
Supplementary Method 

Overview 

A combination of RNA-Seq, raw gene expression counts, and clinical information 

were obtained for 322 pediatric, 68 adult and 1988 mixed age B-ALL patients 

(Supplementary Table S1). After gene expression counts were obtained for each dataset, 

gene identifiers were converted to symbols for consistency.  

Training of a machine learning classifier was broken down into four key steps: 

Preprocessing, Feature Creation, Standardisation, and Model Creation. These were 

encapsulated within a 10-fold cross validation (with replacement) and a nested grid search 

for optimal hyperparameter selection 14.  

The preprocessing involved filtering for genes, expression transformation and 

normalisation. The Feature Creation step generates additional derived features from the 

gene expression.  A standardisation step was then applied to the preprocessed counts and 

new features by calculating a z-score to create a consistent scale across features, aiding in 

a model’s interpretability. 

Finally the resulting counts matrix was input into a hierarchically organised set of 

logistic regression classifiers which were trained using the One Versus Rest method 18. 

Applying the pre-trained model to new samples follows a similar sequence of preprocessing 

as described above (Supplementary Figure 1). Where any subtype’s probability exceeds the 

threshold, ALLSorts classifies the sample accordingly. 

https://paperpile.com/c/7XxoHK/HSlRi
https://paperpile.com/c/7XxoHK/viIqF


 

 
 

Supplementary Figure 1 and visual abstract. Overview of the ALLSorts classification strategy for new input. 

Green circles are where the probability exceeds threshold. No probabilities are calculated for the black circles as 

classification terminates at their meta-subtypes. In this example, two meta-subtypes exceed their thresholds at 

the first level. However, only one nested subtype succeeds. This would result in a multi-label classification 

consisting of the deepest subtypes/meta-subtypes that exceeded their respective thresholds. 

Data used in this study  

 Gene expression counts with associated clinical information were obtained/created 

for four B-ALL cohorts and a dilution series (Supplementary Table 1).  

 

Cohort No. Samples Train (%) Test (%) Purpose Source 

St. Jude  
Children Hospital 

 1847 70 30 
Train & 

Hold out 
Gu et al. (2019) 

Lund University 195 70 30 
Train & 

Hold out 
Lilljebjörn et al. (2016) 

Royal Children’s 
Hospital 

127 0 100 Paediatric 

 

Brown et al. (2020) &   

Children’s Cancer 



Centre Tissue Bank 

at the Murdoch 

Children’s Research 

Institute and The 

Royal Children’s 

Hospital 

 

Peter MacCallum 
Cancer Centre 

68 0 100 Adult  

Molecular 

Haematology 

Diagnostic 

Laboratory, Peter 

MacCallum Cancer 

Centre 

Royal Children’s 
Hospital (dilution) 

16 0 100 Purity Brown et al. (2020) 

St. Jude Children 
Hospital and Lund 
(Multi-label) 

117 0 100 
Multiple 

Subtypes 
Gu et al. (2019) 

 
Supplementary Table S1. Datasets used for training and validating the ALLSorts method. Datasets that are split 

across training and test are stratified by subtype. The age breakdown across training datasets includes 783 

childhood (under 16), 240 young adult (16-39), and 200 adult (40+) samples. Note: Samples previously subtyped 

as “Other” or multi-label were removed in each set apart from the Multi-labels samples, which were tested 

separately. A breakdown of the samples used in the final training set are listed in Supplementary Table 5. 

 

 

Raw counts for 1988 samples from a recent St. Jude Children’s Research Hospital study 

were available for public download through the St. Jude Cloud’s visualisation community (Gu 

et al., 2019; McLeod et al., 2021). Raw sequencing reads from 195 samples were obtained 

from Lilljebjörn et al. (2016) (Lund - accession id: EGAD00001002112), 127 paediatric 

samples from the Children’s Cancer Centre Tissue Bank at The Royal Children’s Hospital 

(RCH), Melbourne, Australia (Brown et al., 2020) and 68 adult samples from the Molecular 

