table S4 and Table S5, respectively; positive-mode HR-ESI-MS *m*/*z* 636.3017 [M+H]⁺ (Calcd. for C₂₈H₄₂N₇O₁₀⁺, 636.2993).

Madurastatin F (**3**). Amorphous powder; $[\alpha]^{25,D}$ -6.4 (*c* 0.03, MeOH); UV (MeOH) λ_{max} (log ε) 202 (4.25), 239 (1.24), 298 (0.76) nm; ¹H (800 MHz) and ¹³C NMR (200 MHz), see Table S4 and Table S5, respectively; negative-mode HR-ESI-MS *m/z* 605.2568 [M-H]⁻ (Calcd. for C₂₇H₃₇N₆O₁₀⁻, 605.2571).

Madurastatin G1 (4). Amorphous powder; $[\alpha]^{25,D}$ -7.7 (*c* 0.03, MeOH); UV (MeOH) λ_{max} (log ε) 202 (4.09), 239 (1.15), 298 (0.74) nm; ¹H (800 MHz) and ¹³C NMR (200 MHz), see Table S4 and Table S5, respectively; positive-mode HR-ESI-MS *m/z* 368.1451 [M+H]⁺ (Calcd. for C₁₆H₂₂N₃O₇⁺, 368.1458).

Madurastatin A1 (**5**, Ga³⁺-complex). Orange powder; $[\alpha]^{25,D}$ 269.2 (*c* 0.01, 50% MeOH); UV (MeOH) λ_{max} (log ϵ) 202, 239, 298 nm; ¹H (600 MHz) and ¹³C NMR (150 MHz), see Table S6; positive-mode HR-ESI-MS *m*/*z* 672.1891 [M+H]⁺ (Calcd. for C₂₇H₃₇N₇O₉Ga⁺, 672.1909).

11. Analytical Data

	1	2	3	4
Position	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$
1	7.91 dd (7.5, 1.0)	7.90 dd (7.5, 1.0)	7.90 dd (7.5, 1.0)	7.90 dd (7.5, 1.0)
2	6.92 t (7.5)	6.92 t (7.5)	6.92 t (7.5)	6.92 t (7.5)
3	7.39 t (7.5)	7.39 t (7.5)	7.39 t (7.5)	7.39 t (7.5)
4	6.93 dd (7.5, 1.0)			
8	4.59 dd (5.0, 4.5)	4.59 dd (5.0, 4.5)	4.59 dd (5.0, 4.5)	4.58 dd (5.0, 4.5)
9	3.90 dd (11.0, 4.5), 3.95 dd (11.0, 5.0)	3.89 dd (11.0, 4.5), 3.94 dd (11.0, 5.0)	3.88 dd (11.0, 4.5), 3.92 dd (11.0, 5.0)	3.90 dd (11.0, 4.5), 3.95 dd (11.0, 5.0)
11	4.32 q (7.0)	4.33 q (7.0)	4.34 q (7.0)	4.36 q (7.0)
12	1.38 d (7.0)	1.37 d (7.0)	1.37 d (7.0)	1.36 d (7.0)
14	3.43 m, 3.49 m	3.45 m	3.45 m	3.40 m, 3.43 m
15	2.54 m	2.70 m	2.69 m	2.46 t (6.5)
17	3.61 m	3.57 m, 3.61 m	3.54 m, 3.59 m	
18	1.75 m	1.78 m	1.37 m, 1.42 m	
19	1.77 m	1.96 m	1.59 m	
20	3.56 m	3.05 m	2.21 m	
23	4.50 m	4.66 m	4.21 m	
24	1.84 m. 2.07 m	1.93 m, 2.32 m	1.96 m, 2.11 m	
25	1.98 m, 2.03 m	2.02 m, 2.06 m	1.76 m, 2.37 m	
26	3.59 m, 3.64 m	3.58 m, 3.65 m	5.75 brs	
1'	2.55 s	2.41 s	2.94 s	
2'		3.77 d (4.0), 4.34 d (4.0)		

Table S4. ¹H NMR (800 MHz) data of compounds 1–4 in MeOH-d₄.^a

^{*a*} Coupling constants (in parentheses) are in Hz.

	1	2	3	4
Position	⊿c	δς	δc	δc
1	130.1 d	130.0 d	130.1 d	130.0 d
2	120.1 d	120.1 d	120.1 d	120.1 d
3	134.6 d	134.6 d	134.7 d	134.7 d
4	117.8 d	117.9 d	118.0 d	117.9 d
5	160.1 s	159.9 s	160.1 s	160.0 s
6	117.5 s	117.6 s	117.6 s	117.5 s
7	170.1 s	169.9 s	170.0 s	170.1 s
8	57.1 d	57.1 d	57.1 d	57.2 d
9	62.5 t	62.6 t	62.7 t	62.7 t
10	172.7 s	172.5 s	172.7 s	172.4 s
11	50.5 d	50.5 d	50.5 d	50.4 d
12	17.4 q	17.4 q	17.5 q	17.6 q
13	174.7 s	174.5 s	174.7 s	174.6 s
14	36.1 t	36.1 t	36.2 t	36.6 t
15	32.6 t	32.6 t	32.7 t	35.5 t
16	173.9 s	173.3 s	173.7 s	176.6 s
17	47.7 t	48.4 t	48.1 t	
18	22.6 t	22.8 t	21.3 t	
19	28.9 t	25.8 t	26.6 t	
20	62.8 d	67.1 d	36.7 t	
21	174.1 s	175.6 s	168.9 s	
22	165.5 s	164.7 s	165.1 s	
23	51.2 d	52.4 d	62.2 d	
24	28.1 t	29.1 t	27.3 t	
25	21.4 t	21.7 t	29.5 t	
26	52.2 t	52.0 t	82.0 d	
1'	32.6 q	39.8 q	31.2 q	
2'		68.0 t		

Table S5. ¹³C NMR (200 MHz) data of compounds 1–4 in MeOH-d₄.^a

^{*a* 13}C NMR data extracted from HSQC and HMBC data.

	Madurastatin A1 (5, Ga-complex)					
Position	δ_C , mult. ^b	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	COSY	HMBC		
1	129.37, CH	7.55, d (8.51)	2	5, 3, 7		
2	114.69, CH	6.56, t (8.17)	3, 5	4, 6		
3	135.61, CH	7.32, t (6.77)	2,4	1		
4	122.35, CH	6.62, d (8.83)	3	2, 6		
5	167.73, qC					
6	108.44, qC					
7	170.46, qC					
8	64.75, CH	4.98, dd (10.69, 6.90)	9a, 9b	7		
9	71.12, CH ₂	4.69, d (9.03)	8, 9b	7		
		4.43, dd (8.72, 6.54)	8, 9a	7		
10	171.61, qC					
11	47.67, CH	4.29, t (7.22)	12, <i>N</i> H(1)	13		
12	13.81, CH ₃	1.13, d (7.27)	11	11, 13		
13	172.88, qC					
14	35.74, CH ₂	3.42, m	14b, <i>N</i> H(2)			
		3.10, m	14a, 15			
15		2.17, m	14b			
16						
17						
18						
19	29.70, CH ₂	1.17, m				
20	62.32, CH	2.96, m	19, <i>N</i> H(3)			
21	172.25, qC					
22						
23	46.19, CH	4.50, m	24a, <i>N</i> H(4)			
24	25.30, m	1.95, m	23			
25		1.67, m				
26						
1'	33.14, CH ₃	2.27, s	<i>N</i> H(3)	20		
<i>N</i> H(1)		8.70, d (7.38)	11	10, 11, 12		
<i>N</i> H(2)		7.40, brt (5.38)	14a			
<i>N</i> H(3)		7.22, t (5.55)	1'			
<i>N</i> H(4)		8.17, d (9.15)	23	21		
	•		•	•		

^a 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR

^b numbers of attached protons were determined by analysis of 2D spectra.

