Supplementary Information for

Genome-wide association study identifies Sjögren's risk loci with functional implications in immune and glandular cells

Bhuwan Khatri¹, Kandice L. Tessneer¹, Astrid Rasmussen¹, Farhang Aghakhanian¹, Tove Ragna Reksten^{2,3}, Adam Adler⁴, Ilias Alevizos⁵, Juan-Manuel Anaya⁶, Lara A. Agrawi^{7, 8}, Eva Baecklund⁹, Johan G. Brun³, Sara Magnusson Bucher¹⁰, Maija-Leena Eloranta⁹, Fiona Engelke¹¹, Helena Forsblad-d'Elia¹², Stuart B. Glenn¹, Daniel Hammenfors¹³, Juliana Imgenberg-Kreuz⁹, Janicke Liaaen Jensen⁷, Svein Joar Auglænd Johnsen¹⁴, Malin V. Jonsson^{3,15}, Marika Kvarnström^{16,17}, Jennifer A. Kelly¹, He Li^{2,18}, Thomas Mandl¹⁹, Javier Martín²⁰, Gaétane Nocturne²¹, Katrine Brække Norheim^{3,22}, Øyvind Palm²³, Kathrine Skarstein^{3,24}, Anna M. Stolarczyk¹, Kimberly E. Taylor²⁵, Maria Teruel²⁶, Elke Theander^{27,28}, Swamy Venuturupalli^{29,30}, Daniel J Wallace^{29,30}, Kiely M. Grundahl¹, Kimberly S. Hefner³¹, Lida Radfar³², David M. Lewis³³, Donald U. Stone³⁴, C. Erick Kaufman³⁵, Michael T. Brennan^{36,37}, Joel M. Guthridge^{2,38}, Judith A. James^{2,35}, R. Hal Scofield^{2,35,39}, Patrick M. Gaffney¹, Lindsey A. Criswell^{25,40,41}, Roland Jonsson^{3,13}, Per Eriksson⁴², Simon J. Bowman^{43,44,45}, Roald Omdal^{3,14}, Lars Rönnblom⁹, Blake Warner⁵, Maureen Rischmueller^{46,47}, Torsten Witte¹¹, A. Darise Farris², Xavier Mariette²¹, Marta E. Alarcon-Riquelme²⁶, PRECISESADS Clinical Consortium, Caroline H. Shiboski⁴⁸, Sjögren's International Collaborative Clinical Alliance (SICCA), Marie Wahren-Herlenius^{3,16}, Wan-Fai Ng^{49,50}, UK Primary Sjögren's Syndrome Registry, Kathy L. Sivils^{2,18}, Indra Adrianto⁵¹, Gunnel Nordmark⁹, Christopher J. Lessard^{1,38#}

¹Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

²Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

³Department of Clinical Science, University of Bergen, Bergen, Norway.

⁴NGS Core Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

⁵Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA.

⁶Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia.

⁷Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway.

⁸Department of Health Sciences, Kristiania University College, Oslo, Norway.

⁹Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

¹⁰Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

¹¹Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany.

¹²Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.

¹³Department of Rheumatology, Haukeland University Hospital, Bergen, Norway.

¹⁴Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.

¹⁵Section for Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Medical Faculty, University of Bergen, Bergen, Norway.

¹⁶Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.

¹⁷Academic Specialist Center, Center for Rheumatology and Studieenheten, Stockholm Health Services, Region Stockholm, Sweden.

¹⁸Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.

¹⁹Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.

²⁰Instituto de Biomedicina y Parasitología López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.

²¹Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France.

²²Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway.

²³Department of Rheumatology, University of Oslo, Oslo, Norway.

²⁴Department of Pathology, Haukeland University Hospital, Bergen, Norway

²⁵Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California, USA.

²⁶Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.

²⁷Department of Rheumatology, Skåne University Hospital, Malmö, Sweden.

²⁸Medical Affairs, Jannsen-Cilag EMEA (Europe/Middle East/Africa), Beerse, Belgium.

²⁹Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA.
³⁰David Geffen School of Medicine, University of California Los Angeles, Los Angeles
California, USA.

³¹Hefner Eye Care and Optical Center, Oklahoma City, Oklahoma, USA.

³²Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA.

³³Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA.

³⁴Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

³⁵Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

³⁶Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA.

³⁷Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

³⁸Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

³⁹US Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA.

⁴⁰Institute of Human Genetics (IHG), University of California San Francisco, San Francisco, California, USA.

⁴¹Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.

⁴²Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden.

⁴³Rheumatology Department, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom.

⁴⁴Rheumatology Research Group, Institute of Inflammation & Ageing, University of Birmingham, Birmingham, United Kingdom.

⁴⁵Rheumatology Department, Milton Keynes University Hospital, Milton Keynes, United Kingdom.

⁴⁶Rheumatology Department, The Queen Elizabeth Hospital, Woodville, South Australia.
⁴⁷University of Adelaide, Adelaide, South Australia.