Haematology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia (PM). The 

Lund, RCH, and PM datasets were mapped to the human reference genome version hg19 

using STAR 2.7.3a_2020-01-23 in 2 pass mode with quantMode set to Gene, with otherwise 

default options. Gene expression counts for the RCH, Lund, and PM dataset were provided 

as output from STAR, using the GRCh37.87 annotation obtained from the ensembl FTP 

https://paperpile.com/c/DpX1qH/xV4DA+sO5vq
https://paperpile.com/c/DpX1qH/xV4DA+sO5vq
https://paperpile.com/c/DpX1qH/wZCj7/?noauthor=1
https://paperpile.com/c/DpX1qH/w2lwH


(ftp://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.chr.g

tf.gz). After gene expression counts were obtained for each dataset, Ensembl gene 

identifiers were converted to gene symbols. Identifiers with multiple copies had their counts 

combined. After this, genes other than those with biotypes of protein coding or recognised as 

Immunoglobulin (Ig) variable chain or T-cell receptor (TcR) genes were discarded. Resulting 

in a final 20652 of the 57773 original genes being used in the training data.  
The St. Jude samples were labelled according to the 23 subtypes outlined in Gu et 

al. (Gu et al., 2019). However, the Lund samples were assigned labels according to the 

following classes: High hyperdiploidy, ETV6-RUNX1, Ph-like, MLL, TCF3-PBX1, DUX4-

rearranged, BCR-ABL1, dic(9;20), ETV6-RUNX1-like, B-other with fusion, B-other, without 

fusion, Hypodiploid, Near Tetraploid, and iAMP21. As karyotype data was also available, the 

aneuploid samples were distributed across High hyperdiploid (58) and Low hypodiploid (1) 

accordingly. MLL, DUX4-rearranged, and BCR-ABL1 were renamed KMT2A, DUX4, and Ph, 

respectively, to reflect the St. Jude naming conventions where fusion information was 

available. Samples labelled dic(9;20) and Other were removed and explored using the 

trained classifier. Samples that were not labelled as having multiple subtypes, but showed 

signs according to associated clinical information (i.e. iAMP21 being mentioned in karyotype 

but not mentioned as a subtype) were discarded from the training data. In addition, St. Jude 

labelled aneuploid samples that did not have concordance with the karyotype were also 

discarded. In all, 168 samples were marked for exclusion from the training data across both 

the St. Jude and Lund cohorts. Finally, training and test sets were segmented according to 

Supplementary Table S1 and the training samples listed in Supplementary Table 5. The 

training data had a range in ages from pediatric to adult  (Supplementary Figure 2). 

https://paperpile.com/c/DpX1qH/sO5vq


 
Supplementary Figure 2. Distribution of subtypes in the Lund/St Jude training set segmented by age. The training 

set consists of 783 childhood (under 16), 240 young adult (16-39), and 200 adult (40+) samples 

 

Pre-Processing 

The first step of pre-processing is to filter lowly expressed genes as they contribute 

little information about the biology fundamental to the classification problem. To achieve this, 

the method outlined in Chen et al. (2016) was adopted. That is, the training set was 

transformed into counts per million (CPM) prior to filtering. This is to ensure that genes that 

are lowly expressed due to smaller library sizes are not naively filtered. Genes are retained if 

there are at least 10/L (where L is the smallest library size) in at least as many samples as 

the subtype with the lowest membership. Once lowly expressed genes have been identified 

they are stored for later removal in new samples input into the classifier. The training data is 

then normalised using a Python implementation of the Trimmed Mean of M-values (TMM) 

normalization method (Robinson & Oshlack, 2010). This method is preferable over methods 

such as fragments per kilobase million (FPKM) as it accounts for library composition and is 

https://paperpile.com/c/DpX1qH/9B3NC/?noauthor=1
https://paperpile.com/c/DpX1qH/fZ1eW


therefore suitable for inter-sample comparisons (Conesa et al., 2016). The reference used to 

calculate TMM scaling factors is then stored for later use when ALLsorts is applied to a new 

dataset. The filtered raw counts are then transformed to log2 counts per million (CPM) to 

scale samples by library size. Further scaling is then applied using the factors calculated 

from the Trimmed Mean of M-values (TMM) method. 