Η

NH

Table S7. NMR Data (CD₃OD, at 300 K) for synthetic salicyl-D-Ser-Ala-BAla-OH (4a) and salicyl-L-Ser-Ala-BAla-OH (4b) ^{a,b, c}

.OH 0 0 0 11 N 8 H 16[°]OH ² 16 OH N 8 H H Ĥ : : 12 : : 12 ö ö `OH `OH

Salicyl-D-Ser-Ala-ßAla-OH (**4a**)

Salicyl-L-Ser-Ala-ßAla-OH (**4b**)

	Salicyl-D-Ser-Ala-BAla-OH (4a)					Isolated compound 4		la-βAla-OH (4b)
position	δ_C , mult. ^b	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	COSY	HMBC	δ_C , mult.	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, mult. ^b	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
1	130.24, CH	7.90, dd (8.22, 1.71)	2	3, 5, 7	130.0 d	7.90 dd (7.5, 1.0)	130.31, CH	7.90, dd (8.21, 1.63)
2	118.14, CH	6.93, t (8.25)	1, 3	4	120.1 d	6.92 t (7.5)	118.10, CH	6.93, t (8.25)
3	134.93, CH	7.39, td (8.25, 1.71)	2,4	1, 5	134.7 d	7.39 t (7.5)	134.89, CH	7.39, td (8.25, 1.71)
4	120.43, CH	6.93, d (8.25)	3	2	117.9 d	6.93 dd (7.5, 1.0)	120.43, CH	6.93, d (8.25)
5	160.14, qC				160.0 s		160.06, qC	
6	117.69, qC				117.5 s		117.74, qC	
7	170.25, qC				170.1 s		169.96, qC	
8	57.50, CH	4.58, t (5.29)	9a	9, 10	57.2 d	4.58 dd (5.0, 4.5)	56.83, CH	4.66, t (5.85)
9	62.92, CH ₂	3.94, dd (11.15, 5.37)	8	10	62.7 t	3.95 dd (11.0, 5.0)	63.27, CH ₂	3.98, dd (10.98, 5.40)
		3.89, dd (11.15, 5.18)		10		3.90 dd (11.0, 4.5),		3.84, dd (10.88, 6.18)
10	172.68, qC				172.4 s		172.53, qC	
11	50.73, CH	4.35, q (7.23)	12	12, 13	50.4 d	4.36 q (7.0)	50.67, CH	4.38, q (7.23)
12	17.89, CH ₃	1.37, d (7.27)	11	13	17.6 q	1.36 d (7.0)	17.81, CH ₃	1.38, d (7.19)
13	174.94, qC				174.6 s		174.94, qC	
14	36.49, CH ₂	3.42-3.45, m	15	15, 16	36.6 t	3.40 m, 3.43 m	36.51, CH ₂	3.42, t (6.96)
15	34.52, CH ₂	2.52, t (7.00)	14	16	35.5 t	2.46 t (6.5)	34.54, CH ₂	2.51, t (6.90)
16	175.21, qC				176.6 s		175.27, qC	

^a 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR. ^b numbers of attached protons were determined by analysis of 2D spectra.

^C synthesized by BIOSYNTAN GmbH (Robert-Rössle-Str. 10, D-13125 Berlin

.

Figure 23. ¹H NMR spectrum of madurastatin A2 (1) (CD₃OD, 800 MHz)

Figure S24. ¹H-¹H COSY spectrum of madurastatin A2 (1) (CD₃OD, 800 MHz)

Figure S25. HSQC spectrum of madurastatin A2 (1) (CD₃OD, 800 MHz)

Figure S26. HMBC spectrum of madurastatin A2 (1) (CD₃OD, 800 MHz)

Figure S27. ROESY spectrum of madurastatin A2 (1) (CD₃OD, 800 MHz)

Figure 28. ECD spectrum of madurastatin A2 (1) (MeOH)

Figure S29. HR-ESIMS spectrum of madurastatin A2 (1)

Figure S30. Partial MS²-spectrum of 1 showing the presence of diagnostic key fragment m/z 161.09212 and absence of key fragment m/z 177.08647.

Figure S32. ¹H-¹H COSY spectrum of madurastatin E1 (2) (CD₃OD, 800 MHz)

Figure S33. HSQC spectrum of madurastatin E1 (2) (CD₃OD, 800 MHz)

Figure S34. HMBC spectrum of madurastatin E1 (2) (CD₃OD, 800 MHz)

Figure S35. ECD spectrum of madurastatin E1 (2) (MeOH)

Figure S36. HR-ESIMS spectrum of madurastatin E1 (2)

S48

Figure S38. ¹H-¹H COSY spectrum of madurastatin F1 (3) (CD₃OD, 800 MHz)

Figure S39. HSQC spectrum of madurastatin F1 (3) (CD₃OD, 800 MHz)

Figure S40. HMBC spectrum of madurastatin F1 (3) (CD₃OD, 800 MHz)

Figure S41. ECD spectrum of madurastatin F1 (3) (MeOH).

Figure S42. HR-ESIMS spectrum of madurastatin F1 (3)

Figure S46. HMBC spectrum of madurastatin G1 (4) (CD₃OD, 800 MHz)

Figure S47. HRESI-MS spectrum of madurastatin G1 (4)

Figure S49. ¹³C NMR spectrum of synthetic salicyl-D-Ser-Ala-BAla-OH (4a) (CD₃OD, 150 MHz, 300 K)

Figure S50. DEPT135 NMR spectrum of synthetic salicyl-D-Ser-Ala-BAla-OH (4a) (CD₃OD, 150 MHz, 300 K)

S62

S63

S69

Figure S59. HMBC NMR spectrum of synthetic salicyl-L-Ser-Ala-BAla-OH (4b) (CD₃OD, 600 MHz, 300 K)

Figure S60. ECD spectrum of madurastatin G1 (4a) (MeOH)

Figure S61. ¹H NMR spectrum of Ga³⁺-madurastatin A1 (**5**) (DMSO-*d*₆, 600 MHz, 300 K)

S73

S74

Figure S67. LC-HRESI-MS chromatogram of compound **5** enriched HPLC fraction. A) Total ion chromatogram (TIC); B) Extracted ion chromatogram (EIC) of Ga³⁺ complex of **5** for m/z 672.1891; C) Extract ion chromatogram (EIC) of Fe³⁺ complex of **5** for m/z 659.1984; D) Extracted ion chromatogram (EIC) of apo-**5** for m/z 606.2866.

Figure S68. LC-HRESI-MS spectrum of Ga³⁺ complex of **5**, positive mode.

Figure S69. LC-HRESI-MS spectrum of Fe complex of 5, positive mode.

Figure S70. LC-HRESI-MS spectrum of apo form of 5, positive mode.

Figure S71. LC-HRESI-MS/MS spectrum of apo form of 5, positive mode.

m/z

60 min

Figure S72. Retention times of the L-FDAA derivatized amino acids of standards

2) L-Ala

4) N-methyl-L-Orn

Figure S73. The retention times of the L-FDAA derivatized amino acids from compound 1

Figure S74. LC-HRESI(+)-MS chromatogram of **5** from Marfey's reaction. A) Extract ion count (EIC) mode of **5** under m/z 342.1038; B) EIC of **5** for m/z 358.0958; C) EIC of **5** for m/z 385.1461; D) EIC of L-alanine for m/z 342.1038; e) EIC of β -alanine for m/z 342.1038; F) EIC of D-serine for m/z 358.0987; G) EIC of L-ornithine for m/z 385.1461; H) EIC of D-ornithine for m/z 385.1461.

