



**Supplementary Fig. 1. Analysis of the sequencing quality of isolates.** (a) Average coverage of each bam file. (b) Mean mapping quality with a threshold of 30. (c) GC% percentage of all individuals across the genome from bam files using Qualimap with the threshold line of the average around 43. Isolate JPN\_MEK\_13a has an outlier GC% value, possibly due to a sequencing artifact. Source data are provided as a Source Data file.



**Supplementary Fig. 2.** Correlation of the Alternate Allele Frequency with the QUAL (quality) of the SNPs across the entire genome (n=1,865,441), using the dataset with the *B. graminis* outgroups to define the ancestral alleles. The value of the Pearson's correlation test (two-sided, with no adjustments made for multiple comparisons) is 0.92 with a low p-value < 2.2e-16, indicating a strong positive correlation. Source data are provided as a Source Data file.



**Supplementary Fig. 3.** Density of allele frequencies for various subsites using the dataset with 172 isolates, filtered and with 90% maximum missing per site. All of them are on SNPs, except from the INDELs one. The red line has the height of the value of the first window in the Synonymous SNPs group. High impact, missense mutations and SNPs in the coding sequence are above the line for the lowest frequencies, implying that there the SNPs tend to be less widespread. Source data are provided as a Source Data file.



**Supplementary Fig. 4.** Length of INDELs in all sites, in CDS sites and non-CDS sites using the dataset with 172 isolates, filtered and with 90% maximum missing per site. The dark gray color is indicating insertions and the light gray deletions. Source data are provided as a Source Data file.



**Supplementary Fig. 5.** Combinations of the first three components of the PCoA analysis for the SNPs dataset of the 172 isolates after being filtered for their quality, minor allele frequency and LD pruned. PCoA was performed with regard to the (a) simple mismatch, (b) Bray-Curtis, and (c) Nei's genetic distances.



**Supplementary Fig. 6.** Admixture analysis and cross validation error statistics, using the Admixture software, 172 isolates, using LDpruned SNPs and strictly excluding clonal and unqualified SNPs and isolates. We analysed for K=2 up to K=10. TUR, ISR, KAZ and RUS mildew isolates together are characterized as Mid-Asian and all the isolates from populations in countries from Europe and Asia are termed Eurasian. (a) The results of the most common ancestral patterns from K=2 to K=10, using the cohort with 172 isolates, 100 repetitions and drawn with the software Pong (n=100). (b) Cross-Validation error plot for K=2 to K=15, showing that the most supported Ks are no more than K=8. Boxes indicate the inter-quartile range (IQR) with the central line indicating the median and whiskers indicating the minimum and maximum without outliers, respectively. Outliers were defined as minimum - 1.5\*IQR and maximum + 1.5\*IQR, respectively. Source data are provided as a Source Data file.



**Supplementary Fig. 7.** Association of the Geographic Distance (tens of kilometers by coordinates of the isolates) with various genetic distances using Kernel Density Estimation. In each plot there is also depicted the Mantel test correlation and its p-value in bold below that. The results are shown for the (**a**) simple mismatch, (**b**) Bray-Curtis, and (**c**) Nei's genetic distances.



**Supplementary Fig. 8.** Analysis of factorial dbMEM using the worldwide dataset of 172 isolates (excluding isolates from Australia and Japan since they are either transferred there quite recently or they are recent recombinants) where there were known coordinates. This method is used to illustrate spatial correlation and/or separation regarding one eigenvector (e.g. geographical barriers). The two levels of dbMEM eigenfunctions with the highest impact are presented. The black and white shades and its various sizes indicate the difference between the different points (isolates) in relation to their position on the map. The larger the dot the bigger the positive (black) or negative (white) spatial correlation between isolates for each dbMEM eigenfunction. The first eigenvector (mem1) separates East and Middle Asian mildew isolates from the rest. The second eigenvector (mem2) separates American mostly (and Chinese) mildew isolates from the rest of the Eurasian isolates. The results are shown for the (**a**) simple mismatch, (**b**) Bray-Curtis, and (**c**) Nei's genetic distances.



**Supplementary Fig. 9.** PCoA analysis for the SNPs dataset of the 172 isolates after being filtered for their quality and minor allele frequency, using simple mismatch distances. (a) PCoA of the cohort with all 172 *B.g. tritici* and *B.g. dicocci* isolates using non LD-pruned SNPs. *B.g. dicocci* isolates separate clearly from all *B.g. tritici* isolates. Notably, *B.g. dicocci* isolates separate into subgroups which are not visible when LD pruned SNPs are used (see Figure 1b). (b) PCoA using only *B.g. dicocci* isolates and LD-pruned SNPs. The *B.g. dicocci* isolates split into distinct groups, suggesting the presence of multiple distinct genetic lineages.



**Supplementary Fig. 10.** Phylogenetic Networks using NeighborNet in Splitstree using the cohort with 184 isolates (including the outgroups) and only 4fdg sites, biallelic and LD-pruned SNPs, excluding indels and SNPs in chromosome Bgt\_chr-Un. Missing data SNPs were also excluded. To construct the networks we used: (a) Simple mismatch individual distances (b) the Kimura 2-parameter model to get distances from SNPs and (c) a single multiple alignment of SNPs. Some of the non-coloured individuals are mildew isolates from Russia, Kazakhstan, Turkey, Israel and China.



**Supplementary Fig. 11.** Phylogenetic Networks using NeighborNet in Splitstree using the cohort with 184 isolates (including the outgroups) and only 4fdg sites, biallelic and non LD-pruned SNPs, excluding indels and SNPs in chromosome Bgt\_chr-Un. Missing data SNPs were also excluded. To construct the networks we used: (a) Simple mismatch individual distances (b) the Kimura 2-parameter model to get distances from SNPs and (c) a single multiple alignment of SNPs. Some of the non-coloured individuals are mildew isolates from Russia, Kazakhstan, Turkey, Israel and China.