Feature Creation 

ALLSorts uses four sets of manually crafted features to represent the biology of B-

ALL represented in the literature. The first is a set of features that represent known fusion 

genes that are highly relevant to some subtypes: ETV6-RUNX1, BCR-ABL1, TCF3-PBX1, 

and TCF3-HLF. The resulting features are simply the log difference between the two partner 

genes. This feature is important to include as it encapsulates the relationship within a single 

feature. The second set of features represent the relative expression of each chromosome 

per sample. This was calculated in a similar fashion to existing solutions to calculating ploidy 

from RNA-seq (Gu et al., 2019; Serin Harmanci, Harmanci, & Zhou, 2020). The genes in the 

training set are first scaled by median absolute deviation.  Median iterative filtering is then 

applied across genes in each chromosome, smoothing the signal across the chromosome. A 

final median is then selected per chromosome and a set of 27 features are created from this 

(chr 1-22, X, Y, median across the chromosomes, and two representing how many are 

highly expressed and how many are low). A visualisation of these features can be seen in 

Supplementary Figure 3. Thirdly, an iAMP21_ratio feature is also created based on the 

knowledge of its distinct signal across chromosome 21 (Tsuchiya et al., 2017). For each 

sample chromosome 21 is divided into four bins and is scaled by median absolute deviation 

(Supplementary Figure 4). Fourthly, in an attempt to capture non-linear relationships 

associated with a subtype, a feature that represents the euclidean distance towards a 

subtype’s centroid in a nonlinear projection is calculated for each sample. Concretely, for 

each local cluster of subtypes (Figure 1) a random forest machine learning classifier is 

trained in a one-versus-rest fashion. From this, the top 20 features as measured by feature 

importance are attributed to each of the subtypes. A Kernel PCA projection is then created 

for each subtype using these genes, hopefully delineating between the subtype and the rest. 

The centroid is then calculated across each of the true subtype samples in this projection 

and the euclidean distance to this point is then calculated per sample. The final feature is 

constructed from the difference between the bin at the highest and lowest points. Finally, a 

single B-ALL feature is created as the log sum of CD19, CD34, CD22, DNTT, and CD79A. 

These genes are known markers for B-ALL in the literature (Chiaretti, Zini, & Bassan, 2014; 

Cobaleda & Sánchez-García, 2009). The purpose of this feature is not to be necessarily 

https://paperpile.com/c/DpX1qH/MyZMH
https://paperpile.com/c/DpX1qH/OHv1D+sO5vq
https://paperpile.com/c/DpX1qH/eJ1db
https://paperpile.com/c/DpX1qH/mMPGe+EtSL8
https://paperpile.com/c/DpX1qH/mMPGe+EtSL8


used in the following classification stage, but rather as a filter to remove false positives when 

classifying healthy samples or other cancers.  

 

 
 

Supplementary Figure 3. St. Jude Children's Research Hospital sample with 

'56,XX,+X,+4,+6,+8,+10,+14,+17,+18,+21,+21[18]/46,XX[2]' karyotype. The preprocessed gene expression 

values are first ordered according to their genomic position. In each sample, per chromosome, the ordered gene 

expression values undergo median iterative smoothing. The median of the smoothed expression values is then 

calculated per chromosome. These medians (chr1-22, X, Y) are then added to the list of features presented to 

the model prior to feature selection. 

 
Supplementary Figure 4. iAMP21 as depicted by the ordered genes in chromosome 21 is divided over three bins. 

Y-axis represents the difference in expression for the sample and the median of the cohort. This difference is 

further divided by the median absolute deviation value for each gene. Samples with confirmed iAMP21 (top) vs 

non-iAMP21 (bottom). Left plots use iterative median smoothing over genes, right does not. Each coloured line is 

a sample. The horizontal lines represent the median for that sample over each bin. A clear motif across bins is 

apparent between those samples with iAMP21 and those without. Each bin is included as a feature within 

ALLSorts, along with the log difference between bins 2 and 3 - iAMP21 Ratio. 

 



Feature Standardisation 

 Features are standardised through transformation into a z-score, by subtracting the 

mean and dividing by the standard deviation in a feature-wise manner. The end result of this 

is a set of feature distributions, each with a mean of 0 and a standard deviation of 1. 

Standardisation was shown to perform better when utilised within a hierarchical architecture 

(Supplementary Table 6). In addition, standardisation by z-score allows the coefficients 

within a linear model to be equally considered in terms of importance, that is, higher 

coefficients are relative to the corresponding features importance. 