⁴⁸Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA.

⁴⁹Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.

⁵⁰NIHR Newcastle Biomedical Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.

⁵¹Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA.

*Corresponding Author: <u>chris-lessard@omrf.org</u> (ORCID ID: https://orcid.org/0000-0003-2440-3843)

Table of Contents:

i. ii.

Supplementary Figures and Legends a. Supplementary Figure 19 Supplementary Figure 2 11 b. C. d. e. f. g. i. Supplementary Figure 1058 j. k. Supplementary Figure 12 72 Ι. m. Supplementary Figure 1379

Page

Consortium Acknowledgments and Funding*:

The PRECISESADS Clinical Consortium is composed of the following members: Α. Lorenzo Beretta¹, Barbara Vigone¹, Jacques-Olivier Pers², Alain Saraux², Valérie Devauchelle-Pensec², Divi Cornec², Sandrine Jousse-Joulin², Bernard Lauwerys³, Julie Ducreux³, Anne-Lise Maudoux³, Carlos Vasconcelos⁴, Ana Tavares⁴, Esmeralda Neves⁴, Raquel Faria⁴, Mariana Brandão⁴, Ana Campar⁴, António Marinho⁴, Fátima Farinha⁴, Isabel Almeida⁴, Miguel Angel Gonzalez-Gay Montecón⁵, Ricardo Blanco Alonso⁵, Alfonso Corrales Martinez⁵, Ricard Cervera⁶, Ignasi Rodríguez-Pintó⁶, Gerard Espinosa⁶, Rik Lories⁷, Ellen De Langhe⁷, Nicolas Huzelmann⁸, Doreen Belz⁸, Torsten Witte⁹, Niklas Baerlecken⁹, Georg Stummvoll¹⁰, Michael Zauner¹⁰, Michaela Lehner¹⁰, Eduardo Collantes¹¹, Rafaela Ortega-Castro¹¹, M^a Angeles Aguirre-Zamorano¹¹, Alejandro Escudero-Contreras¹¹, M^a Carmen Castro-Villegas¹¹, Norberto Ortego¹², María Concepción Fernández Roldán¹², Enrique Raya¹³, Immaculada Jiménez Moleón¹³, Enrique de Ramon¹⁴, Isabel Díaz Quintero¹⁴, Pier Luigi Meroni¹⁵, Maria Gerosa¹⁵, Tommaso Schioppo¹⁵, Carolina Artusi¹⁵, Carlo Chizzolini¹⁶, Aleksandra Zuber¹⁶, Donatienne Wynar¹⁶, Laszló Kovács¹⁷, Attila Balog¹⁷, Magdolna Deák¹⁷, Márta Bocskai¹⁷, Sonja Dulic¹⁷, Gabriella Kádár¹⁷, Falk Hiepe¹⁸, Velia Gerl¹⁸, Silvia Thiel¹⁸, Manuel Rodriguez Maresca¹⁹, Antonio López-Berrio¹⁹, Rocío Aguilar-Quesada¹⁹, Héctor Navarro-Linares¹⁹, and Marta E. Alarcon-Riquelme²⁰.

¹Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy; ²Centre Hospitalier Universitaire de Brest, Hospital de la Cavale Blanche, Brest, France; ³Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; ⁴Centro Hospitalar do Porto, Portugal: ⁵Servicio Cantabro de Salud. Hospital Universitario Marqués de Valdecilla, Santander, Spain; ⁶Hospital Clinic I Provicia, Institut d'Investigacions Biomèdiques August Pi i Sunver, Barcelona, Spain; ⁷Katholieke Universiteit Leuven, Belgium; ⁸Klinikum der Universitaet zu Koeln, Cologne, Germany; ⁹Medizinische Hochschule Hannover, Germany; ¹⁰Medical University Vienna, Vienna, Austria; ¹¹Servicio Andaluz de Salud, Hospital Universitario Reina Sofía Córdoba. Spain: ¹²Servicio Andaluz de Salud. Compleio hospitalario Universitario de Granada (Hospital Universitario San Cecilio), Spain; ¹³Servicio Andaluz de Salud, Complejo hospitalario Universitario de Granada (Hospital Virgen de las Nieves), Spain; ¹⁴Servicio Andaluz de Salud, Hospital Regional Universitario de Málaga, Spain; ¹⁵Università degli studi di Milano, Milan, Italy; ¹⁶Hospitaux Universitaires de Genève, Switzerland; ¹⁷University of Szeged, Szeged, Hungary; ¹⁸Charite, Berlin, Germany; ¹⁹Andalusian Public Health System Biobank, Granada, Spain; ²⁰Genvo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.

