
Supplementary Material: Materials and methods 

1 Pre-processing workflow 

Conversion of the data from DICOM to NRRD was done using the “precision-medicine-toolbox” (1) to 

extract the three-dimensional images. For the first workflow, termed “minimalist”, z-score 

normalization was applied per scan on the white matter only using the “intensity_normalization” 

package in python 3.7 (2). Z-score normalization refers to the process of normalizing an image by 

subtracting the mean intensity value from each pixel, and dividing each pixel by the standard deviation 

(SD) of the intensity histogram. The second pre-processing workflow, termed “standardization”, had 

two steps: z-score normalization as described previously and three-dimensional contrast limited adaptive 

histogram equalization (CLAHE) applied on the brain using the python package 

“intensity_normalization”, after having rescaled the image intensities to 256 bins. CLAHE applies 

histogram equalization in small patches of the images to increase image contrast, after which through 

bilinear interpolation any artificial borders between images are removed (3). The third approach, termed 

“harmonization”, was designed to make the intensities comparable across scans for similar regions of 

the brain. For this the white stripe normalization which is described in (4), was applied using the python 

package “intensity_normalization”. It has the advantage of harmonizing the images based solely on data 

contained within the MRI, compared to piecewise linear histogram matching, which requires additional 

information about the dataset (5). An overview of the applied pre-processing methods can be seen in 

figure 2. 

2 Description of the radiomics features 

First order and histogram statistics describe the total distribution of voxel intensities over the MR image. 

Shape and size features describe the three-dimensional spatial dimensions of the tumor. Texture features 

describe the relative spatial distribution of intensity values within the tumor derived from 6 different 

matrices that are defined over the region of interest (ROI): gray-level co-occurrence matrix (GLCM) 

(6), gray-level run length matrix (GLRLM) (7), gray-level size-zone matrix (GLSZM) (8), gray-level 

distance-zone matrix (GLDZM) (9), neighborhood gray-level dependence matrix (NGLDM) (10), and 

neighborhood gray-tone difference matrix (NGTDM) (11). 

3 Specifications of the XGBoost model classifying ARE versus no ARE 

Gradient boosting creates a classification model built on ensemble decision trees. These decision trees 

make simple, weak predictions on an outcome. The XGBoost model sums up all the individual decision 

tree predictions to make a final overall prediction which is a measure ranging from 0 to 1 indicating the 
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estimated probability that a lesion develops ARE. By additively adding new trees, and calculating what 

the gain of an added tree is by calculating a loss function of the overall model performance, trees are 

either selected or pruned. 

The XGBoost model contains a number of hyperparameters that regulate training. To prevent the 

imbalance in outcome from affecting model training, the ratio of true events to controls was used as the 

weights for positive and negative classes of the model. For feature selection, the following default 

hyperparameter values were used to define an initial list of predictive features: the maximum depth of a 

single decision tree (6), the minimum sum of instance weight a node in a decision tree needs to be added 

(1), the number of decision trees to build the final model (100), the gamma or the minimum loss 

reduction needed to add a tree (0), and lastly the learning rate (0.3). To find the optimal values for feature 

selection a grid search with cross-validation (k=10) was performed using these initial features. Grid 

search is a tuning technique which trains different models, based on all the possible combinations of 

hyperparameters to test, to determine an optimal set of parameters. It finds this best estimator based on 

the combination of parameters that produces the highest score, optimizing the area under the precision 

recall-curve (AUCPR). A 10-fold cross validation grid search was performed for the following XGBoost 

parameters with corresponding value ranges: the maximum depth of a single decision tree (1-5), the 

minimum sum of instance weight a node in a decision tree needs to be added (1-6), the number of 

decision trees to build the final model (10-500 in steps of 10), the gamma or the minimum loss reduction 

needed to add a tree (0.3-0.5), and lastly the learning rate (10-1, 10-2, and 10-3). Default parameters of 

the XGBoost model further included the learning task (logistic regression), the weights of positive and 

negative classes (set to proportion of ARE to non ARE = 0.03), the subsample ratio of columns when 

constructing each tree (0.7), and the evaluation metric (area under the PR curve). A total of 4800 (10 

folds for 480 candidates) folds were fitted for each feature set. The optimized hyperparameters were 

then used to perform feature selection again, resulting in the optimized list of selected features. These 

features were subsequently used to perform another grid search with cross-validation, resulting in a final 

optimal XGBoost model. 
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