Hierarchical Classification 

 Given the large set of input genes (~20000) relative to the number of training 

samples (~2000), a subset of genes needed to be selected to reduce dimensionality and the 

risk of overfitting of a trained model. During training, three feature selection methods were 

competed to find the best performing, each would then be followed by a further selection 

using L1 Regularisation embedded within liblinear’s implementation of the logistic regression 

model, the core classification algorithm used within ALLSorts. L1 regularisation is used to 

encourage sparsity within the model by penalising uninformative genes by trending their 

coefficients to zero (Pedregosa et al., 2011). This can be considered a multivariate feature 

selection method and is tuned with the parameter C - lower values will result in more 

aggressive regularisation. The first competing method is a univariate statistical test, mutual 

information, that is calculated per subtype (Pedregosa et al., 2011). This list is then rank-

ordered and subjected to a two standard deviation from the mean cutoff with the intention of 

completely omitting a set of uninformative genes, whilst retaining genes with high value. The 

other method used a L1 regularised logistic regression classifier to pre-train the model and 

select the genes useful for classification, passing them on to the final classifier. The final 

method has no feature selection prior to the classifier, depending only on the single 

regularisation method embedded in liblinear. The best combination of hyperparameter 

values was determined by minimizing log loss over 3 fold cross validation (Supplementary 

Table 6). Although more folds would have been ideal, there were too few samples in many of 

the subtypes. Balanced accuracy was used as the metric of success, as opposed to purely 

accuracy, as this accounts for the imbalance of samples allocated across subtypes. 

Balanced accuracy is calculated according to: 

 

(1) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 =  1
2

( 𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

+  𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇

) 

 

https://paperpile.com/c/DpX1qH/laU5h
https://paperpile.com/c/DpX1qH/laU5h


The winning feature selection method was the single L1 regularised logistic regression 

model, without prior feature selection. The results of hyperparameter selection can be seen 

in Supplementary Table 6. 

An important aspect of classification is assigning probabilities to a discrete class. 

This is typically performed by setting a 50% threshold per subtype. Though this is 

appropriate for binary classification problems it is not necessarily appropriate for multi-class 

classification problems. In these cases, the probability is distributed amongst multiple 

classes and may not exceed 50% in any. Many algorithms therefore surpass this problem by 

choosing the maximum probability from the result. However, this is not appropriate for cases 

where there is a chance that a sample belongs to a new class entirely. To attempt to resolve 

this problem, ALLSorts determines the probability thresholds using the cross-validation 

results from the training data. Thresholds are determined for each subtype, using one of two 

methods. In the first case, if the positive and negative samples for that subtype separate 

cleanly on probability, i.e. the highest probability for a negative sample is lower than the 

lowest probability of a positive sample, the midpoint between these two points is chosen. 

However, if this is not the case and the positive and negative samples overlap in probability, 

a threshold that maximises the F1 score is chosen. The threshold for any child subtype is 

weighted by the parent threshold through multiplication.  

Prediction  

 To predict B-ALL subtype, raw gene expression counts are input into the trained 

ALLSorts algorithm, this data is pre-processed and has features created using values 

acquired through the training set. These processed counts are then filtered by the genes 

selected during the training of the algorithm. Finally, they are input into the hierarchical 

classifier and their probabilities of belonging to each subtype is calculated. Furthermore, 

children probabilities are the multiplication between the child probability and its parent. After 

this, ALLSorts has various visualisation and prediction methods that help users in 

understanding their results.  
 

ALLSorts cross validation 
 10-Fold Cross Validation was performed during training to score the method and 

select optimal thresholds, whilst 3-fold cross validation was implemented in an inner loop to 

select the hyperparameters of the model. The scores averaged across the outer loop were 

then used as a benchmark for comparison to other datasets to consider overfitting.  

Each of the following stages was performed within each fold to prevent the leakage 

of data between the resulting training and validation splits. The trained classifier was also 



applied to held-out test sets, which were split from the cohorts prior to training 

(Supplementary Table S1).  