The study was approved by the following ethic committees: Comitato Etico Area 2 (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano and University of Milan); approval no. 425bis Nov 19, 2014, and no. 671_2018 Sep 19, 2018; Klinikum der Universitaet zu Koeln, Cologne, Germany. Geschaftsstelle Ethikkommission; Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium. Comité d`Èthique Hospitalo-Facultaire; University of Szeged, Szeged, Hungary. Csongrad Megyei Kormanyhivatal; Hospital Clinic I Provicia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. Comité Ética de Investigación Clínica del Hospital Clínic de Barcelona. Hospital Clinic del Barcelona; Servicio Andaluz de Salud, Hospital Universitario Reina Sofía Córdoba, Spain. Comité de Ética e la Investigación de Centro de Granada (CEI – Granada); Centro Hospitalar do Porto, Portugal.

Comissao de ética para a Saude – CES do CHP; Centre Hospitalier Universitaire de Brest, Hospital de la Cavale Blanche, Avenue Tanguy Prigent 29609, Brest, France. Comite de Protection des Personnes Ouest VI; Hospitaux Universitaires de Genève, Switzerland. DEAS – Commission Cantonale d'ethique de la recherche Hopitaux universitaires de Geneve; Andalusian Public Health System Biobank, Granada, Spain; Katholieke Universiteit Leuven, Belgium. Commissie Medische Ethiek UZ KU Leuven /Onderzoek; Charite, Berlin, Germany. Ethikkommission; Medizinische Hochschule Hannover, Germany. Ethikkommission.

PRECISESADS Study was funded by the Innovative Medicines Initiative of the European Union with grant number 115565 partly supported by the EFPIA Companies (Alarcon-Riquelme).

Sjögren's International Collaborative Clinical Alliance (SICCA) is composed of the Β. following members: Cox D¹, Jordan R¹, Lee D¹, DeSouza Y¹, Drury D¹, Do A¹, Scott L¹, Nespeco J¹, Whiteford J¹, Margaret M¹, Sack S¹, Adler I², Smith AC², Bisio AM², Gandolfo MS², Chirife AM², Keszler A², Daverio S², Kambo V², Dong Y³, Jiang Y³, Xu D³, Su J³, Du D³, Wang H³, Li Z³, Xiao J³, Wu Q³, Zhang C³, Meng W³, Zhang J³, Johansen S⁴, Hamann S⁴, Schiødt J⁴, Holm H⁴, Ibsen P⁴, Manniche AM⁴, Kreutzmann SP⁴, and Villadsen J⁴, Sugai S⁵, Masaki Y⁵, Sakai T⁵, Shibata N⁵, Honjo M⁵, Kurose N⁵, Nojima T⁵, Kawanami T⁵, Sawaki T⁵, Fujimoto K⁵, Odell E⁶, Morgan P⁶, Fernandes-Naglik L⁶, Varghese-Jacob B⁶, Ali S⁶, Adamson M⁶, Seghal S⁷ Mishra R⁷, Bunya V⁷, Massaro-Giordano M⁷, Abboud SK⁷, Pinto A⁷, Sia YW⁷, Dow K⁷, Akpek E⁸, Ingrodi S⁸, Henderson W⁸, Gourin C⁸, Keyes A⁸, Srinivasan M⁹, Mascarenhas J⁹, Das M⁹, Kumar A⁹, Joshi P⁹, Banushree R⁹, Kim U⁹, Babu B⁹, Ram A⁹, Saravanan R⁹, Kannappan KN⁹, Kalyani N⁹, Criswell LA¹, Shiboski SC¹, Baer A⁸, Challacombe S⁶, Lanfranchi H², Schiødt M⁴, Umehara H⁵, Vivino F⁷, Zhao Y³, Dong Y³, Greenspan D¹, Heidenreich AM², Helin P⁴, Kirkham B⁶, Kitagawa K⁵, Larkin G⁶, Li M³, Lietman T¹, Lindegaard J⁴, McNamara N¹, Sack K¹, Shirlaw P⁶, Sugai S⁵, Vollenweider C², Whitcher J¹, Wu A¹, Zhang S³, Zhang W³, Greenspan JS¹, Daniels TE¹, Shiboski CH¹, Criswell LA¹⁰.

¹University of California San Francisco, San Francisco, CA, USA; ²University of Buenos Aires and German Hospital, Buenos Aires, Argentina; ³Peking Union Medical College Hospital, Beijing, China; ⁴Rigshospitalet, Copenhagen, Denmark; ⁵Kanazawa Medical University, Ishikawa, Japan; ⁶King's College London, London, UK; ⁷University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁸Johns Hopkins University, Baltimore, Maryland, USA; ⁹Aravind Eye Hospital, Madurai, India; ¹⁰National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.

SICCA Study was funded by the National Institutes of Health (NIH): N01DE32636 (SICCA), HHSN26S201300057C (SICCA), U01DE028891 (SICCA), R03DE029800 (SICCA), U01HG004446 (SICCA-GWAS), P30AR070155 (SICCA-GWAS).