Fourfold degenerate sites, 2994 SNPs, not pruned for linkage disequilibrium (LD)



**Supplementary Fig. 12.** PCoA using LD pruned SNP data for each population. We picked eight isolates with big Simple Mismatch distances between them per population (ARG, CHNa, CHN, EUR, ISR, ISRdic, JPN and USA) for analyses such as the coalescence. The selected isolates are highlighted in orange. For Chinese isolates, two PCoAs are shown, one with only the putative ancestral isolates (CHNa), and one with all isolates (CHN) in which the putative hybrids (CHNh) are highlighted in yellow and CHNa in orange.



**Supplementary Fig. 13.** Fixation Index between all populations (average over the whole genome), using PopGenome in R. A value of zero implies complete panmixis, where the populations can interbreed freely, while a value of one implies that the population structure can explain all the genetic variation between the populations and that they do not share any genetic diversity. The data is displayed as a heat map for better visibility of differences, with the numeric values in each respective square. The Eurasian *B.g. tritici* populations are closer to zero, indicating a state close to panmixis, while the ARG, USA and *B.g. dicocci* populations seem to be more isolated with  $F_{ST}$  values of roughly 0.4-0.7. Chinese mildew populations are either with all isolates (CHN), only the ones with the East Asian ancestry (CHNa) or only the ones with at least 25% European ancestry from ADMIXTURE (CHNh).



**Supplementary Fig. 14.** Divergence and diversity distances between populations of the 172 isolates. (a) Distance of average differences (DAD) as a phylogenetic network produced with NeighborNet). (b) Between populations divergence (dxy) as a phylogenetic network produced with NeighborNet. (c) Boxplot graphs of dxy values for all 50kb (n=2,823) genomic windows used for the calculations. Boxes indicate the inter-quartile range (IQR) with the central line indicating the median and whiskers indicating the minimum and maximum without outliers, respectively. Outliers were defined as minimum – 1.5\*IQR and maximum + 1.5\*IQR, respectively. The average is indicated by a dark blue rhombus. The whiskers indicate the standard error. Source data are provided as a Source Data file.



**Supplementary Fig. 15. Site Frequency Spectrum/Minor Allele Frequencies graphs.** Bar graphs of the minor allele frequency per population. Source data are provided as a Source Data file.



**Supplementary Fig. 16. Site Frequency Spectrum/Minor Allele Frequencies graphs version 2.** Bar graphs of the minor allele frequency per population excluding alleles with no derived SNPs (No. of Alleles=0) and derived alleles fixed in a population (No. of Alleles=Number of isolates in population). The left peak represents singletons for the ancestral state and the right peak represents singletons for the derived state. For some populations, we see a U-shaped distribution of alleles with two peaks on both sides (e.g. ISRdicpop, ISRpop, EURpop and CHNpop). Source data are provided as a Source Data file.



**Supplementary Fig. 17.** All 25 models used to simulate the history of powdery mildew populations with fastsimcoal2. The various abbreviations refer to the different populations and priors. DIC (*B.g. dicocci*), EUR, ISR, CHN and USA are the five populations used in this analysis, while the abbreviations with the population triplet name and an "N" in front of it represent the effective population size prior (e.g. NUSA is the effective population size prior of the USA mildew population). The ADM abbreviation refers to the possible amount of migration happening from one population to another. Finally, the abbreviations on the left of each scenario scheme refer to the time priors which are explained in the Supplementary Data 3.



**Supplementary Fig. 17 (continued).** All 25 models used to simulate the history of powdery mildew populations with fastsimcoal2. The various abbreviations refer to the different populations and priors. DIC (*B.g. dicocci*), EUR, ISR, CHN and USA are the five populations used in this analysis, while the abbreviations with the population triplet name and an "N" in front of it represent the effective population size prior (e.g. NUSA is the effective population size prior of the USA mildew population). The ADM abbreviation refers to the possible amount of migration happening from one population to another. Finally, the abbreviations on the left of each scenario scheme refer to the time priors which are explained in the Supplementary Data 3.



Supplementary Fig. 18. Evidence for ancient hybridizations on mildews from Argentina and the USA. (a) Numbers of ancestral SNPs found at near fixation (i.e. in >85% of all isolates) in mildews from Argentina and the USA. The ancestral SNPs were searched in four groups of mildews. The y-axis indicates the number of SNPs that were found in the respective groups. Wild grass mildews include B.g. lolii, B.g. avenae and B.g. *poae.* (b) Results of simulations testing whether the number of SNPs from distantly related mildew donors (ancestral SNPs) in windows that show signature of selection is different from random distributions. The xaxis shows the simulation type. Here, positions of SNPs were randomized in two ways. ARGchr is a simulation where the number of SNPs per chromosome in the mildews from Argentina was kept the same, but their positions on the same chromosome were randomized. ARGgen is a simulation where the total number of SNPs were randomly distributed across the whole genome. USAchr and USAgen were done analogously for the ancestral SNPs found in the mildew population from the USA. Shown are the results of 500 simulations (n=500). Dots indicate the number of SNPs found by chance in a window that showed signature of selection. The red dots show the actual number of SNPs found in the windows showing signatures of selection. Boxes indicate the inter-quartile range (IQR) with the central line indicating the median and whiskers indicating the minimum and maximum without outliers, respectively. Outliers were defined as minimum -1.5\* IQR and maximum + 1.5\*IQR, respectively. Windows of selection were highly enriched in mildews from Argentina, and to a lesser degree in mildews from USA. Source data are provided as a Source Data file.



**Supplementary Fig. 19.** Distribution of ancestral SNPs in the complete USA population along with windows showing signature of selection for all populations. Evidence for ancient hybridizations of mildews in North and South America. Populations from Argentina and USA share numerous SNPs with ancestral mildew lineages. Positions of SNPs are indicated by vertical lines with colors indicating in which ancestral groups the SNPs were found (outgroups: *B.g. lolii, B.g. dactylis, B.g. avenae, B.g. poae*). SNPs shared between populations from Argentina and USA are indicated by asterisks. The red rectangles indicate genomic windows that show signatures of selection.



**Supplementary Fig. 20.** Haploblocks graph of the Japanese isolates using the USA and the CHNa isolates as parental haplotypes for the whole genome. The CHNa haplotypes are depicted in dark blue and the USA haplotypes are depicted in red. Centromere positions are filled with the colour grey.



