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Lennard-Jones System

Our neural network (NN) for the principle of least action is tested against the “ground 

truth” molecular dynamics (MD) simulations of a system in which atoms interact via Lennard-

Jones (LJ) potential.  In reduced units, the pair-wise LJ interaction is given by:

𝑉𝑖𝑗 = 4( 1

‖𝑞𝑖 ― 𝑞𝑗‖12 ―
1

‖𝑞𝑖 ― 𝑞𝑗‖6) (S1)

The interaction parameters for the LJ potential in this work are given in table S11. 

Molecular dynamics simulation was initiated from the face-centered cubic (FCC) structure. The 

reduced number density of the system is 0.787 and the reduced time unit  ps. Periodic 𝜏 = 2.068

boundary conditions were imposed, and equations of motion were integrated with the velocity-

Verlet algorithm using a timestep of 2 fs. The system was equilibrated for 2 ns at a reduced 

temperature of 0.695. We use the coordinates of the particles in the equilibrated system as the 

initial configuration for the NN simulation. To obtain a final state for our boundary-value problem, 

we run MD simulations using the same starting state.

Simulation Parameter Value
ϵ/𝑘𝑏(𝐾) 125.7
σ (nm) 0.3345

m (a.m.u) 39.948
Lattice Constant (nm) 0.575

Table S1: Lennard Jones interaction parameters and lattice constant.

Model details

As shown in Figure 1 in the main text, the architecture of the NN model is a feedforward 

single-hidden-layer structure with one input and m output units. The output of the network can 

be written as:

𝑄𝑚(𝑡, {𝑤, 𝑏}) =
𝑛

∑
𝑖

𝑤1
𝑖 𝑔(𝑤0

𝑖 𝑡 + 𝑏0
𝑖 ) + 𝑏1

𝑖 (S1)
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where the superscript “0” labels the parameters in hidden layer and “1” is for the parameters in 

output layer. The activation function  is only applied to hidden units. We use this 𝑔:𝑹𝑛↦𝑹𝑛

network to predict the trajectory from coupled Newton’s PDEs for many particles. The output 

dimension m equals the simulation dimensionality multiplied by the total number of particles. In 

the case of 16 particle and 3-dimensional simulation, out output size is 48, i.e., given the 

boundary conditions and the discretized time grid points, we can produce the trajectories of all 

16 particles simultaneously using the NN model. Note that the hyper-parameters   𝜆1, 𝜆2,  𝜆3

mentioned in the main text (Eq. 3) control the relative magnitude of each term in the loss 

function. They are tuned with random search based on model performance, i.e. the RMSD 

between the recovered intermediate states from NN and the MD results. In this experiment, the 

scope of each hyperparameter is  .We finally chose the parameter set (1, 10, 20, …,100) ( 𝜆1, 𝜆2, 

. The code and data used in this work are provided online and available upon  𝜆3) = (20, 20, 10) 

request.*

We have studied how the proposed NN model scales with the number of units in the hidden 

layer and discretization of the time domain on an Intel(R) Xeon(R) CPU E5-2640 machine with 

2.60 GHz clock speed. Figure S1(a) shows how the training run time scales with the system size. 

The behavior appears quadratic because the run time is dominated by the LJ force calculation. The 

linked-list methd2 will be employed to reduce the scaling of the run time with the system size to 

O(N) for future work. Surprisingly, with the help of Google JAX, figure S1 (b) indicates that 

increasing the number of neurons in the hidden layer doesn’t affect the run time appreciably: it 

remains ~210 seconds for 1,000 epochs of training. However, changing the grid size of the time 

domain increases the computing time significantly as shown in figure S1(c), optimization of this 

part will be developed in future work. 

* https://github.com/Ben-USC/Neural_Network_x_OM_Action

https://github.com/Ben-USC/Neural_Network_x_OM_Action
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(a)

(b) (c)

Figure S1: Run time scaling of NN for 108-particle system. (a), (b) and (c) are the run time for every 1000 training 
epoch as a function of the number of particles in the system, number of units in the hidden layer and the size of the 
time grid, respectively.

Figure S2 shows how the RMSD scales with respect to the size of the hidden layer and the 

time grid for a 108-atom system in our study. This figure could be misleading if not treated 

carefully. Figure S2(a) shows that, increasing the number of hidden neurons is not always 

beneficial for reducing RMSD of the model due to the potential risk of overfitting.  However, the 

reason for the performance improvement with more hidden neurons (> 100) and time points (>100) 

remains to be explored. 
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(a) (b)

Figure S2: Error scaling of NN for 108-particle system. (a) and (b) are the RMSD of the model output as a 
function of the number of hidden units and the size of the time grid, respectively.