12. Computational analysis

Determination of the absolute configuration of 2, 3, and 4 utilizing DP4+ probability analysis

All conformers proposed in this study were acquired through the MacroModel (version 2019-3, Schrödinger LLC) module with 'mixed torsional/low mode sampling' implemented with the MMFF94 force field. All searches were set initially in the gas phase with a 10 kJ/mol energy window limit and 10,000 maximum numbers of steps to thoroughly explore all potential conformers. The Polak-Ribiere conjugate gradient (PRCG) protocol was established with 10,000 maximum iterations and a 0.001 kJ (mol Å)-1 convergence threshold on the rms gradient to minimize conformers. Conformers proposed in this study within 5 kJ/mol found in the MMFF force field were selected for geometry optimization by Tmolex 4.3.1 at B3LYP/6-31+G(d,p) level for DP4+ analysis. Geometrically optimized conformers for possible diastereomers were used for calculation of gauge-invariant atomic orbital (GIAO) magnetic shielding tensors at the B3-LYP/6-31+G(d,p) level. Chemical shift values were calculated from the magnetic shielding tensors using the equation where δ is the calculated NMR chemical shift for nucleus *x*, and σ^o is the shielding tensor for the proton and carbon nuclei in tetramethylsilane calculated with the B3-LYP/6-31+G(d,p) basis set. DP4+ probability analysis was processed upon using an Excel sheet from Grimblat et al.

$$\delta_{calc}^{x} = \sigma^{o} - \sigma^{x}$$

Reference - Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. J. Org. Chem. 2015, 80, 12526–12534. DOI: 10.1021/acs.joc.5b02396

2a (isomer 1)

	А	В	С	D	E	F	G	Н	
1	Func	tional	Solvent?		Basis Set		Type of Data		
2	B3	LYP	PCM		6-31+G(d,p)		Unscaled Shifts		
3									
4			Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6	
5	sDP4+	(H data)	d 99.81 %	d 0.19%	-	-	-	-	
6	sDP4+	(C data)	4 94.86 %	 5.14%	-	-	-	-	
7	sDP4+((all data)	d 99.99%	d 0.01%	-	-	-	-	
8	uDP4+	(H data)	100.00%	0.00%	-	-	-	-	
9	uDP4+	(C data)	4 99.99%	0.01%	-	-	-	-	
10	uDP4+	(all data)	100.00%	0.00%	-	-	-	-	
11	DP4+ ((H data)	100.00%	₫ 0.00%	-	-	-	-	
12	DP4+ ((C data)	100.00%	0.00%	-	-	-	-	
13	DP4+ (all data)	100.00%	0.00%	-	-	-	-	
			-	•	-				

Figure S77. DP4+ probability analysis for the determination of the absolute configuration of 2.

		¹³ C						'H	
Number	Carbon Position	Exp.	Cal. (2a)	Cal. (2b)	Number	Carbon Pos	ition E	xp. Cal. (2a)	Cal. (2b)
2	7	169.9	165.2728	163.4656	46	8	4.59	5.074306	5.345409
4	8	57.1	55.20058	59.42911	47	11	4.33	4.800245	4.74795
5	9	62.6	63.97466	65.75498	48	20	3.05	2.974075	3.36041
7	10	172.5	161.1361	163.3842	49	23	4.66	4.610292	5.468065
9	11	50.5	48.68818	49.37156	51	9	3.89	3.752492	4.469758
10	12	17.4	13.99346	13.50855	52	9	3.94	5.202133	4.543015
11	13	174.5	163.7526	167.197	55	12	1.37	1.294229	1.544476
13	14	36.1	37.25645	37.43815	56	12	1.37	2.063354	2.013605
14	15	32.6	29.64457	35.283	57	12	1.37	1.454928	1.364429
15	16	173.3	161.9423	163.3026	59	14	3.45	3.910041	4.32409
17	17	48.4	50.80929	49.96521	60	14	3.45	3.464107	3.369902
18	18	22.8	25.60947	22.22457	61	15	2.7	3.920363	2.675825
19	19	25.8	30.43759	29.36288	62	15	2.7	2.114761	3.646223
20	20	67.1	67.11923	64.57762	63	17	3.57	3.798672	4.49381
21	21	175.6	167.5696	166.7402	64	17	3.61	3.884172	3.122189
23	23	52.4	51.76685	49.71993	65	18	1.78	2.870353	1.834152
24	22	164.7	158.526	154.929	66	18	1.78	1.517401	2.36329
27	26	52	50.31306	46.96174	67	19	1.96	1.911056	2.036638
28	25	21.7	21.68292	20.26947	68	19	1.96	2.977445	1.402546
29	24	29.1	24.84744	24.58044	70	26	3.58	3.799027	3.933583
33	2'	68	65.81639	65.06898	71	26	3.65	3.98868	4.096239
34	1'	39.8	41.81052	35.8639	72	25	2.02	2.561105	3.118378
39	6	110.8	110.9555	112.3856	73	25	2.06	2.141459	2.355353
40	5	159.9	155.1464	153.6029	74	24	1.93	2.033508	2.866865
42	4	117.9	111.9297	111.5217	75	24	2.32	2.024047	1.950064
43	3	134.6	128.6401	126.2888	76	2'	3.77	3.922784	4.334645
44	2	120.1	113.2392	111.6818	77	2'	4.34	5.209335	4.383168
45	1	130	122.8229	124.5964	78	1'	2.41	2.959558	2.525204
					79	1'	2.41	2.696261	2.335418
					80	1'	2.41	2.681286	2.778556
					83	4	6.93	7.458973	7.40061
					84	3	7.39	7.987773	7.817887
					85	2	6.92	7.464603	7.287848
					86	1	7.91	8.51591	9.054206

Table S8. Computationally calculated ¹H and ¹³C chemical shifts of **2a** and **2b** by utilizing computational analysis.

	A	В	С	D	E	F	G	Н	
1	Func	tional	Solvent?		Basis Set		Type of Data		
2	B3	LYP	РСМ		6-31+G(d,p)		Unscaled Shifts		
3									
4			Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6	
5	sDP4+	(H data)	a 99.81%	₫ 0.19%	-	-	-	-	
6	sDP4+	(C data)	a 94.86%	.14%	-	-	-	-	
7	sDP4+	(all data)	4 99.99%	₫ 0.01%	-	-	-	-	
8	uDP4+	(H data)	100.00%	₫ 0.00%	-	-	-	-	
9	uDP4+	(C data)	a 99.99%	₫ 0.01%	-	-	-	-	
10	uDP4+	(all data)	100.00%	₫ 0.00%	-	-	-	-	
11	DP4+	(H data)	// 100.00%	₫ 0.00%	-	-	-	-	
12	DP4+	(C data)	100.00%	0.00%	-	-	-	-	
13	DP4+ ((all data)	100.00%	₫ 0.00%	-	-	-	-	

Figure S78. DP4+ probability analysis for the determination of the absolute configuration of **3**.

			¹³ C					¹ H		
Number	Carbon Positio	n	Exp.	Cal. (3a)	Cal. (3b)	Number	Carbon Position	Exp.	Cal. (3a)	Cal. (3b)
	2	7	170	160.5903	160.5234	4	4 8	4.59	4.631003	4.820117
	4	8	57.1	62.86777	53.03642	4	5 11	4.34	4.833402	4.596502
	5	9	62.7	65.91441	61.59993	4	6 23	4.21	5.975929	3.868249
	7	10	172.7	164.5502	168.001	4	7 26	5.75	4.851111	4.913251
	9	11	50.5	49.03761	49.81175	4	9 9	3.88	4.550162	4.735255
	10 *	12	17.5	13.76205	13.88643	5	0 9	3.92	4.153045	3.957464
	11 [·]	13	174.7	167.78313	160.0837	5	3 12	1.37	1.503121	1.338947
	13 ^	14	36.2	37.437905	34.19106	5	4 12	1.37	1.662706	2.094933
	14 *	15	32.7	38.06332	32.98501	5	5 12	1.37	2.187544	1.400099
	15 [°]	16	173.7	164.5221	159.5322	5	7 14	3.45	3.346108	3.347411
	17 [·]	17	48.1	46.21344	47.30333	5	8 14	3.45	4.758935	4.465732
	18 -	18	21.3	26.34591	26.96609	5	9 15	2.69	3.187704	2.384879
	19 ⁻	19	26.6	22.825104	21.32364	6	0 15	2.69	3.074812	3.076843
	20 2	20	36.7	32.74787	32.47453	6	1 17	3.54	3.390861	4.257409
	21 2	21	168.9	167.011	169.5919	6	2 17	3.59	4.681018	3.907527
	23	1'	31.2	30.88223	35.93094	6	3 18	1.37	2.452509	2.539811
	24 2	23	62.2	55.56439	63.08499	6	4 18	1.42	1.54178	2.054973
	25 2	22	165.1	180.4103	184.4774	6	5 19	1.59	2.006431	2.071863
	28 2	26	82	75.167104	83.79448	6	6 19	1.59	1.904742	2.74923
	29 2	25	29.5	23.92746	22.4573	6	7 20	2.21	2.834107	2.852999
	30 2	24	27.3	19.53747	25.70477	6	8 20	2.21	2.406359	3.543028
	37	6	110.8	118.5147	114.9216	6	9 1'	2.94	2.878543	3.536832
	38	5	160.1	149.5373	148.8029	7	0 1'	2.94	3.765719	3.361618
	40	4	118	116.2586	111.5684	7	1 1'	2.94	2.901278	2.900082
	41	3	134.7	125.7791	126.9738	7	2 25	1.76	3.655556	3.172215
	42	2	120.1	115.0363	113.3307	7	3 25	2.37	2.758331	2.856274
	43	1	130.1	126.2527	126.9063	7	4 24	1.96	2.095066	2.25103
						7	5 24	2.11	2.650822	2.778286
						7	8 4	6.93	7.467884	7.229921
						7	9 3	7.39	7.8578	7.956974
						8	0 2	6.92	7.551378	7.491198
						8	1 1	7.9	8.798749	8.717146

Table S9. Computationally calculated ¹H and ¹³C chemical shifts of **3a** and **3b**.