Genotype data from the Sjögren's International Collaborative Clinical Alliance (SICCA) Registry was obtained through **dbGAP accession number phs000672.v1.p1**. This study was supported by the National Institute of Dental and Craniofacial Research (NIDCR), the National Eye Institute, and the Office of Research on Women's Health through contract number N01-DE-32636. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health (NIH) to the Johns Hopkins University (contract numbers HHSN268200782096C, HHSN268201100011I, HHSN268201200008I). Funds for genotyping were provided by the NIDCR through CIDR's NIH contract. Assistance with

data cleaning and imputation was provided by the University of Washington. SICCA thanks investigators from the following studies that provided DNA samples for genotyping: the Genetic Architecture of Smoking and Smoking Cessation, Collaborative Genetic Study of Nicotine Dependence (phs000404.v1.p1); Age-Related Eye Disease Study (AREDS) - Genetic Variation in Refractive Error Substudy (phs000429.v1.p1); and National Institute of Mental Health's Human Genetics Initiative (phs000021.v3.p2, phs000167.v1.p1). SICCA thanks the many clinical collaborators and research participants who contributed to this research.

C. The UK Primary Sjögren's Syndrome Registry is composed of the following members: Wan-Fai Ng¹, Simon J. Bowman², Bridget Griffiths³, Frances Hall⁴, Elalaine C. Bacabac⁵, Robert Moots⁵, Kuntal Chadravarty⁶, Shamin Lamabadusuriya⁶, Michele Bombardieri⁷, Constantino Pitzalis⁷, Nurhan Sutcliffe⁷, Nagui Gendi⁸, Rashidat Adeniba⁸, John Hamburge⁹, Andrea Richards⁹, Saaeha Rauz¹⁰, Sue Brailsford¹, Joanne Logan¹¹, Diamuid Mulherin¹¹, Paul Emery¹², Alison McManus¹², Colin Pease¹², Alison Booth¹³, Marian Regan¹³, Theodoros Dimitroulas¹⁴, Lucy Kadiki¹⁴, Daljit Kaur¹⁴, George Kitas¹⁴, Mark Lloyd¹⁵, Lisa Moore¹⁵, Esther Gordon¹⁶, Cathy Lawson¹⁶, Monica Gupta¹⁷, John Hunter¹⁷, Lesley Stirton¹⁷, Gill Ortiz¹⁸, Elizabeth Price¹⁸, Gavin Clunie¹⁹, Ginny Rose¹⁹, Sue Cuckow¹⁹, Susan Knight²⁰, Deborah Symmons²⁰, Beverley Jones²⁰, Shereen Al-Ali¹, Andrew Carr¹, Katherine Collins¹, Andini Natasari¹, Philip Stocks¹, Jessica Tarn¹, Ian Corbett³, Christine Downie³, Suzanne Edgar³, Marco Carrozzo³, Francisco Figuereido³, Heather Foggo³, Dennis Lendrem³, Iain Macleod³, Philip Mawson³, Sheryl Mitchell³, Adrian Jones²¹, Peter Lanyon²¹, Alice Muir²¹, Paula White²², Steven Young-Min²², Susan Pugmire²³, Saravanan Vadivelu²³, Annie Cooper²⁴, Marianne Watkins²⁴, Anne Field²⁵, Stephen Kaye²⁵, Devesh Mewar²⁵, Patricia Medcalf²⁵, Pamela Tomlinson²⁶, Debie Whiteside²⁵, Neil McHugh²⁶, John Pauling²⁶, Julie James²⁶, Nike Olaitan²⁶, Mohammed Akil²⁷, Jayne McDermott²⁷, Olivia Godia²⁷, David Coady²⁸, Elizabeth Kidd²⁸, Lynne Palmer²⁸, Bhaskar Dasgupta²⁹, Victoria Katsande²⁹, Pamela Long²⁹, Charles Li³⁰, Usha Chandra³¹, Kirsten MacKay³¹, Stefano Fedele³², Ada Ferenkey-Koroma³², Ian Giles³², David Isenberg³², Helena Maconnell³², Stephen Porter³², Paul Allcoat³³, John McIaren³³.