Four standard statistical metrics were used in the evaluation of the classifier: 

Accuracy, Precision, Recall, and F1 Score. Accuracy is the proportion of samples that were 

predicted correctly. Precision and recall are complementary, measuring the proportion of 

true positives and false negatives, respectively. Finally, the F1 score reflects the balance 

between precision and recall. These are calculated for each subtype and then aggregated by 

weighting the proportion of samples in each subtype. 

 

Dataset Accuracy (%) Precision (%) Recall (%) F1 (%) 

 Weighted average 

Cross-Validation  
(avg over 10 fold)  

90 96 91 93 

St. Jude’s & Lund  
hold out  

92 97 92 94 

 
Supplementary Table S2. ALLSorts performance in 10 fold cross validation determined during training and 

performance of held-out test sets from the St. Jude’s and Lund cohorts.   

 

Having both the cross-validation and held-out test set results from the same cohorts 

used for training allows us to determine whether the model is underfit or overfit. The held-out 

test set has a higher precision, recall, F1 score, and a slightly lower accuracy than the cross-

validation result (Supplementary Table 6).  
Typically, ALLSorts will be applied to new samples which include technical 

differences in the acquisition and processing of the samples compared to the training data 

(Supplementary Figure 5). To test whether ALLSorts is robust to such effects we applied it to 

paediatric and adult B-ALL cohorts from the Royal Children’s Hospital (RCH) and Peter 

MacCallum Cancer Centre (PM), respectively. Each cohort had different sequencing and 

library preparation protocols making them an effective representation of a typical input with 

batch effects. The batch effects were found to be less influential when using the features 

selected with the training data (Supplementary Figure 5)  



 
Supplementary Figure 5. Each point represents a sample and their gene expression values projected via UMAP. 

Plots in the left column are constructed from all genes, plots in the right column are filtered by the gene features 

that are selected by the ALLSorts classifier. The top row is coloured by subtype, middle row by source, bottom 

row by RNA library preparation of total RNA (stranded) or mRNA (unstranded). The RNA preparation is a large 

source of variation across the cohort. We found the gene features we selected are robust to batch effects 

resulting in the subtype becoming the largest source of variation. While batch effects are still present, they are 

less influential. 

 

The results of the ALLsorts on the validation cohorts can be broken into four 

categories: match with ground truth, new classification into a subtype, reclassification to 

another subtype(s), and subtype to unclassified. Assuming the matched samples are correct 

(109 samples or 56%), only samples described by the latter three categories required further 

exploration.  

Of the 74 samples that were previously Unclassified, 61 (82%) were newly classified 

into one of the 18 subtypes or five meta-subtypes offered by ALLSorts. Of these, 46 were 

evaluated to be plausible, two were incorrect, one had a blast % under 10%, and no 

definitive evidence could be found for 12. Reclassification to a new subtype accounted for 10 

samples. Of these, eight matched the same meta-subtype as the previous label. One sample 

was incorrectly called High Sig instead of iAMP21. However, this sample had a tumour purity 



of only 13% which could account for this misclassification. Finally, one contained a novel 

ETV6 fusion but was predicted as being DUX4. The reason for this is currently unknown. 

The most important misclassifications to explore were the 15 samples (7.7%) previously 

labelled as a distinct subtype which ALLSorts assigned as Unclassified. Six of these 

samples had tumour purities of less than 10%, which may account for misclassifications in 

these cases. Of the remaining nine, three were previously labelled as KMT2A rearranged of 

which each had cytogenetic evidence of the relevant fusion genes. However, these samples 

exhibited low expression for genes such as MEIS1, a typical target of KMT2A fusions which 

ALLSorts weights highly in KMT2A Group classification. Four High Sig samples with a 

tumour purity above 10% did not reclassify according to their ground truth. However, two had 

high probabilities of being ETV6-RUNX1 Group and had an associated ETV6-BCL2L14 

fusion discovered through Arriba. As these two samples also had relatively high probabilities 

for High Sig (over 39%), it is possible that these are multi-subtype samples. The remaining 

newly Unclassified samples were labeled according to cytogenetics only or had a lower 

tumour purity (~16%). 

A full list of samples that had unexpected classifications with potential causative 

variants found is provided (Supplementary Table 7). Of these 86 samples, 62% had a 

plausible explanation that the ALLSorts classification was correct at least to the meta-

subtype level, 10% were incorrect, 19% remained ambiguous in terms of evidence 

supporting or dismissing plausibility of the call, and 9% were defined as having tumour purity 

too low for concrete classification (less than 10%).  