	А	В	С	D	E	F	G	Н
1	Func	tional	Solvent?		Basis Set		Type of Data	
2	B3	LYP	РСМ		6-31G(d,p)		Unscaled Shifts	
3								
4			Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+	(H data)	₫ 0.00%	100.00%	-	-	-	-
6	sDP4+	(C data)	3.96%	d 96.04 %	-	-	-	-
7	sDP4+(all data)	₫ 0.00%	100.00 %	-	-	-	-
8	uDP4+	(H data)	 0.11%	4 99.89 %	-	-	-	-
9	uDP4+	(C data)	4 95.49 %	4.51%	-	-	-	-
10	uDP4+	(all data)	2.34 %	4 97.66 %	-	-	-	-
11	DP4+ (H data)	₫ 0.00%	100.00%	-	-	-	-
12	DP4+ ((C data)	ⅆ 46.56%	53.44 %	-	-	-	-
13	DP4+ (all data)	 0.00%	100.00%	-	-	-	-

Figure S79. DP4+ probability analysis for the determination of the absolute configuration of **4**.

		¹³ C					¹ H		
Number	Carbon Position	Exp.	Cal. (4a)	Cal. (4b)	Number Ca	arbon Position	Exp.	Cal. (4a)	Cal. (4b)
	2 7	170.1	165.0521229	164.6196408	27	8	4.58	4.794934191	5.111637643
	4 8	57.2	50.79478112	51.40460449	28	11	4.36	3.672143863	4.796459595
	5 9	62.7	63.5122637	64.00086012	30	9	3.95	4.900170362	4.181258205
	7 10	172.4	166.9900025	166.2295643	31	9	3.9	4.197322552	4.956484969
	9 11	50.4	53.44984272	48.53496608	34	12	1.36	2.400512666	1.904480416
	10 12	17.6	14.40003394	13.68094842	35	12	1.36	2.081014771	1.41775361
	11 13	174.6	159.8779278	160.7404168	36	12	1.36	1.373678608	1.585012052
	13 14	36.6	34.95607177	36.35813935	38	14	3.4	4.139687081	3.402398351
	14 15	35.5	32.74167797	33.38552828	39	14	3.43	3.263340774	4.166260892
	15 16	176.6	168.9366612	166.6856974	40	15	2.46	2.606371402	2.587448452
	20 6	110.9	107.23349	107.2987511	41	15	2.46	3.162121711	3.165058852
	21 5	160	157.8409407	157.8379895	44	4	6.93	7.420027649	7.396021335
	23 4	117.9	112.2566452	112.2877593	45	3	7.39	7.917815776	7.873104799
	24 3	134.7	128.2718912	128.0896635	46	2	6.92	7.285074126	7.246656355
	25 2	120.1	110.7142363	110.7422293	47	1	7.9	7.285074126	8.342464317
	26 1	130	121.9311209	121.2402818					

Table S10. Computationally calculated ¹H and ¹³C chemical shifts of **4a** and **4b**.

13. Bioactivities

C. neoformans strains used in the current study were described in the previous studies.^{3,4} All strains were cultured in yeast extract, bacto peptone with glucose (YPD; Biopure) or low-iron medium (LIM). For siderophore assay, *C. neoformans* cells were inoculated in 3 ml YPD broth and incubated for overnight at 30 C. Cells were pelleted and washed twice with iron-chelated phosphate buffered saline (PBS) and resuspended in LIM. Cells were incubated at 30 °C for overnight, pelleted, and washed twice using chelated PBS. Cells were resuspended in PBS. Total 2.0×10^5 cells were inoculated either in 200 µl of LIM, or in 200 µl of media containing iron-free or iron-loaded compound. Cells were grown for 36 hours at 30 °C, 5 µl of them were spotted on YPD agar medium, incubated for 24 hours at 30°, and photographs were taken. Each compound was mixed with FeCl₃ in a 1:0.9 molar ratio to prepare the iron-loaded form,^{5,6} and added to LIM at a final concentration of 10 µM. Ferroxamine was used as a siderophore reference (positive control).

Antifungal activity of each compound was evaluated by determination of minimum inhibitory concentration (MIC) following Clinical and Laboratory Standards Institute (CLSI) guideline.⁷ Cell viability was measured by spreading cultured from the 96 well-plate containing different concentrations of the compound and counting colony-forming unit (CFU).

14. Biosynthetic Pathway Analysis and Construction of phylogenetic trees

Amino Acid sequences were aligned using ClustalW⁸ and the phylogenetic tree was built with Fasttree⁹ 2 via the bioinformatics platform Galaxy.¹⁰ The amino acid sequences of the A and the C Domains of Actinobacteria were retrieved from the antiSMASH database.¹¹ We used the sequences for A-Domains with a specificity for all proteinogenic amino acids as well as the unnatural amino acids ornithine, D-ornithine, n-methyl ornithine, and beta alanine. For the C-domains we used C-Domains to every currently known class of C-Domain. The phylogenetic trees were visualized using iTOL.¹²

A domain	Active side residues ^a	Substrate	Accession number
ReneL_A2	DILQIGMVYK		
Swb16 (SW-163C)	DILQI TL VYK	Gly/Ala	BAI63288
Ecm6 (echinomycin)	DILQI TL VYK		BAE98155
Mad31_A1 (madurastatin D)	DILQ <i>L</i> GM /W K	Gly	WP_141576257
ReneL_A3	IDTTISLGDK		
Mad31_A2_(madurastatin D)	IDTTISLGDK	β-ala	WP_141576257
CahD_A1 (Cahuitamycin)	IDVTISLADK		AMK48228.1
BlmIV (Bleomycin)	<i>V</i> D WV ISLADK		AAG02364
ReneL_A3	DMENLGLINK		
Mad31_A3_(madurastatin D)	DMENLGLINK	Orn	WP_141576257
AMYAL_RS0130210 (Albachelin)	DMENLGLINK		WP_084702182
ReneQ_A1	DLFNLGLIHK		
Mad63 (madurastatin D)	DLFNLGLIHK	Cys/Ser	WP_141576286
GobJ (Gobichelin)	DLFNLGLIHK		AGE11891

Table S11. Comparison of adenylation domain active side residues extracted by NRPSPredictor 2^{13} based on Amino acid sequences from known NRPS's.

^aMajor variation in Bold, minor variation in italics

Figure S75. Phylogenetic analysis of Condensation Domains (C-domains of the *rene* cluster and the *mad* cluster are marked with a star).C-domains were aligned using ClustalW. The tree was created with fastree 2 (green: heterocyclization domains marked with Cyc; pink: condensation domains for the condensation of a D- and an L-amino acid ($^{\rm D}C_{\rm L}$), blue: Condensation domains for the condensation of two L-amino acids ($^{\rm L}C_{\rm L}$).