**Supplementary Fig. 21.** Haploblocks graph of the CHNh isolates using the EUR and the CHNa isolates as parental haplotypes for the whole genome. The CHNa haplotypes are depicted in dark blue and the EUR haplotypes are depicted in yellow. Centromere positions are filled with the colour grey.



**Supplementary Fig. 22. TreeMix analysis, a method for inferring the patterns of population splits and mixtures in the history of a set of populations, using SNPs and the parameters: bs, k500, seed12345.** There were various tree analyses with zero to 20 migration events. *B.g. dicocci* was always used as an outgroup for these analyses. (a) Maximum likelihood trees with arrows depicting the various migrations/edges (the first five). The more intense the red colour is, the closer to 50% of migration happening. (b) The residual fit from the maximum likelihood tree for zero to five migration events (from left to right). The colours are described in the palette on the right of each plot. Residuals above zero represent populations that are more closely related to each other in the data than in the best-fit tree, and thus are candidates for admixture events. (c) Percentage of the variance explained by the different number of migration events. We see most of the variance is explained with one edge/migration event. Source data are provided as a Source Data file.



**Supplementary Fig. 23.** (a) Results of the sub-sampled (34 isolates) ADMIXTURE analysis (for up to K=6) and (b) its CV plot (for up to K=10) (n=100). Boxes indicate the inter-quartile range (IQR) with the central line indicating the median and whiskers indicating the minimum and maximum without outliers, respectively. Outliers were defined as minimum -1.5\*IQR and maximum +1.5\*IQR, respectively. Source data are provided as a Source Data file.



Individual

**Supplementary Fig. 24.** Singleton SNPs from the 172 non-clonal samples within the different populations using the whole dataset. In dark gray are the INDELs and in light gray the SNPs that constitute the majority of the data. Source data are provided as a Source Data file.



**Supplementary Fig. 25.** Tajima's D in 10kb windows (n= 13,718) for various populations. Boxes indicate the inter-quartile range (IQR) with the central line indicating the median and whiskers indicating the minimum and maximum without outliers, respectively. Outliers were defined as minimum - 1.5\*IQR and maximum + 1.5\*IQR, respectively. The average is indicated by the brown rhombus. Source data are provided as a Source Data file.

## **Supplementary Tables**

**Supplementary Table 1.** Summary table of all the isolates per country of origin. The number of isolates with a specific mating type (MAT1=MAT-1-1-3, MAT2=MAT1-2-1), *forma specialis* and how many were used after removing the clonal, cross-contaminated and very low coverage isolates. The mating types were identified by blasting the mating type loci on de novo genome assemblies of the isolates.

| Country     | Code | Isolates | MAT1            | MAT2            | Fsp. tritici | Fsp. dicocci | Used |
|-------------|------|----------|-----------------|-----------------|--------------|--------------|------|
| Argentina   | ARG  | 8        | 3               | 5               | 8            | 0            | 8    |
| Australia   | AUS  | 3        | 3               | 0               | 3            | 0            | 3    |
| China       | CHN  | 100      | 40 <sup>a</sup> | 63 <sup>a</sup> | 100          | 0            | 62   |
| France      | FRA  | 7        | 2               | 5               | 7            | 0            | 6    |
| Israel      | ISR  | 46       | 21              | 25              | 34           | 12           | 37   |
| Japan       | JPN  | 11       | 3               | 8               | 11           | 0            | 10   |
| Kazakhstan  | KAZ  | 3        | 1               | 2               | 3            | 0            | 3    |
| Poland      | POL  | 4        | 4               | 0               | 4            | 0            | 4    |
| Russia      | RUS  | 4        | 3               | 1               | 4            | 0            | 4    |
| Switzerland | CHE  | 16       | 7               | 9               | 16           | 0            | 16   |
| Turkey      | TUR  | 3        | 0               | 3               | 3            | 0            | 3    |
| UK          | GBR  | 5        | 2               | 3               | 5            | 0            | 5    |
| USA         | USA  | 14       | 6               | 8               | 14           | 0            | 13   |
| SUM         |      | 224      | 95              | 132             | 212          | 12           | 172  |

<sup>a</sup>The sum of MAT1 and MAT2 can be higher than the total number of isolates for the Chinese mildew population, because some samples had both mating types because they were possibly cross-contaminated and removed from the analyses (see methods).

**Supplementary Table 2.** Summary table of all the isolates' mating type and a statistical test (two-sided) to check if the populations deviate from the expected 50/50 ratio. The number of isolates with a specific mating type is signified by: MAT1=MAT-1-1-3, MAT2=MAT1-2-1. The mating types were identified by blasting the mating type loci on de novo genome assemblies of the isolates. The chi-squared test was performed only for the populations/groups that had a sample size larger than 50. Moreover, only the datasets with isolates more than five isolates where considered for the Fisher's exact test.

| Dataset               | MAT1 | MAT2 | Fisher's Exact Test (p-value) | Chi-squared Test (value) | Chi-squared Test (p-value) |
|-----------------------|------|------|-------------------------------|--------------------------|----------------------------|
| ALL (172 isolates)    | 78   | 94   | 0.4499                        | X-squared = 0.571        | p-value = 0.4499           |
| ALL (no B.g. dicocci) | 72   | 88   | 0.4333                        | X-squared = 0.61404      | p-value = 0.4333           |
| ARG                   | 4    | 4    | 1.0000                        | Not applicable           | Not applicable             |
| CHE                   | 7    | 9    | 1.0000                        | Not applicable           | Not applicable             |
| CHN                   | 39   | 23   | 0.2047                        | X-squared = 1.6074       | p-value = 0.2049           |
| EUR                   | 15   | 15   | 1.0000                        | Not applicable           | Not applicable             |
| ISR                   | 14   | 10   | 0.7725                        | Not applicable           | Not applicable             |
| ISRdic                | 6    | 6    | 1.0000                        | Not applicable           | Not applicable             |
| JPN                   | 3    | 7    | 0.6499                        | Not applicable           | Not applicable             |
| USA                   | 6    | 7    | 1.0000                        | Not applicable           | Not applicable             |