 In summary, the overall accuracy of ALLsorts on the combined RCH and PM 

validation cohort was between 84% and 92% depending on if the ambiguous samples were 

considered incorrect by ALLsorts or correct (Supplementary Table 7). 

 

Ambiguous Samples Accuracy (%) Precision (%) Recall (%) F1 (%) 

 Weighted average 

Marked as incorrect 84 93 95 93 

Marked as correct  92 98 97 97 

 

Supplementary Table S3. ALLSorts performance in the RCH and PM cohorts once orthogonal evidence gave 

plausibility to the calls. Two sets of summary statistics are presented, representing where ambiguous samples 

have been marked as correct or as incorrect - indicating the boundaries of the classifiers performance on these 

datasets. 

 



ALLSorts classifies samples with multiple subtypes  
Without specifically training ALLSorts to recognise samples exhibiting multiple 

subtypes, this cohort was used to investigate the capacity for multi-label classification.  

 

ALLSorts prediction on samples labeled with multiple subtypes % No. Samples 

Both subtypes called 19.65 23 

One subtype and one meta-subtype 5.98 7 

Two meta-subtypes 0 0 

One subtype called 60.68 71 

One meta-subtype 4.27 5 

Neither subtype called 9.4 11 

 
Supplementary Table S4. Breakdown of multi-label predictions. 

 

We found the probability of getting at least a single subtype correct is 86.31% and 

90.5% if including meta-subtypes (Supplementary Table S4). Given this is similar accuracy 

to the single subtype benchmarks, multi-label classification can be added without reducing 

single subtype classification accuracy. However, we only predicted both subtypes 26% of the 

time. Interestingly, within the held-out test set thought to be composed of samples with only 

a single subtype, nine samples were predicted as having two. Similarly, the PM and RCH 

combined cohort had six samples (3%) classified with two subtypes. Of these six samples 

five were found to have evidence pointing to the accuracy of both calls from fusion calling 

and karyotyping (Supplementary Table 7).  

ALLSorts is robust with tumour purity above 20% 

To test the effect of tumour purity on classification performance, two dilution series 

were used. These were created from a mixture of RNA extracted from the lymphoblastoid 

cell line from NA12878 with either a Ph (BCR-ABL1 fusion) tumour sample or a Ph-like 

(PAX5-JAK2 fusion) tumour sample (Brown et al., 2020). The tumour RNA was mixed in the 

proportions: 0%, 10%, 20%, 30%, 40%, 60%, 80% and 100% and each mixture was 

classified with ALLSorts. As expected, purer tumour samples corresponded to higher 

probabilities (Figure 4). For the Ph+ dilution series ALLsorts was able to classify the correct 

subtype down to a purity of 10%. The Ph-like dilution series classified correctly down to 20% 

purity and at 10% deferred to being classified as Ph Group. Though a higher tumour purity 

will result in more confident classifications, these results suggest ALLSorts is robust to 

https://paperpile.com/c/DpX1qH/w2lwH


tumour proportions of above 20% in these subtypes. However, this would need to be tested 

for each subtypes in order for a claim of general robustness to tumour purity could be made.  

 

 

 
Supplementary Figure 6. Probabilities from ALLsorts of the Ph Group meta subtype and Ph and Ph-like subtypes 

in response to tumour dilution. Subtype probability thresholds are indicated by the horizontal lines. 

 

To visualise this with real patient data, samples with available blast percentage within both 

the PM and RCH cohorts were plotted against the plausible, ambiguous, and incorrect 

categories discussed in Results. Seven samples had a blast percentage of less than 30%. 

The single plausible sample was called a PAX5alt. Three ambiguous samples were 

classified as Ph-like, of which one was also called High hyperdiploid. The three incorrect 

classifications were: a DUX4 (IGH-DUX4 fusion) that was unclassified, a sample with normal 

cytogenetics called High hyperdiploid, and an iAMP21 misclassified as High hyperdiploid.  

 



 
Supplementary Figure 7. Blast % versus Plausible/Incorrect/Ambiguous categorisation allocated during 

investigation into known driver events. 
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