Figure S76. Phylogenetic analysis of Adenylation Domains (A-domains of the *rene* cluster and the *mad* cluster are marked with a star). A-domains were aligned using ClustalW. The tree was created with fastree 2 (yellow: A-domains with a specificity of Cys, blue: A-domains for glycine, orange: ornithine and derivatives thereof, red: beta-alanine)

Protein Name	size	Closest Homolog(s) ^a	Annotation	Identity (%)/	Accession number
	(AA)	_		Alignment	
				length (%) ^b	
RB99_01611	437	F9B16_25520	acyltransferase family protein Actinomadura montaniterrae	94.39/93	KAB2376107
hypothetical protein		F8568_RS34155	acyltransferase family protein Actinomadura sp. LD22	93.51/95	WP_151597828
		ACTIVE_0127	acyltransferase family protein Actinomadura verrucosospora	95.85/93.1	WP_173091757.1
RB99_01612	402	F8568_RS34160	helix-turn-helix domain-containing protein Actinomadura sp. LD22	96.12/96	WP_151597838
hypothetical protein		F9B16_RS25530	helix-turn-helix domain-containing protein Actinomadura montaniterrae	96.12/100	WP_151542657
		ACTIVE_0126	putative PucR family transcriptional regulator Actinomadura verrucosospora	95.02/100	QKG18492
RB99_01613	299	F9B16_RS25535	esterase Actinomadura montaniterrae	89.85/88	WP_151542664
hypothetical protein		ACTIVE_0125	esterase Actinomadura verrucosospora	89.26/99	QKG18491
		ERS075342_07230	esterase Mycobacterium tuberculosis	79.19/99	CNG48089
RB99_01614	293	F9B16_RS25540	DMT family transporter Actinomadura montaniterrae	96.92/99	WP_151542658
hypothetical protein		ACTIVE_0124	DMT family transporter Actinomadura verrucosospora	95.56/100	WP_173091753
		F8568_RS34170	DMT family transporter Actinomadura sp. LD22	94.18/99	WP_151597829
RB99_01615	640	F8568_RS34175	phosphatase PAP2 family protein Actinomadura sp. LD22	74.49/100	WP_151597830
putative diacylglycerol O-		ACTIVE_0123	phosphatase PAP2 family protein Actinomadura verrucosospora	59.71/99	WP_173091751
acyltransferase tgs3		DTB52_RS20895	phosphatase PAP2 family protein Actinomadura madurae	59.71/99	WP_111831501
RB99_01616	291	F9B16_RS40675	SAM-dependent methyltransferase Actinomadura montaniterrae	92.99/93	WP_151545595
hypothetical protein		ACTIVE_0122	SAM-dependent methyltransferaseActinomadura verrucosospora	86.96/93	WP_173091749
		C4U03_RS16735	SAM-dependent methyltransferase Actinomadura echinospora	60.44/93	WP_103938709
		orf-4	s-adenosyl methyltransferase Actinomadura sp. ATCC 39365	54.47/87	AKQ99279
		RdmB	S-adenosyl methyltransferase Streptomyces sp.	48.45/88	AWW87417
		Orf15	methyltransferase Actinoplanes garbadinensis	46.03/86	ACR33048
RB99_01617	103	ACTIVE_0121	hypothetical protein ACTIVE_0121 Actinomadura verrucosospora	86.73/95	QKG18487
hypothetical protein		F9B16_RS40670	hypothetical protein Actinomadura montaniterrae	94.52/70	WP_151545600
		AA75_RS35610	hypothetical protein Kitasatospora sp. MBT63	72.53/86	WP_033824513
RB99_01618	234	F9B16_40660	Oxidoreductase Actinomadura montaniterrae	94.02/100	WP_151545594
Benzoate 1,2-dioxygenase		F8568_034235	oxidoreductase Actinomadura sp. LD22	92.31/100	WP_151597213.1
electron transfer component		ACTIVE_0120	oxidoreductase FAD/NAD(P)-binding domain-containing protein Actinomadura verrucosospora	91.45/100	QKG18486
RB99_01619	199	F9B16_RS40660	molybdopterin-dependent oxidoreductase Actinomadura montaniterrae	93.47/100	WP_151545593
Putative protein-methionine-		F8568_RS34190	sulfite oxidase-like oxidoreductase Actinomadura sp. LD22	91.96/100	WP_151597212
sulfoxide reductase subunit		ACTIVE_0119	molybdopterin-dependent oxidoreductase Actinomadura verrucosospora	91.46/100	WP_173091745.1
YedZ1		yuiH	putative molybdopterin containing enzyme subunit Bacillus subtilis subsp. subtilis str. 168	42.64/96	CAB15192
RB99_01620	357	F9B16_40650	MBL fold metallo-hydrolase Actinomadura montaniterrae	95.52/100	WP_151545592.1
Ribonuclease BN		A2W34_02445	MBL fold metallo-hydrolase Chloroflexi bacterium RBG_16_64_32	63.19/91	OGO46291.1
		GEU28_04040	MBL fold metallo-hydrolase Dehalococcoidia bacterium	59.63/91	MPZ22713.1
RB99_01622	575	F9B16_RS40645	ankyrin repeat domain-containing protein Actinomadura montaniterrae	88.68/99	WP_151545599.1
hypothetical protein		F8568_RS34200	ankyrin repeat domain-containing protein Actinomadura sp. LD22	88.3/99	WP_151597226.1
		ACTIVE_0118	ankyrin repeat domain-containing protein Actinomadura verrucosospora	83.77/99	WP_173091743
RB99_01623	201	F9B16_RS40615	TetR family transcriptional regulator Actinomadura montaniterrae	97.5//97	WP_151545597
HTH-type transcriptional		F8568_RS34230	TetR family transcriptional regulator ctinomadura sp. LD22	95.5/99	WP_151597206.1
repressor KstR2 (kstR2_2)		ACTIVE_0117	TetR family transcriptional regulator Actinomadura verrucosospora	92.42/98	QKG18483
RB99_01624 3-	548	F8568_030915	long-chain-fatty-acidCoA ligase Actinomadura sp. LD22	97.45/100	WP_151597205
methylmercaptopropionyl-CoA		ACTIVE_0116	atty-acidCoA ligase FadD14 Actinomadura verrucosospora	97.45/100	QKG18482

Table S12. Top BLAST hits of genes in genomic region of putative madurastatin cluster in Actinomadura sp. RB99