¹Newcastle University, Newcastle upon Tyne, UK; ²University Hospital Birmingham, Birmingham, UK: ³Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; ⁴Addenbrooke's Hospital, Cambridge, UK; ⁵Aintree University Hospitals, Liverpool, UK; ⁶Barking, Havering and Redbridge NHS Trust, Barking, UK; ⁷Bart and the London NHS Trust, London, UK; ⁸Basildon Hospital, Basildon, UK; ⁹Birmingham Dental Hospital, Brimingham, UK; ¹⁰Birmingham & Midland Eye Centre, Birmingham, UK; ¹¹Cannock Chase Hospital, Cannock, UK; ¹²Chapel Allerton Hospital, Leeds, Leeds, UK; ¹³Derbyshire Royal Infirmary, Derby, UK; ¹⁴Dudley Group of Hospitals NHS Foundation Trust, Dudley, UK; ¹⁵Frimley Park Hospital, Frimley Park, UK; ¹⁶Harrogate District Foundation Trust Hospital, Harrogate, UK; ¹⁷Gartnavel General Hospital, Glasgow, UK; ¹⁸Great Western Hospital, Swindon, UK; ¹⁹Ipswich Hospital NHS Trust, Ipswich, UK; ²⁰Macclesfield District General Hospital & Arthritis Research UK Epidemiology Unit, Manchester, Manchester, UK; ²¹Nottingham University Hospital, Nottingham, UK; ²²Portsmouth Hospitals NHS Trust, Portsmouth, UK; ²³Queen's Elizabeth Hospital, Gateshead, Gateshead, UK; ²⁴Royal Hampshire County Hospital, Winchester, UK; ²⁵Royal Liverpool University Hospital, Liverpool, UK; ²⁶Royal National Hospital for Rheumatic Diseases, Bath, UK; ²⁷Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; ²⁸Sunderland Royal Hospital, Sunderland, UK; ²⁹Southend University Hospital, Southend, UK; ³⁰Royal Surrey Hospital, Guildford, UK; ³¹Torbay Hospital, Torbay, UK; ³²University College Hospital & Eastman Dental Institute, London, UK; ³³Whyteman's Brae Hospital, Kirkaldy, Fife, UK.

The UK Primary Sjögren's Syndrome Registry was funded by the Medical Research Council (G080062; W-F.N.), and the British Sjögren's Syndrome Association (W-F.N.). This work also received infra-structure support from the NIHR Newcastle Biomedical Research Centre, Newcastle and NIHR Newcastle Clinical Research Facility.

SUPPLEMENTAL FIGURE LEGENDS

Supplementary Figure 1: Genome-wide association study (GWAS) and meta-analysis of genotyped Sjögren's datasets

- (a) Principal component (PC) analysis was done using EIGENSTRAT and 1000 Genomes Project reference population. Distribution of individual Sjögren's cases (red) and population controls (blue), along with reference European subjects from the 1000 Genomes Project population, are shown along PC1 and PC2. Ancestry of individuals from the 1000 Genomes Project population are indicated as follows: CEU: Utah Residents (CEPH) with Northern and Western European Ancestry (green), TSI: Toscani in Italy (yellow), FIN: Finnish in Finland (purple), GBR: British in England and Scotland (black), IBS: Iberian Population in Spain (orange).
- (b) Distribution of individual Sjögren's cases and population controls from the six genotyped cohorts from this study shown along PC1 and PC2: Phase1 (Dataset 1), Scandinavian-1 (Dataset 2), Non-Scandinavian (Dataset 3), SICCA (Dataset 4), Scandinavian-2 (Dataset 5), PRECISESADS (Dataset 6) (Figure 1; Supplementary Table 2).
- (c) Distribution of individual Sjögren's cases (red) and population controls (blue) along PC1 and PC2.
- (d) Screeplot of 10 PCs.
- (e) Quantile-Quantile (QQ) plot of observed p-values verses expected p-values ($-\log_{10}$ scale) for all tested Sjögren-SNPs. Dotted black line indicates expected distribution of p-values. λ denotes the inflation factor.
- (f) Quantile-Quantile (QQ) plot of observed p-values verses expected p-values (-log₁₀ scale) for all tested Sjögren-SNPs after exclusion of the previously identified regions of association: *HLA*, *IL12A*, *TNIP1*, *STAT1-STAT4*, *IRF5-TNPO3*, *FAM167A-BLK*, and *DDX6-CXCR5*. Dotted black line indicates expected distribution of p-values. λ denotes the inflation factor.
- (g) Manhattan plot shows the summary data from the GWAS results for the $6.2x10^6$ SNPs overlapping the six genotyped European datasets after imputation. The $-\log_{10}(P)$ for each variant is plotted according to chromosome and base pair position. A total of seven novel loci (indicated by red dots) exceeded genome-wide significance of P_{GWAS} <5x10⁻⁸ (red dashed line). Several previously established loci were replicated (indicated by light blue dots). The suggestive GWAS threshold ($P_{Suggestive}$ <5x10₋₅) is indicated by the blue dashed line.
- (h) Principal component analysis was done using EIGENSTRAT and 1000 Genomes Project reference population. Distribution of individual Sjögren's cases (red) and population controls (blue) from the ImmunoChip (Dataset 7) along PC1 and PC2 (Figure 1; Supplementary Table 1).
- (i) Screeplot of 10 PCs.

Supplementary Figure 2: Polygenic risk score (PRS) analysis of genotyped Sjögren's individuals.