**Supplementary Table 3.** Nucleotide Diversity and Watterson's Theta for the eight populations and for different regions of the genome (whole genome, intergenic regions, genes, exons, introns). The whole genome calculation was performed in windows of 10kb. For the LD-pruned and unfiltered SNPs, ADW was calculated.

|         | Whole    |                    |          |          |          |                |                 |
|---------|----------|--------------------|----------|----------|----------|----------------|-----------------|
| Pi      | Genome   | Intergenic Regions | Genes    | Exons    | Introns  | LD-pruned SNPs | Unfiltered SNPs |
| ARG     | 0.000283 | 0.000282           | 0.000184 | 0.000160 | 0.000234 | 0.077000       | 0.018000        |
| EUR     | 0.000794 | 0.000935           | 0.000619 | 0.000521 | 0.000781 | 0.276000       | 0.067000        |
| CHNh    | 0.000569 | 0.000860           | 0.000576 | 0.000496 | 0.000740 | 0.134000       | 0.040000        |
| CHNa    | 0.000434 | 0.000594           | 0.000395 | 0.000350 | 0.000516 | 0.210000       | 0.057000        |
| ISR     | 0.000978 | 0.001143           | 0.000739 | 0.000639 | 0.000946 | 0.301000       | 0.080000        |
| ISRdic  | 0.000636 | 0.000655           | 0.000441 | 0.000385 | 0.000543 | 0.050000       | 0.044000        |
| JPN     | 0.000390 | 0.000472           | 0.000317 | 0.000273 | 0.000406 | 0.118000       | 0.031000        |
| USA     | 0.000357 | 0.000260           | 0.000162 | 0.000146 | 0.000220 | 0.069000       | 0.017000        |
| Average | 0.000477 | 0.000567           | 0.000373 | 0.000322 | 0.000477 | 0.140401       | 0.038669        |

| Theta   | Whole Genome | Intergenic Regions | Genes    | Exons    | Introns  |
|---------|--------------|--------------------|----------|----------|----------|
| ARG     | 0.000272     | 0.000286           | 0.000205 | 0.000210 | 0.000463 |
| EUR     | 0.001212     | 0.001293           | 0.000937 | 0.000966 | 0.002162 |
| CHNh    | 0.000583     | 0.000873           | 0.000654 | 0.000668 | 0.001520 |
| CHNa    | 0.000468     | 0.000611           | 0.000462 | 0.000481 | 0.001088 |
| ISR     | 0.001396     | 0.001628           | 0.001172 | 0.001223 | 0.002728 |
| ISRdic  | 0.000808     | 0.000848           | 0.000624 | 0.000666 | 0.001387 |
| JPN     | 0.000387     | 0.000459           | 0.000339 | 0.000354 | 0.000773 |
| USA     | 0.000401     | 0.000303           | 0.000217 | 0.000231 | 0.000501 |
| Average | 0.000627     | 0.000716           | 0.000522 | 0.000543 | 0.001207 |

**Supplementary Table 4.** F4 statistics for the different combinations of populations to look at the shared ancestry between them. *B.g. poae* is used as the ougroup. CHNa refers to the mildew isolates from China that have 99.9% of the ancestry from East Asia. Only the significant results with Z>3 are depicted here.

| W    | X    | Y      | Ζ     | f4       | stderr   | Zscore | BABA | ABBA | nsnps  |
|------|------|--------|-------|----------|----------|--------|------|------|--------|
| ISR  | EUR  | ISRdic | BGPOA | 1.82E-03 | 1.25E-04 | 14.499 | 1189 | 817  | 204687 |
| CHNa | EUR  | ISRdic | BGPOA | 0.002038 | 1.48E-04 | 13.756 | 1279 | 862  | 204687 |
| CHN  | EUR  | ISRdic | BGPOA | 0.001341 | 1.05E-04 | 12.739 | 1125 | 850  | 204687 |
| CHNh | EUR  | ISRdic | BGPOA | 1.57E-03 | 1.34E-04 | 11.71  | 1158 | 838  | 204687 |
| RUSK | EUR  | ISRdic | BGPOA | 1.36E-03 | 1.34E-04 | 10.176 | 1091 | 812  | 204687 |
| JPN  | EUR  | ISRdic | BGPOA | 1.33E-03 | 1.58E-04 | 8.414  | 1072 | 800  | 204687 |
| ARG  | EUR  | ISRdic | BGPOA | 0.00117  | 1.52E-04 | 7.713  | 1046 | 806  | 204680 |
| USA  | EUR  | ISRdic | BGPOA | 0.001154 | 1.64E-04 | 7.032  | 972  | 736  | 204687 |
| CHNa | CHN  | ISRdic | BGPOA | 6.96E-04 | 1.01E-04 | 6.916  | 714  | 572  | 204687 |
| ISR  | RUSK | ISRdic | BGPOA | 4.57E-04 | 8.70E-05 | 5.252  | 959  | 866  | 204687 |
| CHNa | JPN  | ISRdic | BGPOA | 7.11E-04 | 1.38E-04 | 5.135  | 911  | 766  | 204687 |
| CHNa | ARG  | ISRdic | BGPOA | 8.67E-04 | 1.69E-04 | 5.122  | 1091 | 914  | 204680 |
| CHNa | USA  | ISRdic | BGPOA | 8.84E-04 | 1.94E-04 | 4.562  | 1125 | 945  | 204687 |
| CHNa | RUSK | ISRdic | BGPOA | 6.76E-04 | 1.58E-04 | 4.285  | 1010 | 871  | 204687 |
| ISR  | ARG  | ISRdic | BGPOA | 6.48E-04 | 1.59E-04 | 4.08   | 1017 | 885  | 204680 |
| ISR  | CHN  | ISRdic | BGPOA | 4.77E-04 | 1.27E-04 | 3.76   | 1032 | 935  | 204687 |
| CHNa | CHNh | ISRdic | BGPOA | 4.73E-04 | 1.27E-04 | 3.713  | 700  | 603  | 204687 |
| ISR  | USA  | ISRdic | BGPOA | 6.64E-04 | 1.79E-04 | 3.702  | 1026 | 890  | 204687 |
| ISR  | JPN  | ISRdic | BGPOA | 4.92E-04 | 1.61E-04 | 3.056  | 992  | 891  | 204687 |

