Progressive resistance training for concomitant increases in muscle strength and bone mineral density in older adults: A systematic review and meta-analysis

Steven J. O'Bryan¹, Catherine Guiliano¹, Mary N. Woessner¹, Sara Vogrin², Cassandra Smith^{1,2}, Gustavo Duque^{2, 3}, Itamar Levinger^{1, 2, 3}

¹Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia

²Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia

³Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia

Journal: Sports Medicine

Corresponding author:

Steven Jeffery O'Bryan

Institute for Health and Sport

Victoria University – Footscray Park Campus

Melbourne, Victoria 3134

Australia

Email: steven.obryan@vu.edu.au

Supplement 2. Secondary outcome measures reported from studies included in the meta-analysis.

Reference	Body mass and composition	Functional/performance outcomes	Falls	Self-efficacy
Pruitt et al. [1]	-	-	_	_
Taaffe et al. [2]	G1: ↑ thigh type I and II muscle fibre CSA; ↔ thigh LM	_	-	_
	G2: ↑ thigh type I and II muscle fibre CSA; ↔ thigh LM			
McCartney et al. [3]	G1: ↑ thigh CSA	G1: ↑ endurance in cycling, treadmill walking and stair climbing	_	-
Taaffe et al. [4]	G1: \uparrow LM; \leftrightarrow FM G2: \uparrow LM; \leftrightarrow FM	G1: ↑ chair stand x5; ↔ 6 m backward walk	_	_
	G2: \uparrow LM; \leftrightarrow FM	G2: \uparrow chair stand x5; \leftrightarrow 6 m backward walk		
		G3: \uparrow chair stand x5; \leftrightarrow 6 m backward walk		
Rhodes et al. [5]	G1: ↔ BM, BF	G1: ↔ trunk flexion flexibility, grip strength	_	-
Vincent and Braith [6]	-	-	_	_
Jessup et al. [7]	G1:↓BM	G1: ↓ postural sway	-	G1: ↔ osteoporosis self-efficacy scale

Reference	Body mass and composition	Functional/performance outcomes	Falls	Self-efficacy
Bunout et al. [8]	G1: ↔ BM	G1: ↑ short physical performance test battery (3 tasks), timed up and go; ↔ postural sway, 12 min walk speed	_	_
Karinkanta et al. [9]	$G1: \leftrightarrow BM$	G1: ↔ figure of 8 running	_	G1: ↔ self-rated physical functioning scale
	G2: ↔ BM	G2: ↑ figure of 8 running		
				G2: ↑ self-rated physical functioning scale
Bocalini et al. [10]	G1: \downarrow BM; \leftrightarrow BF, LM	G1: ↑ 30-s Chair stand, sit and reach flexibility, one-leg stance (static balance); ↔ timed up and go, VO ² Max	-	_
Marques et al. [11]	G1: ↑ LM; ↓ FM	G1: ↑ one-leg stance (static balance), timed up and go; ↓ postural sway	-	-
Marques et al. [12]	G1: \downarrow FM; \leftrightarrow LM	G1: ↑ one-leg stance (static balance), handgrip strength; ↓ postural sway; ↔ timed up and go, 6 min walk speed	-	_
Villareal et al. [13]	G1: \leftrightarrow BM; \uparrow LM; \downarrow FM	G1: ↑ Physical performance test battery (7 tasks), VO ² Peak, one-leg stance (static balance), obstacle course speed (dynamic balance), 25 m gait speed	_	G1: ↑ health-related quality of life survey
Uusi-Rasi et al. [14]	G1: ↔ BM, BF	G1: ↑ 4 m gait speed, backward walking (dynamic balance), chair stand x5; ↔ timed up and go	G1: ↔ total number of falls; ↓ number of injurious falls	_

G1 = intervention group 1; G2 = intervention group 2; \uparrow = statistical increase post-training compared to control group (p \leq 0.05); \downarrow statistical decrease post-training compared to control group (p \leq 0.05); CSA = cross sectional area; BM = body mass; LM = lean mass; FM = fat mass; BF = body fat %;

- 1. Pruitt, L.A., D.R. Taaffe, and R. Marcus, Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res, 1995. **10**(11): p. 1788-1795.
- 2. Taaffe, D.R., L. Pruitt, G. Pyka, et al., Comparative effects of high- and low-intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. C Physiol, 1996. **16**(4): p. 381-392.
- 3. McCartney, N., A.L. Hicks, J. Martin, et al., A longitudinal trial of weight training in the elderly: continued improvements in year 2. J Gerontol A Biol Sci Med Sci, 1996. **51**(6): p. B425-B433.
- 4. Taaffe, D.R., C. Duret, S. Wheeler, et al., Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc, 1999. **47**(10): p. 1208-1214.
- 5. Rhodes, E.C., A.D. Martin, J.E. Taunton, et al., Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med, 2000. **34**(1): p. 18-22.
- 6. Vincent, K.R. and R.W. Braith, Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc, 2002. **34**(1): p. 17-23.
- 7. Jessup, J.V., C. Horne, R. Vishen, et al., Effects of exercise on bone density, balance, and self-efficacy in older women. Biol Res Nurs, 2003. **4**(3): p. 171-180.
- 8. Bunout, D., G. Barrera, L. Leiva, et al., Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol, 2006. **41**(8): p. 746-752.
- 9. Karinkanta, S., A. Heinonen, H. Sievänen, et al., A multi-component exercise regimen to prevent functional decline and bone fragility in homedwelling elderly women: randomized, controlled trial. Osteoporos Int, 2007. **18**(4): p. 453-462.
- 10. Bocalini, D.S., A.J. Serra, and L. Dos Santos, Moderate resistive training maintains bone mineral density and improves functional fitness in postmenopausal women. J Aging Res, 2010. **2010**.
- 11. Marques, E.A., F. Wanderley, L. Machado, et al., Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol, 2011a. **46**(7): p. 524-532.
- 12. Marques, E.A., J. Mota, L. Machado, et al., Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int, 2011b. **88**(2): p. 117-129.
- 13. Villareal, D.T., S. Chode, N. Parimi, et al., Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med, 2011. **364**(13): p. 1218-1229.
- 14. Uusi-Rasi, K., R. Patil, S. Karinkanta, et al., Exercise and vitamin D in fall prevention among older women: a randomized clinical trial. JAMA Intern Med, 2015. **175**(5): p. 703-711.