- (a, b) The PI1 genotyped dataset was randomly split into 2/3rd for training and 1/3rd for testing the polygenic risk score (PRS) prediction. Principal component (PC) analysis was performed using EIGENSTRAT. Distribution of individual Sjögren's cases (red) and population control subjects (blue) along PC1 and PC2 for the (a) training dataset (n=2,166 cases; n=11,638 population controls) and (b) testing dataset (n=1,076 cases; n=5,826 population controls).
- (c) Manhattan plot shows summary data of 6.2×10^6 genotyped SNPs used in PRSice-2 to calculate PRS. The summary data was generated performing logistic regression analysis and adjusting for first 3 principal components. The $-\log_{10}(P)$ for each variant is plotted according to chromosome and base pair position. Red dashed line indicates genome-wide significance (GWS) threshold of P_{GWAS} <5x10⁻⁸. Blue dotted line indicates a suggestive threshold of $P_{Suggestive}$ <5x10⁻⁵.
- (d) Manhattan plot shows the 4.5×10^5 SNPs used in the PRS analysis after pruning using independent pairwise analysis with a window of 50 kb, step size, or SNPs count of 5, and $r^2 > 0.2$ in PLINK to remove highly correlated SNPs. The summary data was generated performing logistic regression analysis and adjusting for first 3 principal components. The $-\log_{10}(P)$ for each SNP is plotted according to chromosome and base pair position. Red dashed line indicates a threshold of $P_{GWAS} < 5 \times 10^{-5}$.
- (e) High-resolution plot showing multiple P-value thresholds (P_T) for PRS predicting Sjögren's in all genotyped individuals using all genotyped SNPs after pruning to remove highly correlated SNPs ($r^2 > 0.2$).
- (f) High-resolution plot showing multiple P-value thresholds (P_T) for PRS predicting Sjögren's in genotyped individuals after LD pruning and removal of SNPs positioned in the *HLA* region.
- (g) Manhattan plot shows summary data of 6.2×10^6 genotyped SNPs used in PRSice-2 to calculate PRS for Ro⁺ Sjögren's cases relative to population controls. The $-\log_{10}(P)$ for each variant is plotted according to chromosome and base pair position. Red dashed line indicates a threshold of $P_{GWAS} < 5 \times 10^{-8}$. Blue dotted line indicates a suggestive threshold of $P_{Suggestive} < 5 \times 10^{-5}$.
- (h) Manhattan plot shows the 8.81×10^5 SNPs used in the PRS analysis of Ro⁺ Sjögren's cases relative to population controls after pruning using independent pairwise analysis with a window of 50 kb, step size, or SNP count of 5, and $r^2 > 0.2$ in PLINK to remove highly correlated SNPs. The $-\log_{10}(P)$ for each SNP is plotted according to chromosome and base pair position. Red dashed line indicates a threshold of $P_{GWAS} < 5 \times 10^{-8}$. Blue dotted line indicates a suggestive threshold of $P_{Suggestive} < 5 \times 10^{-5}$.
- (i) High-resolution plot showing multiple P-value thresholds (P_T) for PRS predicting Sjögren's in genotyped Ro⁺ Sjögren's individuals using all genotyped SNPs after pruning to remove highly correlated SNPs ($r^2 > 0.2$).
- (j) High-resolution plot showing multiple P-value thresholds (P_T) for PRS predicting Sjögren's in genotyped Ro⁺ Sjögren's individuals after LD pruning and removal of SNPs positioned in the *HLA* region.

Supplementary Figure 3: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *MAPT-CRHR1* locus.

- (a) Conditional analysis was performed, adjusting for rs7210219. Residual effect was observed for rs71375320.
- (b) Posterior probabilities distribution of variants in the *MAPT-CRHR1* locus, identifying rs7210219 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes of the *MAPT-CRHR1* locus with the frequencies of the top and functional variants in the region displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the MAPT-CRHR1 region on Chromosome 17 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black or colored based on r² (red: r²>0.08; orange: r²>0.06). The index SNP of the MAPT-CRHR1 association, rs7210219, is indicated. The outer circle displays the chromosome coordinate of the MAPT-CRHR1 risk locus highlighted in royal blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g) EcholocatoR was used to identify, fine-map and annotate the *CRHR1* region after specifying the index SNP (indicated by red dotted line): rs7210219. Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

CRHR1_rs7210219

Supplementary Figure 4: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *CD247* locus.