**Supplementary Table 5.** The results from the fastsimcoal analysis of all 25 models used to simulate the history of powdery mildew populations with fastsimcoal2 using the five populations (ISRdic, CHNa, EUR, USA, ISR). The top three highest probability scenarios are in green font.

| Scenarios               | average* | min*   | max*   | deltaL    | AIC    |
|-------------------------|----------|--------|--------|-----------|--------|
| ScenarioA               | -41673.5 | -41704 | -41641 | 19260.392 | 191788 |
| ScenarioAa <sup>1</sup> | -40432.6 | -40482 | -40391 | 18009.877 | 186032 |
| ScenarioB               | -42503.9 | -42533 | -42460 | 20079.431 | 195560 |
| ScenarioBa              | -41089.7 | -41140 | -41043 | 18662.384 | 189037 |
| ScenarioC               | -43176.8 | -43223 | -43130 | 20749.371 | 198647 |
| ScenarioD               | -43441.1 | -43476 | -43405 | 21024.232 | 199913 |
| ScenarioE               | -42354.5 | -42396 | -42309 | 19928.644 | 194868 |
| ScenarioF               | -43219.3 | -43262 | -43184 | 20803.294 | 198896 |
| ScenarioG               | -43172.8 | -43287 | -42969 | 20588.648 | 197907 |
| ScenarioH               | -43079.5 | -43122 | -43040 | 20659.484 | 198234 |
| ScenarioI               | -43019.2 | -43054 | -42968 | 20587.12  | 197898 |
| ScenarioIa <sup>1</sup> | -35008.4 | -35121 | -34757 | 12376.111 | 160087 |
| ScenarioJ               | -43140   | -43397 | -43065 | 20683.895 | 198344 |
| ScenarioJa <sup>1</sup> | -35370.8 | -35476 | -35173 | 12792.727 | 162006 |
| ScenarioK               | -44031.4 | -44109 | -43949 | 21568.347 | 202419 |
| ScenarioL               | -43871.5 | -43921 | -43829 | 21447.883 | 201864 |
| ScenarioM               | -43372   | -43488 | -43249 | 20868.248 | 199195 |
| ScenarioN               | -43111.1 | -43180 | -43050 | 20669.444 | 198279 |
| ScenarioO               | -42642.7 | -42740 | -42506 | 20124.978 | 195772 |
| ScenarioP               | -43347.9 | -43414 | -43285 | 20904.513 | 199362 |
| ScenarioQ               | -43983.8 | -44040 | -43910 | 21528.89  | 202237 |
| ScenarioR               | -43600.1 | -43666 | -43541 | 21160.649 | 200541 |
| ScenarioS               | -44098.8 | -44156 | -44049 | 21668.769 | 202881 |
| ScenarioT               | -44520.1 | -44575 | -44465 | 22084.021 | 204794 |
| ScenarioU               | -41091   | -41131 | -41055 | 18674.614 | 189093 |

\*Referring to the Maximum Likelihood result

<sup>1</sup>Top three highest probability scenarios

**Supplementary Table 6.** F3 statistics for the JPN population using different populations as parents. The best supported pair of parents, even though non-significant, is where Z is closest to Z=-3, when CHNa and USA are placed as the parents of the JPN population.

| Α      | В      | С   | f3       | stderr   | Zscore | nsnps  |
|--------|--------|-----|----------|----------|--------|--------|
| CHNa   | USA    | JPN | 0.117523 | 0.028165 | 4.173  | 332626 |
| CHNh   | USA    | JPN | 0.195275 | 0.031465 | 6.206  | 357579 |
| CHN    | USA    | JPN | 0.241372 | 0.03382  | 7.137  | 387827 |
| RUSK   | USA    | JPN | 0.355409 | 0.038463 | 9.24   | 393637 |
| ISR    | USA    | JPN | 0.364581 | 0.039373 | 9.26   | 679311 |
| ISRdic | USA    | JPN | 0.383517 | 0.03935  | 9.746  | 476874 |
| EUR    | USA    | JPN | 0.477463 | 0.045677 | 10.453 | 584193 |
| ARG    | USA    | JPN | 0.54752  | 0.04883  | 11.213 | 242618 |
| ARG    | CHNa   | JPN | 0.33092  | 0.025924 | 12.765 | 326044 |
| ARG    | CHNh   | JPN | 0.381793 | 0.029534 | 12.927 | 351014 |
| ARG    | CHN    | JPN | 0.420965 | 0.032123 | 13.105 | 381850 |
| ARG    | EUR    | JPN | 0.586268 | 0.039838 | 14.716 | 580088 |
| ARG    | ISRdic | JPN | 0.558108 | 0.036872 | 15.136 | 471658 |
| ARG    | RUSK   | JPN | 0.552694 | 0.036464 | 15.157 | 383707 |
| ARG    | ISR    | JPN | 0.570776 | 0.036137 | 15.795 | 667850 |
| CHNa   | EUR    | JPN | 0.478917 | 0.030139 | 15.89  | 653306 |
| CHNa   | ISRdic | JPN | 0.611891 | 0.038437 | 15.919 | 543291 |
| CHNa   | CHNh   | JPN | 0.917774 | 0.056624 | 16.208 | 362113 |
| CHNh   | ISRdic | JPN | 0.621427 | 0.038145 | 16.291 | 571176 |
| CHNh   | EUR    | JPN | 0.577527 | 0.035396 | 16.316 | 641314 |
| CHNh   | ISR    | JPN | 0.596412 | 0.034023 | 17.53  | 738402 |
| CHNa   | ISR    | JPN | 0.57529  | 0.032596 | 17.649 | 736314 |
| CHN    | ISRdic | JPN | 0.652648 | 0.036299 | 17.98  | 599390 |
| CHN    | EUR    | JPN | 0.62563  | 0.034722 | 18.018 | 667366 |
| CHNh   | RUSK   | JPN | 0.598709 | 0.033114 | 18.08  | 468785 |
| ISR    | ISRdic | JPN | 0.824844 | 0.04549  | 18.132 | 886985 |
| CHNa   | RUSK   | JPN | 0.576305 | 0.031696 | 18.182 | 457156 |
| EUR    | ISRdic | JPN | 0.72416  | 0.039736 | 18.224 | 804620 |
| EUR    | ISR    | JPN | 0.727213 | 0.039363 | 18.475 | 889686 |
| CHN    | ISR    | JPN | 0.630515 | 0.034122 | 18.478 | 764868 |
| CHN    | CHNa   | JPN | 0.95931  | 0.051551 | 18.609 | 384430 |
| ISRdic | RUSK   | JPN | 0.751006 | 0.040108 | 18.724 | 609948 |
| CHN    | CHNh   | JPN | 0.859732 | 0.045853 | 18.75  | 386836 |
| EUR    | RUSK   | JPN | 0.722824 | 0.037584 | 19.232 | 660451 |
| ISR    | RUSK   | JPN | 0.777656 | 0.039285 | 19.795 | 737380 |
| CHN    | RUSK   | JPN | 0.635536 | 0.031926 | 19.907 | 497430 |