ligase		F9B16 RS40610	long-chain-fatty-acidCoA ligase Actinomadura montaniterrae	97.63/100	WP 151545587
(reneA)		norE	arvl-coA ligase Streptomyces orinoci	32.7/97	CAO85890
		aurE	putative acvl-coA ligase Streptomyces thioluteus	32.34/89	CAE02600
RB99 01625	150	F9B16 RS40605	MaoC family dehydratase N-terminal domain-containing protein Actinomadura montaniterrae	94/100	WP 151545586
putative enovl-CoA hydratase		ACTIVE 0115	MaoC family dehydratase N-terminal domain-containing protein Actinomadura verrucosospora	94/100	WP 173091741
1		F8568 RS34240	MaoC family dehydratase N-terminal domain-containing protein Actinomadura sp. LD22	90.6/99	WP 151597204
(reneB)		htdZ	3-hydroxyacyl-thioester dehydratase Z Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh)	59.7/74.3	P9WNP2
		iga16	MaoC dehydratase Streptomyces sp. MSC090213JE08	56.29/99	BAX64257
		salS	SalS Salinispora tropica	55.38/86	ABP73636
		Strop_1034	MaoC domain protein dehydratase Salinispora tropica CNB-440	55.38/86	ABP53508
RB99_01626 rebeB	346	F8568_RS34245	phosphotransferase Actinomadura sp. LD22	93.06/100	WP_151597203
Putative aminoglycoside		F9B16_RS40600	phosphotransferase Actinomadura montaniterrae	93.06/100	WP_151545596
phosphotransferase		ACTIVE_0114	aminoglycoside phosphotransferase Actinomadura verrucosospora	91.1/100	QKG18480
(reneC)		UMAG_06422	hypothetical protein UMAG_06422 Ustilago maydis 521	34.13/83	XP_011392706
		MF437311.1:1521916346	phosphotransferase Streptomyces olivaceus	34.5/71	AWM72912
		rslP	putative phosphotransferase Streptomyces bottropensis	32.72/80	AHL46718
RB99 01627	113	H7233 02665	aldehyde dehydrogenase family protein <i>Pseudorhodobacter</i> sp	48 45/85	MBC7677880
hypothetical protein	115	H7323_08775	aldehyde dehydrogenase family protein <i>Frankiales</i> hacterium	50/88	MBC7374068
(reneD)		IEZ08 RS11290	aldehyde dehydrogenase family protein <i>Planobispora rosea</i>	49/88	WP_068922388
RB99 01628	560	F9B16 R\$23765	MES transporter Actinomadura montaniterrae	96.61/100	WP 151542327
Multidrug resistance protein	500	F8568 RS34255	MES transporter Actinomadura sp LD22	95/100	WP 151597201
MdtG'(<i>rene</i> E)		ACTIVE 0112	MES transporter Actinomadura verrucosospora	93,39/100	WP 173091735
RB99 01629	155	F9B16 RS23770	MarR family transcriptional regulator Actinomadura montaniterrae	94.84/100	WP 151542328
Transcriptional regulator SlvA	100	F8568 RS34260	MarR family transcriptional regulator <i>Actinomadura</i> sp. LD22	91.61/100	WP 151597200
(reneF)		ACTIVE 0111	MarR family transcriptional regulator Actinomadura versucosospora	84.52/100	WP 173091733
(pntR	PntR Streptomyces arenae	43.8/88	ADO85569
RB99 01630	422	F9B16 RS23775	MFS transporter Actinomadura montaniterrae	97.16/100	WP 151542329
Multidrug efflux protein YfmO		ACTIVE 0110	MFS transporter Actinomadura verrucosospora	96/98	WP 173091731
(reneG)		F8568 RS34265	MFS transporter Actinomadura sp. LD22	95.97/100	WP 151597199
		vfmO	Multidrug efflux protein YfmO <i>Bacillus subtilis</i> strain 168)	55.2/73.6	006473
		mem2	Mem2 Actinoplanes friuliensis	33.97/68	CAM56779
		rkH	antibiotic efflux protein	32.73/65	ACZ65473
		gilJ	Streptomyces sp. 88-682 putative transmembrane efflux protein Streptomyces griseoflavus	29.15/62	AAP69589
RB99_01631	290	F8568_RS34270	hypothetical protein Actinomadura sp. LD22	96.54/99	WP_151597198
hypothetical protein		F9B16_RS23780	hypothetical protein Actinomadura montaniterrae	95.5/99	WP_151542330
(reneH)		ACTIVE_0109	hypothetical protein Actinomadura verrucosospora	92.67/100	WP_173091729
RB99_01632	65	F9B16_RS23785	MbtH family NRPS accessory protein Actinomadura montaniterrae	90.77/100	WP_151542331
Protein MbtH		ACTIVE_0108	MbtH-like protein Actinomadura verrucosospora	89 /92	QKG18474
(reneI)		ETD83_RS12230	MbtH family protein Actinomadura sp. 14C53	89/90	WP_138645214
		SSMG_02539	mbtH protein Streptomyces sp. AA4 amychelin cluster	62.5/98	EFL06868
		gobL	MbtH Streptomyces sp. NRRL F-4415	66.15/100	AGE11893.1
		mbtH	Putative conserved protein MbtH Mycobacterium tuberculosis H37Rv	69.35/87	CCP45165.1
		tcp17	MbtH-like short polypeptide Actinoplanes teichomyceticus	76.56/98	CAE53358
RB99_01633	433	F9B16_RS23790	lysine N(6)-hydroxylase/L-ornithine N(5)-oxygenase family protein Actinomadura montaniterrae	95.15/100	WP_151542332
L-ornithine N(5)-		F8568_RS34280	lysine N(6)-hydroxylase/L-ornithine N(5)-oxygenase family protein Actinomadura sp. LD22	94.92/100	WP_151597196
monooxygenase		E1291_RS35040	SidA/IucD/PvdA family monooxygenase Actinomadura verrucosospora	93.3/100	WP_173091725
(reneJ)		SSMG_02546	peptide monooxygenase Streptomyces sp. AA4 (amychelin cluster)	59/94	EFL06875
		gobT	L-ornithine 5-monooxygenase Streptomyces sp. NRRL F-4415	57.55/94	AGE11900
		SCO0498	putative peptide monooxygenase Streptomyces coelicolor A3(2)	61.41/95	CAB53328

		AMYAL RS0130205	SidA/IucD/PvdA family monooxygenase Amycolatopsis alba	59.77/97	WP 039794392
RB99 01634	338	ACTIVE 0106	ABC transporter substrate-binding protein Actinomadura verrucosospora	95.73/97	WP 173091723
Putative ABC transporter		F8568 RS34285	ABC transporter substrate-binding protein Actinomadura sp. LD22	95.12/97	WP 151597195
substrate-binding lipoprotein		F9B16_RS23795	ABC transporter substrate-binding protein Actinomadura montaniterrae	94 21/97	WP 151542333
YhfO		F1291 RS35045	iron-sideronhore ABC transporter substrate-binding protein Actinomedura roseirufa	79 64/97	WP_131742362
(none K)		DHA1 ro02220	ΔPC Eq(2)) transporter substants binding component <i>Photoaccous</i> i.esti (DUA)	24.64/100	APC04126
(reners)		AMYAL DS0120225	ADC F((5+) transporter, substrate onding component <i>Anotacoccus Josta</i> KHAI	27.17/06	AD094120 WD 020625022
		AMTAL_KS0150225	non-side ophote ABC transporter substate-ontaing protein Amycotatopsis about	25.76/02	WF_020033022
		SCAB_85451	87.22	35.70/95	CBG75490
RB99 01635	4036	F9B16 RS23800	amino acid adenvlation domain-containing protein Actinomadura montaniterrae	92.56/99	WP 151542334
Tyrocidine synthase 3		ACTIVE 0105	cyclic nucleotide binding protein Actinomadura vertucosospora	92.06/99	OKG18471
(reneL)		F8568 R\$34290	amino acid adenvlation domain-containing protein Actinomadura sp I D22	91 94/99	WP 151597194
(101102)		F1300 R\$26465	amino acid adenvlation domain-containing protein Actinomadura fibrasa	81 52/99	WP 131759779
		SCAB 85471	nutative NRPS/cideronhore hissorthesis protein <i>Strentomyces scaliei</i> 87 22	45 38/99	CBG75492
		AMYAL PS0130210	non ribscomal partide synthesise Annual tonsis alla	46.62/00	WD 084702182
		AWITAL_KS0150210	non-itosomai peptide synthetase <i>Amycolatio</i> suster)	40.02/99	EEL 06866 1
		ance	ionitiosonial peptide synthetise (anychemi cruster)	43.41/09	ACE11808.1
		gobk	nonribosomai peptide synthetase	43.41/89	AGE11898.1
		ilas	IlaS Streptomyces atratus	40.19/99	ASX95241
RB99_01636	436	F9B16_RS23805	salicylate synthase Actinomadura montaniterrae	93.66/94	WP_151542346
Salicylate synthase		F8568_RS34295	salicylate synthase Actinomadura sp. LD22	92.7/94	WP_151597225
(reneM)		ACTIVE_0104	Chorismate binding-like protein [Actinomadura verrucosospora]	91.53/100	QKG18470.1
		SSMG_02545	salicylate synthase <i>Streptomyces</i> sp. AA4 (amychelin cluster)	56.24/99	EFL06874
		DT87_RS23310	MULTISPECIES: salicylate synthase unclassified <i>Streptomyces</i>	52.59/95	WP_037880184
		mbtI	Isochorismate synthase MbtI Mycobacterium tuberculosis H37Rv	48.53/51	CCP45174.1
RB99 01637	537	ACTIVE 0103	AMP-binding protein [Actinomadura verrucosospora]	96.18/97	WP 173100878
2.3-dihydroxybenzoate-AMP		F9B16 RS23810	AMP-binding protein Actinomadura montaniterrae	94 66/97	WP 151542347
ligase		F8568 R\$34300	AMP-hinding protein Actinomadura sn I D22	94 47/97	WP 151597224
(rangN)		SSMG 02542	2.3 dihydroxybaroate. AMP ligase Strantomycas en AAA (amychelin cluster)	61.93/97	EFI 06871 1
(remeity)		gobK	2,3 dilydroxybarzoate-AWD ligase Sireptomyces sp. NPD E 4415	58 17/08	AGE11802 1
		gook	Z, SunyuloxyuchZoate-Aivii ngase sinepionytes sp. NKKL1-4415	59 22/07	AGE11692.1
		mixce	Nixel Sugmateria automatica Sg at 5 Diffuscional angume Mitch (sg at 5	51 11/07	CCD45172
		liibtA	billunctional enzyme whote, sancyr-awr ngase (SAL-Awr ngase) + sancyr-S-ArCP synthetase	51.11/97	CCP45172
BB00 01629	125	E9569 DS24205	Mycobacterium tuberculosis H3/KV	07.04/100	WD 151507222
KB99_01038	155	F8508_K534305	aspartate 1-decarboxylase Actinomaatura sp. LD22	97.04/100	WP_15159/225
Aspartate 1-decarboxylase		ACTIVE_0102	aspartate 1-decarboxylase Actinomaaura verrucosospora	93.3/100	WP_173091719
(reneO)		F9B16_RS23815	aspartate 1-decarboxylase Actinomadura montaniterrae	96.3/100	WP_151542335
		kirD	putative aspartate-1-decarboxylase precursor Streptomyces collinus Tu 365	62.5/94	CAN89641
		RSAG_RS12240	MULTISPECIES: aspartate 1-decarboxylase Clostridiales	56.14/84	WP_008704365
		crpG	CrpG Nostoc sp. ATCC 53789	44.74/84	ABM21575
RB99_01639	428	entS	enterobactin transporter EntS Actinomadura montaniterrae	91.12/100	WP_151542336
Enterobactin exporter EntS		entS	enterobactin transporter EntS Actinomadura verrucosospora	91.2/100	WP_173091717
(reneP)		H4W34_005751	ENTS family enterobactin (siderophore) exporter Actinomadura algeriensis	81.19/98	MBE1535918
		RER_27030	putative siderophore export protein Rhodococcus erythropolis PR4	45.48/92	BAH33411
		RHA1_ro02321	transporter, MFS superfamily protein Rhodococcus jostii RHA1	44.29/97	ABG94127
		vabS	putative siderophore exporter Vibrio anguillarum	40.51/99	CAJ45638
		SSMG 02541	major facilitator superfamily transporter multidrug resistance protein <i>Strentomyces</i> sp. AA4	38.48/92	EFL06870
			(amychelin chluster)		
RB99_01640	1124	F9B16_RS23825	amino acid adenylation domain-containing protein Actinomadura montaniterrae	93.86/99	WP_151542337
Phenyloxazoline synthase		F8568_RS30790	amino acid adenylation domain-containing protein Actinomadura sp. LD22	93.05/99	WP_151597192