- (a) Conditional analysis was performed, adjusting for rs7523907. Residual effect was observed for rs6427098.
- (b) Posterior probabilities distribution of variants in *CD247* locus, identifying rs7523907 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with the frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *CD247* association on Chromosome 1 (outer most layer). All SNPs with a $-\log_{10}(p-value)$ <0.05 are shown in black, or colored based on r^2 (red: $r^2>0.08$; orange: $r^2>0.06$). The index SNP of the *CD247* association, rs7523907, is indicated. The outer circle displays the chromosome coordinate of the *CD247* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g-i) Sjögren-SNPs rs7523907 (g), rs2949661 (h), and rs1214595 (i), positioned in an intronic enhancer of *CD247*, exhibited strong epigenetic enhancer and promoter marks in several immune cell types (rectangles). Coalescence of chromatin-chromatin interactions (purple triangles) and several common eQTLs (yellow, orange, blue triangles), suggest that the intronic enhancer regulates the promoters of *CD247* (T cell receptor zeta chain) and *CREG1* (adenovirus E1A protein that promotes cell proliferation). rs2949661 (h) and rs1214595 (i) are also eQTLs for *TIPRL* (inhibitory regulator of protein phosphatase-2A (PP2A) in the pro-apoptotic TOR signaling pathway) or *POGK* in the minor salivary gland, respectively. For details, see Supplementary Table 10.
- (j) Sjögren-SNP rs1723018, positioned in the intronic enhancer of CD247, has epimarks consistent with enhancer and promoter activity in CD4⁺ and CD8⁺ T cells (rectangles). Coalescence of chromatin-chromatin interaction (purple triangles) and eQTL data (top blue and yellow triangles) suggest that the enhancer likely regulates the promoter of CD247 specifically in T cells. For details, see Supplementary Table 10.
- (k-n) EcholocatoR was used to identify, fine-map and annotate the CD247 region after specifying the index SNPs (indicated by red dotted line): rs7523907 (k), rs2949661 (l), rs1214595 (m), rs1723018 (n). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

Supplementary Figure 5: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *XKR6* locus.

- (a) Conditional analysis adjusting for rs2409780 identified a residual effect for rs3885690 (top panel), while conditional analysis adjusting for rs4841466 identified residual effect for rs2618485 (bottom panel).
- (b) Posterior probabilities distribution of variants in *XKR6* locus, identifying rs4841466 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *XKR6* association on Chromosome 8 (outer most layer). All SNPs with a $-\log_{10}(p-value)$ <0.05 are shown in black, or colored based on r^2 (red: $r^2>0.08$; orange: $r^2>0.06$). The index SNP of the *XKR6* association, rs4841466, is indicated. The outer circle displays the chromosome coordinate of the *XKR6* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g-j) Sjögren-SNPs rs11250099 (g), rs4841465 (h), rs11250098 (i), and rs4314618 (j) are positioned in an intronic enhancer of *XKR6*. Coalescence of chromatin-chromatin interaction and eQTL indicate that the enhancer loops to the *XKR6* and *MTMR9* promoters to modulate expression. Moreover, eQTL data for these SNPs in minor salivary gland implicate *XKR6*, *RP1L1*, and *SLC35G5*. For details, see Supplementary Table 13.
- (k-n) EcholocatoR was used to identify, fine-map and annotate the *XKR6* region after specifying the index SNPs (indicated by red dotted line): rs11250099 (k), rs4841465 (l), rs11250098 (m), rs4314618 (n). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines

- **m***) EcholocatoR Analyses: rs11250098
- n*) EcholocatoR Analyses: rs4314618
- *see next page

XKR6_rs11250099

XKR6_rs11250098

XKR6_rs4314618

Supplementary Figure 6: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *SYNGR1* locus.

- (a) Conditional analysis was performed, adjusting for rs2069235. A residual effect was for the top SNP, rs77806631.
- (b) Posterior probabilities distribution of variants in *SYNGR1* locus, identifying rs2069235 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the SYNGR1 association on Chromosome 22 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black, or colored based on r² (red: r²>0.08; orange: r²>0.06). The index SNP of the SYNGR1 association, rs2069235, is indicated. The outer circle displays the chromosome coordinate of the SYNGR1 risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g-j) Sjögren-SNPs rs2069235 (g), rs909685 (h), rs2267407 (i), and rs3747177 (j) are positioned in an intronic regulatory element of *SYNGR1*. Epigenetic enrichment of enhancer and promoter marks, and the coalescence of chromatin-chromatin interactions and eQTL data indicate that this element likely functions as both a promoter to modulate the expression of an alternative *SYNGR1* isoform and/or an enhancer that regulates the promoter of *ATF4* and *CBX7*. For details, see Supplementary Table 16.
- (k-m) Sjögren-SNPs rs5757585 (k), rs11703434 (l), and rs137594 (m) are positioned in an intergenic region upstream of *SYNGR1*. Epigenetic marks and eQTL enrichment indicate that both variants modulate enhancer activity in specific immune cell types, predominantly monocytes. For details, see Supplementary Table 16.
- (n-t) EcholocatoR was used to identify, fine-map and annotate the SYNGR1 region after specifying the index SNPs (indicated by red dotted line): rs2069235 (n), rs909685 (o), rs2267407 (p), rs3747177 (q), rs5757585 (r), rs11703434 (s), rs137594 (t). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

- o*) EcholocatoR Analyses: rs909685
- p*) EcholocatoR Analyses: rs2267407 q*) EcholocatoR Analyses: rs3747177
- r*) EcholocatoR Analyses: rs5757585
- s*) EcholocatoR Analyses: rs11703434 t*) EcholocatoR Analyses: rs137594

*see next page

No eQTL natin Loop

1

1

of Target gene

Promotor element of Target gene vithin 50kb of TAD No loop within 5kb of the SNP ar

<u>rs11</u>703434 SYNGR1

Supplementary Figure 7: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *NAB1* locus.