**Supplementary Table 7.** F4 statistics for the different combinations of populations to check which populations share most with the JPN mildew population. *B.g. poae* is used as the ougroup. CHNa refers to the mildew isolates from China that have 99.9% of the ancestry from East Asia. Only the significant results are shown with Z>3 and the ones with Z<-3.

| W   | X    | Y    | Z     | f4        | stderr   | Zscore  | BABA | ABBA | nsnps  |
|-----|------|------|-------|-----------|----------|---------|------|------|--------|
| JPN | CHNh | USA  | BGPOA | 0.007059  | 0.00035  | 20.158  | 2145 | 701  | 204687 |
| JPN | CHN  | USA  | BGPOA | 0.006935  | 0.000357 | 19.414  | 2168 | 748  | 204687 |
| JPN | CHNa | USA  | BGPOA | 0.007696  | 0.000405 | 18.989  | 2176 | 600  | 204687 |
| JPN | ISR  | USA  | BGPOA | 0.007272  | 0.000403 | 18.05   | 2311 | 823  | 204687 |
| JPN | RUSK | USA  | BGPOA | 0.006853  | 0.000397 | 17.276  | 2233 | 830  | 204687 |
| JPN | EUR  | USA  | BGPOA | 0.005644  | 0.000385 | 14.661  | 2174 | 1019 | 204687 |
| JPN | EUR  | CHNa | BGPOA | 0.005981  | 0.000429 | 13.935  | 2148 | 924  | 204687 |
| JPN | EUR  | CHNh | BGPOA | 0.004274  | 0.000313 | 13.642  | 1948 | 1074 | 204687 |
| JPN | USA  | CHNa | BGPOA | 0.005112  | 0.000395 | 12.951  | 1647 | 600  | 204687 |
| JPN | EUR  | CHN  | BGPOA | 0.003423  | 0.000267 | 12.818  | 1823 | 1123 | 204687 |
| JPN | USA  | CHNh | BGPOA | 0.003777  | 0.000299 | 12.635  | 1474 | 701  | 204687 |
| JPN | ARG  | CHNa | BGPOA | 0.004125  | 0.000356 | 11.588  | 1746 | 902  | 204680 |
| JPN | ARG  | CHNh | BGPOA | 0.003302  | 0.000289 | 11.42   | 1614 | 938  | 204680 |
| JPN | ISR  | CHN  | BGPOA | 0.002968  | 0.000274 | 10.828  | 1775 | 1167 | 204687 |
| JPN | EUR  | ARG  | BGPOA | 0.003835  | 0.000356 | 10.787  | 1863 | 1078 | 204680 |
| JPN | ARG  | CHN  | BGPOA | 0.002596  | 0.000247 | 10.521  | 1497 | 966  | 204680 |
| JPN | ISR  | CHNh | BGPOA | 0.003574  | 0.000342 | 10.461  | 1877 | 1146 | 204687 |
| JPN | CHN  | ARG  | BGPOA | 0.003813  | 0.000365 | 10.433  | 1746 | 966  | 204680 |
| JPN | CHNh | ARG  | BGPOA | 0.003768  | 0.000372 | 10.129  | 1709 | 938  | 204680 |
| JPN | ISR  | CHNa | BGPOA | 0.003939  | 0.000412 | 9.551   | 1966 | 1159 | 204687 |
| JPN | ISR  | ARG  | BGPOA | 0.003756  | 0.000395 | 9.511   | 1871 | 1102 | 204680 |
| JPN | RUSK | ARG  | BGPOA | 0.003348  | 0.000361 | 9.27    | 1794 | 1109 | 204680 |
| JPN | USA  | CHN  | BGPOA | 0.002902  | 0.000316 | 9.17    | 1342 | 748  | 204687 |
| JPN | CHNa | ARG  | BGPOA | 0.003894  | 0.000436 | 8.923   | 1699 | 902  | 204680 |
| JPN | RUSK | CHNh | BGPOA | 0.002774  | 0.000349 | 7.947   | 1764 | 1197 | 204687 |
| JPN | RUSK | CHN  | BGPOA | 0.002161  | 0.000278 | 7.767   | 1662 | 1220 | 204687 |
| JPN | RUSK | CHNa | BGPOA | 0.003117  | 0.000443 | 7.035   | 1852 | 1214 | 204687 |
| JPN | CHNa | EUR  | BGPOA | 0.001525  | 0.000235 | 6.482   | 1236 | 924  | 204687 |
| JPN | EUR  | ISR  | BGPOA | 0.00128   | 0.000214 | 5.98    | 1421 | 1159 | 204687 |
| JPN | EUR  | RUSK | BGPOA | 0.001451  | 0.00026  | 5.578   | 1486 | 1189 | 204687 |
| JPN | ISR  | EUR  | BGPOA | 0.000939  | 0.000201 | 4.665   | 1351 | 1159 | 204687 |
| JPN | USA  | RUSK | BGPOA | 0.00091   | 0.000226 | 4.03    | 1016 | 830  | 204687 |
| JPN | USA  | ISR  | BGPOA | 0.000572  | 0.000172 | 3.319   | 940  | 823  | 204687 |
| JPN | RUSK | ISR  | BGPOA | -0.000812 | 0.000203 | -4.008  | 1223 | 1390 | 204687 |
| JPN | USA  | EUR  | BGPOA | -0.001396 | 0.000213 | -6.549  | 733  | 1019 | 204687 |
| JPN | USA  | ARG  | BGPOA | -0.00258  | 0.000354 | -7.279  | 818  | 1347 | 204680 |
| JPN | CHNh | CHNa | BGPOA | -0.005153 | 0.000615 | -8.376  | 1147 | 2201 | 204687 |
| JPN | CHN  | CHNh | BGPOA | -0.003476 | 0.000379 | -9.165  | 1246 | 1957 | 204687 |
| JPN | CHN  | CHNa | BGPOA | -0.00521  | 0.000526 | -9.908  | 1200 | 2267 | 204687 |
| JPN | CHNa | CHNh | BGPOA | -0.005849 | 0.000487 | -12.019 | 1004 | 2201 | 204687 |
| JPN | CHNh | CHN  | BGPOA | -0.004227 | 0.000346 | -12.202 | 1092 | 1957 | 204687 |
| JPN | CHNa | CHN  | BGPOA | -0.006658 | 0.000436 | -15.279 | 904  | 2267 | 204687 |