MbtB		ACTIVE 0100	amino acid adenviation domain-containing protein Actinomadura variucosospora	02 07/00	WP 173001715
(rangO)		SSMG 02535	annio actu auchylation uomani-containing protein Actinomatana vertucosospora	50 /11/08	FEL 06864
(rene Q)		solito_02333	non-noosomai popula synthetasa <i>Streptomyces</i> sp. AA4 (anychenn chuster)	57.2/00	ACE11201
		gooj	nonnoosonnai pepude synunetase <i>Sireptomyces</i> sp. NKKL F-4415	52 12/00	AUE11091 DAD55612
			Plandamenting synthesis MkP (shared-meeting and find 19152	33.12/99	DAD33013
	220	mbtB	Phenyloxazoline synthase MbtB (phenyloxazoline synthetase) Mycobacterium tuberculosis H3/RV	48.89/99	CCP451/1
RB99_01641	338	ACTIVE_0099	iron-siderophore uptake system transmembrane protein Actinomadura verrucosospora	94.97/100	QKG18465
Ferric enterobactin transport		F9B16_RS23830	iron chelate uptake ABC transporter family permease subunit Actinomadura montaniterrae	95.85/99	WP_151542338
system permease protein FepG		E1285_RS43350	iron chelate uptake ABC transporter family permease subunit Actinomadura sp. 7K507	85.67/99	WP_132160734
		AMYAL_RS0130245	iron chelate uptake ABC transporter family permease subunit <i>Amycolatopsis alba</i>	51.83/97	WP_039795885
		SSMG_02544	predicted protein <i>Streptomyces</i> sp. AA4 (amychelin cluster)	51.16/93	EFL06873
		gobO	ABC transporter <i>Streptomyces</i> sp. NRRL F-4415	47.51/88	AGE11896.1
RB99_01642	353	F8568_RS34325	iron chelate uptake ABC transporter family permease subunit Actinomadura sp. LD22	92.9/99	WP_151597222
Ferric enterobactin transport		F9B16_RS23835	iron chelate uptake ABC transporter family permease subunit Actinomadura montaniterrae	92.35/99	WP_151542348
system permease protein FepD		ACTIVE_0098	Fe3+-siderophore ABC transporter permease Actinomadura verrucosospora	91.78/100	QKG18464
		AMYAL_RS0130240	iron chelate uptake ABC transporter family permease subunit Amycolatopsis alba	60.84/87	WP_020635025
		SSMG_02543	predicted protein <i>Streptomyces</i> sp. AA4 (amychelin cluster)	56.97/91	EFL06872
		gobP	iron siderophore transporter <i>Streptomyces</i> sp. NRRL F-4415	52.6/86	AGE11897
RB99 01643	230	ACTIVE 0097	TetR family transcriptional regulator Actinomadura versucosospora	90.74/193	OKG18463
HTH-type transcriptional		F9B16 RS23840	TetR family transcriptional regulator Actinomadura montaniterrae	87.33/93	WP 151542349
repressor AcnR		F8568 RS34330	TetR family transcriptional regulator Actinomadura sp. LD22	87.78/93	WP 151597221
RB99 01644	305	ACTIVE 0096	ATP-binding cassette domain-containing protein Actinomadura verrucosospora	94 75/100	WP 173091711
Daunorubicin/doxorubicin	505	F8568 R\$34335	ATP-hinding cassette domain-containing protein Actinomadura sp. LD22	93 11/100	WP 151597190
resistance ATP-binding protein		DTB52 R\$20675	ARC transporter ATP-binding protein Actionandura madura	90 17/96	WP_021599067
Drev A		ton16	ADC transporter ATT-onding protein Actionmatianta matantae	68 71/06	ACD50789
DIA		alpTI	putative ABC transporter, ATF officing component sinceptonyces tongisporojiavas	67.01/04	ACK30788
		SIII 11 E592 DS0124910	A DC transporter A TP-binding protein <i>streptomyces abus</i>	07.01/94 50.4C/08	AE233939
BB00 01645	515	F365_K50124610	ABC transporter AIF-ondarig protein saturdsporta arentecita	39.40/98	WP_019052750
KD99_01043	545	F9D10_K525650	ABC transporter permease Actinomatura montanterrate	95.21/100	WP_151542340
nypotnetical protein		F8568_KS34340	ABC transporter permease <i>Actinomadura</i> sp. LD22	89.91/100	WP_15159/189
		ACTIVE_0095	ABC transporter permease Actinomadura verrucosospora	88.07/100	WP_1/3091/09
		tsn15	putative ABC transporter, membrane spanning protein <i>Streptomyces longisporoflavus</i>	44.25/93	ACR50/87
		sin'I'll	putative antibiotic ABC transporter efflux pump <i>Streptomyces albus</i>	45.72/96	AEZ53960
RB99_01646	48	ACTIVE_0094	hypothetical protein Actinomadura verrucosospora	93.75/100	WP_173091707
hypothetical protein		E1293_RS47630	hypothetical protein Actinomadura darangshiensis	81.25/100	WP_165978368
		F4557_003456	hypothetical protein Actinomadura catellatispora	86.67/93	MBB4775038
RB99_01647	340	F9B16_RS23855	aromatic ring-hydroxylating dioxygenase subunit alpha Actinomadura montaniterrae	94.71/100	WP_151542341
Toluene-4-sulfonate		ACTIVE_0093	Rieske 2Fe-2S domain-containing protein Actinomadura verrucosospora	94.12/100	WP_173091705
monooxygenase system iron-		F8568_RS34345	Rieske 2Fe-2S domain-containing protein Actinomadura sp. LD22	94.41/100	WP_151597188
sulfur subunit TsaM1		ORF14	putative methylase Streptomyces cinnabarigriseus	41.19/98	CBW54656
		BamIOP4010DRAFT 038	Rieske (2Fe-2S) domain protein Burkholderia ambifaria IOP40-10	35.21/98	EDT06079
		1 –			
RB99_01648	281	F9B16_RS23860	helix-turn-helix domain-containing protein Actinomadura montaniterrae	92.88/100	WP_151542342
Transcriptional regulator KdgR		F8568 RS34350	helix-turn-helix domain-containing protein Actinomadura sp. LD22	90.39/100	WP 151597220
r r r r r r r r r r r r r r r r r r r		ACTIVE 0092	helix-turn-helix domain-containing protein Actinomadura verrucosospora	91.76/95	WP 173091703
		schA27	putative transcriptional regulator <i>Streptomyces</i> sp. SCC 2136	60.17/85	CAH10127
		nbrR5	IclR family transcriptional regulator Nocardia terpenica	32.18/71	AJ072706
		orf7	transcriptional regulator Streptomyces galbus	31 3/94	ADE22342
RB99 01649	310	F9B16 R\$23865	PaaX family transcriptional regulator Actinomadura montaniterrae	93 35/80	WP 151542350
Transcriptional repressor DaaV	517	F8568 R\$3/355	Page family transcriptional regulator <i>Actinomadura</i> sp. J.D22	93 /1/80	WP 151597219
rianscriptional repressor r ddA		ACTIVE 0001	Page V family transcriptional regulator Actinomating transcription	20.52/02	WD 172001701
		ACTIVE_0091	raaA tanny transcriptional regulator Actinomaaura verrucosospora	07.33/92	wr_1/3091/01