Figure S3 shows how the RMSD scales with different number of particles in the system, 

where we consider 32, 64, 108 and 500-atom systems and an NN architecture with 64 units in the 

hidden layer. RMSD of the 500-particle system is approximately 1 order of magnitude higher than 

that of 100-particle system.

Figure S3: RMSD scaling of NN with respect to the number of particles in the system.

Pre-training

Overlapping of particle trajectories will cause large amount of loss due to LJ potential. To 

avoid this at the parameter initialization stage, we have employed a pre-training strategy as 
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follows: we first randomize the parameters  using Gaussian distribution, then with the {𝑤, 𝑏}

knowledge of the initial and final state of the system, we pre-train the network using the following 

loss function:

𝐿𝑝𝑟𝑒({𝑤, 𝑏}) = (𝑄({𝑤, 𝑏}, 0) ― 𝑞0)2 + (𝑄({𝑤, 𝑏}, 𝑇) ― 𝑞𝑇)2 +

𝑇 2

∑
𝑖 = 0

(𝑄({𝑤, 𝑏}, 𝑖) ― 𝑣0)
2

+
𝑇

∑
𝑗 = 𝑇 2 + Δ𝑡

(𝑄({𝑤, 𝑏}, 𝑗) ― 𝑣𝑇)
2

(S2)

where  and  collectively represent the initial and final positions of atoms, and  and  are 𝑞0 𝑞𝑇 𝑣0 𝑣𝑇

initial and final velocities of atoms in the system, respectively. Note that the first two terms are 

constraints on initial and final configurations of the system, while the last two terms provide an 

estimate of trajectories by making particles move at different but constant velocities for the first 

and second half of the trajectories.

Although this pre-training method has led to interesting results as presented in the main 

text, there is still a chance that particles may get too close or even cross their trajectories after pre-

training, thus give rise to a tremendous energy loss at the beginning of the main training iteration. 

One way to avoid this during the pre-training is to add constraints to limit the minimum inter-

particle distance in Eq. S2, which will be discussed in future work.

Supplementary results

In addition to the 500-atom LJ system presented in the main text, we studied systems with 

108 and 256 atoms. In the next two figures, we compare NN results against MD simulations for 

256 atoms.
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Figure S4 visualizes four randomly chosen trajectories generated by the NN (blue), which 

are coincident with the “ground-truth” MD trajectories (red). The averaged root-mean-square error 

between the NN and MD trajectories is on the order of 10-4 in LJ units.

Figure S4: NN and MD trajectories for four randomly selected atoms in a system of 256 LJ atoms. Atomic 
trajectories computed by the NN (blue) are nearly coincident with MD trajectories (red).

Figure S5 compares the NN and MD results for structural and dynamical correlations in 

the 256-atom system. (a) and (b) show that the NN results for radial distribution function (g(r)) 

and velocity auto-correlation function (VAF) are in excellent agreement with the corresponding 

MD results. (c) shows the relative deviation between MD energies and those calculated from the 

NN trajectories. The relative error is within 0.6 %.
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Figure S5: (a) radial distribution function and (b) velocity auto-correlation function show the near-perfect 
agreement between the NN and MD for a 256-atom system. 

Figures S6 and S7 show the same degree of agreement between NN and MD results in 

atomic dynamical trajectories, energies and structures for the 108-atom system.

Figure S6: Comparison between MD and NN trajectories for four particles selected randomly from the 108-atom 
system. Red lines are MD trajectories and Blue dots are trajectories computed by the NN.
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Figure S7: (a) radial distribution function and (b) velocity auto-correlation function show the near-perfect 
agreement between the NN and MD for a 256-atom system.

Figure S8 shows how the root-mean-square deviation between the MD and NN trajectories 

for the 108-atom system changes with number of epochs and simulation time. 

Figure S8: Root-mean-square deviation (RMSD) between the MD and NN trajectories for a 108-atom LJ system. 
The deviation of the NN trajectory from MD decreases with the number of epochs and changes with time. The 
boundary constraints in the loss function ensure that the error is much smaller near the initial and final 
configurations than in the middle of the time domain. The magnitude of the deviation is below 10-4 in LJ units.

As a simple example of another application of our method, we consider a process in which 

the center atom in a 2D LJ cluster moves to the surface.3,4 Figure S9(a) shows the transformation 
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pathway generated by the NN from the initial to the final state. The cluster goes through some 

intermediate states, which agree with the sampled results from the references mentioned above. 

S8(b) shows the total and potential energy profiles of the system as a function of time. The standard 

deviation of the total energy is 0.007 in LJ units, less than 0.6% of the energy value.

Figure S9: (a) transition path of a 2D cluster of 7 atoms for the migration of the center atom to the surface. In 
reduced LJ units, the transition takes place within 1  and the timestep is 0.01 . (b) Total energy (red) and potential 
energy per atom as a function of time. 
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