**Supplementary Table 8.** F3 statistics for the CHNh (Chinese recombinant isolates) population using different populations as parents. Only the significant results with Z<-3 are depicted, with the best result being CHNa and EUR as the parent of the recombinant CHNh population.

Non LD-pruned SNPs

| Α    | В   | С    | f3        | stderr   | Zscore | nsnps  |
|------|-----|------|-----------|----------|--------|--------|
| CHNa | EUR | CHNh | -0.054896 | 0.004582 | -11.98 | 664580 |
| CHNa | USA | CHNh | -0.043393 | 0.007356 | -5.899 | 388805 |
| CHNa | ARG | CHNh | -0.028677 | 0.006101 | -4.7   | 374681 |

## LD-pruned SNPs

| Α    | В   | С    | f3        | stderr   | Zscore  | nsnps  |
|------|-----|------|-----------|----------|---------|--------|
| CHNa | EUR | CHNh | -0.045621 | 0.003989 | -11.435 | 317599 |
| CHNa | USA | CHNh | -0.033191 | 0.006773 | -4.901  | 162893 |
| CHNa | ARG | CHNh | -0.018815 | 0.006105 | -3.082  | 151722 |

## Supplementary Table 9. List of the isolates used for the sub-sampling in the ADMIXTURE analysis.

| Isolates Used in Sub-sampled ADMIXTURE analysis |
|-------------------------------------------------|
| ARG_3_5                                         |
| ARG_4_2                                         |
| AUS_FTA                                         |
| CHE_07224                                       |
| CHE_94202                                       |
| CHN_11_133                                      |
| CHN_17_18                                       |
| CHN_1_62                                        |
| CHN_21_2                                        |
| CHN_45_6                                        |
| CHN_5_93                                        |
| CHN_6_69                                        |
| CHN_9_2                                         |
| CHN_E21                                         |
| CHN_SD_5                                        |
| FRA_B_STONE_95_45                               |
| GBR_JIW2                                        |
| ISR_203                                         |
| ISR_211                                         |
| ISR_215                                         |
| ISR_30p                                         |
| ISR_66                                          |
| ISR_7                                           |
| ISR_K_U                                         |
| JPN_244a                                        |
| JPN_CHIKA                                       |
| JPN_MEK_13b                                     |
| KAZ_1a                                          |
| POL_3                                           |
| RUS_O1a                                         |
| TUR_1c                                          |
| USA_2                                           |
| USA_7                                           |
| USA_C4_6                                        |

**Supplementary Table 10.** Watterson's Theta and nucleotide diversity results for random eight isolates per population, using 10 kb windows in the whole genome.

|        | Theta       | Pi          |
|--------|-------------|-------------|
| ARG    | 0.000282564 | 0.000272461 |
| USA    | 0.000383662 | 0.000417275 |
| JPN    | 0.000390569 | 0.000386048 |
| CHNa   | 0.000418103 | 0.000439794 |
| CHNh   | 0.000590866 | 0.000622678 |
| CHN    | 0.000523810 | 0.000632756 |
| EUR    | 0.000763978 | 0.000902355 |
| ISR    | 0.000995946 | 0.001236648 |
| ISRdic | 0.000643996 | 0.000768240 |

| #ARG     | #USA        | #JPN        | #CHNa     | #CHNh     | #CHN      | #EUR              | #ISR    | #ISRdic |
|----------|-------------|-------------|-----------|-----------|-----------|-------------------|---------|---------|
| ARG_3_10 | USA_2       | JPN_244a    | CHN_13_76 | CHN_12_3  | CHN_10_8  | CHE_07004         | ISR_113 | ISR_203 |
| ARG_3_4  | USA_3       | JPN_244aii  | CHN_15_9  | CHN_12_50 | CHN_15_17 | CHE_10001         | ISR_204 | ISR_206 |
| ARG_3_5  | USA_5       | JPN_CHIKA   | CHN_17_40 | CHN_18_11 | CHN_1_62  | CHE_94202         | ISR_215 | ISR_209 |
| ARG_3_9  | USA_7       | JPN_CHI_79a | CHN_1_25  | CHN_21_8  | CHN_21_1  | CHE_97266         | ISR_218 | ISR_211 |
| ARG_4_1  | USA_AK3_11  | JPN_MEK_13a | CHN_21_2  | CHN_35_1  | CHN_21_2  | FRA_SYROS_2000_15 | ISR_30p | ISR_212 |
| ARG_4_2  | USA_C4_6    | JPN_MEK_13c | CHN_51_3  | CHN_36_3  | CHN_49_1  | GBR_JIW2          | ISR_8   | ISR_220 |
| ARG_4_6  | USA_J2_1    | JPN_MEK_2b  | CHN_E21   | CHN_HB_21 | CHN_7_8   | POL_3             | ISR_97  | ISR_58  |
| ARG_4_8  | USA_Ken_2_5 | JPN_CHI_79b | CHN_6_69  | CHN_HB_22 | CHN_SD_5  | POL_6             | ISR_K_U | ISR_66  |