		schA31	phenyl acetic acid responsive transcriptional repressor Streptomyces sp. SCC 2136	54.83/80	CAH10131.1
RB99_01650	206	F9B16_RS23870	TetR family transcriptional regulator Actinomadura montaniterrae	98.53/99	WP_151542343
HTH-type transcriptional		ACTIVE_0090	TetR family transcriptional regulator Actinomadura verrucosospora	96.60/100	WP_173091699
regulator BetI		F8568_RS34360	TetR family transcriptional regulator Actinomadura sp. LD22	97.07/99	WP_151597187
		cmxK	TetR family transcriptional regulator <i>Myxococcus</i> sp.	40.1/95	AXM43066
RB99_01651	585	F8568_RS34365	sensor histidine kinase Actinomadura sp. LD22	88.21/100	WP_151597186
Oxygen sensor histidine kinase		ACTIVE_0088	sensor histidine kinase Actinomadura verrucosospora	88.10/99	WP_173091695
NreB		E1266_RS27640	sensor histidine kinase Actinomadura sp. 7K534	72.6/99	WP_111831483
		DTB52_RS20610	sensor histidine kinase ctinomadura madurae	42.21/59	ACN29724.1
RB99_01652	224	F9B16_RS48755	response regulator Actinomadura montaniterrae	98.21/100	WP_151547073
Oxygen regulatory protein		F8568_RS34370	response regulator Actinomadura sp. LD22	95.98/100	WP_151597185
NreC		AL2_RS24065	response regulator transcription factor Actinomadura latina	92.86/100	WP_067637201
		MG459168.1:62356891	LuxR family DNA-binding response regulator <i>Streptomyces</i> sp. ID38640	46.61/98	AVV61976.1
		cal2	Cal2 Streptomyces calvus	45.91/98	ALG65334.1
		regC	regulatory protein C Actinoplanes friuliensis	44.95/97	CAM56776
RB99_01653	622	F9B16_RS48760	hypothetical protein Actinomadura montaniterrae	94.28/97	WP_151547074
Oxygen sensor histidine kinase		ACTIVE_0086	signal transduction histidine kinase Actinomadura verrucosospora	90.59/96	QKG18452
NreB		F8568_RS34375	hypothetical protein Actinomadura sp. LD22	90.76/96	WP_151597184
		orf26	two-component system sensor kinase Nonomuraea longicatena	38.58/50	ACN29724
		cal1	Call Streptomyces calvus	35.07/46	ALG65335
		regD	regulatory protein D Actinoplanes friuliensis	33.33/42	CAM56777
RB99_01654	362	F8568_RS34380	substrate-binding domain-containing protein Actinomadura sp. LD22	98.2/92	WP_151597218
Lactose operon repressor		F9B16_RS48765	substrate-binding domain-containing protein Actinomadura montaniterrae	97.6/92	WP_151547077
		ACTIVE_0085	LacI family transcriptional regulator Actinomadura verrucosospora	97.2/88	QKG18451
		chaR3	ChaR3 protein Streptomyces chartreusis	52.35/82	CAH10185
		purR	LacI transcriptional regulator Micromonospora chalcea subsp. Izumensis	49.85/93	ARW71474
		Orf(-10)	LacI family transcriptional regulator <i>Streptomyces</i> sp. SCSIO 03032	53.89/59	ARP51731
RB99_01655	383	F9B16_RS48770	mandelate racemase/muconate lactonizing enzyme family protein Actinomadura montaniterrae	97.65/100	WP_151547075
D-galactonate dehydratase		ACTIVE_0084	mandelate racemase/muconate lactonizing enzyme family protein Actinomadura verrucosospora	96.61/100	WP_173091689
		F8568_RS34385	mandelate racemase/muconate lactonizing enzyme family protein Actinomadura sp. LD22	96.87/100	WP_151597183
		F8566_RS12900	mandelate racemase/muconate lactonizing enzyme family protein Actinomadura rudentiformis	85.22/98	WP_151560418
		orf1178	putative dehydratase Streptomyces kanamyceticus	76.34/96	BAE95592
		orf41	isomerase Streptomyces nanchangensis	28.85/90	ADC45557
		sccontig008-48	mandelate racemase/muconate lactonizing protein Streptomyces chromofuscus	28.01/95	AEZ64556
RB99_01656	344	F8568_RS30715	alcohol dehydrogenase catalytic domain-containing protein Actinomadura sp. LD22	93.60/100	WP_151597182
2-deoxy-scyllo-inosamine		ACTIVE_0083	alcohol dehydrogenase GroES domain-containing protein Actinomadura verrucosospora	95.06/100	QKG18449
dehydrogenase		F8566_RS12895	alcohol dehydrogenase catalytic domain-containing protein Actinomadura rudentiformis	77.95/96	WP_151560417
		kanT	putative dehydrogenase Streptomyces kanamyceticus	58.13/96	BAE95593
		aprE	putative 3-amino-2,3-dideoxy-scyllo-inositol 1 dehydrogenase Streptoalloteichus hindustanus	38.15/91	CAI47653
		live	putative 3-amino-2,3-dideoxy-scyllo-inositol 1-dehydrogenase Streptomyces lividus	38.39/94	CAG38695

15. References

[1] Harada K.-i., Tomita K, Fujii K, Masuda K, Mikami Y, Yazawa K, Komaki H, Isolation and structural characterization of siderophores, madurastatins, produced by a pathogenic Actinomadura madurae. *The Journal of antibiotics* **2004**;*57*:125-135.

DOI: 10.7164/antibiotics.57.125

[2] Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M, Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. *Analytical chemistry* **2016**;88:7946-7958.

DOI: 10.1021/acs.analchem.6b00770

[3] Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW. Iron source preference and regulation of iron uptake in Cryptococcus neoformans. *PLoS Pathog.* 2008;**4**:e45.

[4] Jung WH, Hu G, Kuo W, Kronstad JW. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. *Eukaryot Cell*. 2009;8:1511-1520.

[5] Wiebe C, Winkelmann G. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. *J Bacteriol.* 1975;**123**:837-842.

[6] Raymond-Bouchard I, Carroll CS, Nesbitt JR, Henry KA, Pinto LJ, Moinzadeh M, *et al.* Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. *Eukaryot Cell.* 2012;11:1333-1344.

[7] Wayne P. Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. *CLSI document M27-A2*. 2002.

[8] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, Clustal W and Clustal X version 2.0. *Bioinformatics* **2007**;23:2947-2948.

DOI: 10.1093/bioinformatics/btm404

[9] Price MN, Dehal PS, Arkin AP, FastTree 2–approximately maximum-likelihood trees for large alignments. *PloS one* **2010**;5:e9490.

DOI: 10.1371/journal.pone.0009490

[10] Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic Acids Research* **2018**;46:W537-W544.

DOI: 10.1093/nar/gky379

[11] Blin K, Shaw S, Kautsar SA, Medema MH, Weber T, The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. *Nucleic Acids Research* **2020**,49:D639-D643.

DOI: 10.1093/nar/gkaa978

[12] Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Research* **2021;**49:W293-W296.

DOI: 10.1093/nar/gkab301

[13] Röttig, M.; Medema, M. H.; Blin, K.; Weber, T.; Rausch, C.; Kohlbacher, O., NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. *Nucleic Acids Research* **2011**; *39*: W362-W367.

DOI: 10.1093/nar/gkr323