**Supplementary Table 11.** RAiSD output statistics for cohort 172, without centromeres, using alleles with ancestral state known and keeping the data with a threshold above the 99.9%.

| RaiSD (0.999) | count | min       | max       | average      | median       | sum kb     | %of all chrom* | Genes found |
|---------------|-------|-----------|-----------|--------------|--------------|------------|----------------|-------------|
| ARG           | 2     | 1,628,174 | 1,676,314 | 1,652,244.00 | 1,652,244.00 | 3,304,488  | 2.40%          | 257         |
| CHN           | 6     | 247,591   | 943,626   | 603,650.17   | 558,211.50   | 3,621,901  | 2.64%          | 170         |
| CHNa          | 10    | 257,101   | 2,022,328 | 745,764.60   | 598,725.50   | 7,457,646  | 5.43%          | 536         |
| EUR           | 5     | 168,108   | 774,224   | 392,940.40   | 359,200.00   | 1,964,702  | 1.43%          | 132         |
| ISR           | 6     | 221,367   | 934,147   | 577,160.00   | 579,251.00   | 3,462,960  | 2.52%          | 137         |
| ISRdic        | 40    | 209,648   | 1,527,046 | 498,331.35   | 448,764.50   | 19,933,254 | 14.51%         | 1219        |
| JPN           | 4     | 635,373   | 1,287,633 | 908,765.75   | 856,028.50   | 3,635,063  | 2.65%          | 234         |
| USA           | 4     | 857,210   | 1,223,272 | 1,096,820.25 | 1,153,399.50 | 4,387,281  | 3.19%          | 286         |
| ALL (unique)  | 103   | 913       | 1,527,046 | 332,311.48   | 289,048.00   | 34,228,082 | 24.91%         | 2231        |

\*excluding chromosome Bgt\_chr-Un

## **Supplementary Notes**

**Supplementary Note 1.** Discussion of the directionality of wheat powdery mildew from USA to Australia and vice versa.

Here, we discuss whether mildew migrated from Europe via the USA to Australia, or vice versa (via Australia to the USA). The genomic data itself does not imply directionality from USA to Australia, but it complements a strong historical case: if introduction had occurred from Europe through Australia to the USA, the ancient hybridization with a distant mildew strain would have had to occur in Australia, where wheat was introduced only in 1788<sup>55</sup>, while it came to the USA already between 1600 and 1700. Furthermore, cultivation of *Hordeum* (little barley) is documented for native Americans<sup>54</sup>. Thus, a hybridization in Australia and a subsequent migration to the USA would require that the new hybrids completely out-competed earlier mildew strains in the USA. We, therefore, considered it more parsimonious that mildew hybridization occurred in the USA and that the descendants of these hybrids were then brought to Australia.

Supplementary Note 2. Gene flow is detectable between all wheat mildew populations

We used F4 statistics to assess whether there is gene flow between populations checking for allele sharing between all possible combinations of populations, designed as (pop1, pop2; pop3, *B.g. poae*/outgroup). We found significant F4 positive values, suggesting gene flow affecting all *B.g. tritici* populations, and even the different *forma specialis B.g. dicocci* (Supplementary Table 4).

Highest level of allele sharing (highest F4 value) was found between the JPN-CHNa populations. Conversely, we found only limited allele sharing (smaller F4 values) between the European and the other mildew populations, mostly with the populations that have recombined (e.g. the mildew population from China). The limited allele sharing could be due to a more recent separation of the mildew isolates from Europe, but it could also be due to the mapping reference being in the EUR population<sup>31</sup>.

The Israeli *B.g. tritici* population showed a high number of singletons compared with other populations, despite indication for a bottleneck 50-100 generations ago. Since F4 indicated gene flow between *B.g. dicocci* and *B.g. tritici* (Supplementary Note 5), it is possible that the ISR *B.g. tritici* mildew population might still maintain more singletons compared to other populations with a recent bottleneck (e.g. the ARG population),

Supplementary Note 3. Details about the fastsimcoal2 scenarios.

In the three highest scoring fastsimcoal2 scenarios, the USA mildew population always separates from the EUR mildew population, and then there is substantial gene flow from the *B.g. dicocci* to the USA mildew population (Fig. 3c). These best scenarios have higher probabilities than other ones where the USA population derives only from the EUR population and does not have migration of the population (Supplementary Fig. 17 and Supplementary Table 5). All the different combinations of scenarios have the *B.g. dicocci* as an outgroup or placed next to the outgroup. The CHNa or the ISR populations seem to separate first from the *B.g. dicocci* in the Scenarios with the highest probability.

Supplementary Note 4. Details about the scans for signatures of selection results.

We observed that around a fourth of the genome is in the selection windows (Supplementary Table 11). ISRdic is the population with the most windows (40). The ISRdic population also has the most base pairs in selection windows.

Supplementary Note 5. F3 statistics could be helpful even if they are not conclusive.

We used admixture F3 statistic tests to check for recombination. The tests were of the type (pop1, pop2; JPN or CHNh). While it was negative and significant for the CHNh population case, proving recombination between CHNa and EUR population, it was positive and not significant for the JPN population. However, the closest results for combinations to the negative values were the ones with CHNa and USA as parents. This is suggesting that the East Asian ancestry found in China, along with the USA could be the most likely parents of the Japanese recombinant population (Supplementary Fig. 6). One reason why we did not obtain the expected negative F3 values, is that the exact parental strains are unknown. We only have their descendants, since mildew probably came from Asia approximately 2,000 years ago and has since been largely isolated in Japan.