- (a) Conditional analysis adjusting for rs4274624 identified a residual effect for rs4853457 (top panel), while conditional analysis adjusting for rs4274624 and rs4853457 identified a residual effect for rs2293765 (middle panel). Conditional analysis adjusting for rs2293765 identified a residual effect for rs4274624 (bottom panel).
- (b) Posterior probabilities distribution of variants in *NAB1* locus, identifying rs2293765 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *NAB1* association on Chromosome 2 (outer most layer). All SNPs with a $-\log_{10}(p-value)$ <0.05 are shown in black, or colored based on r^2 (red: $r^2>0.08$; orange: $r^2>0.06$). The index SNP of the *NAB1* association, rs4274624, is indicated. The outer circle displays the chromosome coordinate of the *NAB1* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g-h) Sjögren-SNPs rs2293765 (g) and rs2192008 (h), positioned in intronic enhancer elements of *NAB1*, exhibited epigenetic enhancer and promoter marks in several immune cell types (rectangles). Coalescence of chromatin-chromatin interactions (purple triangles) and several common eQTLs (yellow, orange, blue triangles), suggest that the intronic enhancer regulates the promoters of *MFSD6* (Major Facilitator Superfamily Domain Containing 6 likely regulates nutrient uptake across cell membranes) and *TMEM194B/NEMP2* (Nuclear Envelope Integral Membrane Protein 2 has unknown function). For details, see Supplementary Table 19.
- (i) Sjögren-SNP rs11900804, positioned in an intronic enhancer element of *NAB1*, has limited epigenetic enhancer and promoter activity in CD4⁺ T cells, and a coalescence of chromatin-chromatin interaction data and eQTLs for *MFSD6* and *TMEM194B/NEMP2*.
- (j) Lack of epigenetic marks suggest that Sjögren-SNP rs744600 is likely not function, despite being a SNP from the 95% credible set for the *NAB1* region. For details, see Supplementary Table 19.
- (k-n) EcholocatoR was used to identify, fine-map and annotate the *NAB1* region after specifying the index SNPs (indicated by red dotted line): rs2293765 (k), rs2192008 (l), rs11900804 (m), rs744600 (n). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

NAB1_rs2293765

NAB1_rs2192008

Supplementary Figure 8: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *RPTOR-CHMP6-BAIAP6* locus.

- (a) Conditional analysis was performed, adjusting for rs8071514. A residual effect was for the top SNP, rs139722484.
- (b) Posterior probabilities distribution of variants in *RPTOR-CHMP6-BAIAP6* locus, identifying rs8071514 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *RPTOR-CHMP6-BAIAP6* association on Chromosome 17 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black, or colored based on r^2 (red: r^2 >0.08; orange: r^2 >0.06). The index SNP of the *RPTOR-CHMP6-BAIAP6* association, rs8071514, is indicated. The outer circle displays the chromosome coordinate of the *RPTOR-CHMP6-BAIAP6* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g, h)Sjögren-SNP rs6565516 (g) and rs4969328 (h) are positioned in the CHMP6 promoter region, have epigenetic marks consistent with promoter activity and are reported CHMP6 eQTLs. CHMP6 encodes the charged multivesicular body protein 6, an important component of the ESCRT-III complex involved in endosomal sorting for degradation. Additional epigenetic enhancer marks, chromatin-chromatin interactions, and eQTL data suggest that these variants may also modulate enhancer that engages the RPTOR promoter. RPTOR (Regulatory Associated Protein of MTOR Complex 1) is an important regulator of nutrient sensing and autophagy during nutrient deprivation. The two SNPs are also minor salivary gland eQTLs for TMEM105 and FAM165B ~314 kb and ~816 kb downstream downstream. For details, see Supplementary Table 22.
- (i, j) Sjögren-SNP rs4969331 (i) and rs6565518 (j) are positioned in an intronic element with epigenetic evidence of enhancer and promoter activity. Chromatin-chromatin interaction data indicates potential looping to an upstream region enriched with non-protein-coding genes, however reporting of ncRNAs in eQTL databases is limited, preventing detecting of any coalescence between eQTL and chromatin-chromatin interaction at this region. For details, see Supplementary Table 22.
- (k-n) EcholocatoR was used to identify, fine-map and annotate the *RPTOR-CHMP6-BAIAP6* region after specifying the index SNPs (indicated by red dotted line): rs6565516 (k), rs4969328 (I), rs4969331 (m), and rs6565518 (n). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

rs4969328

rs807154

122

171514	65516	69331	65518	Haplotype frequency				
rs80	rs65	rs49	rs65	Overall	Case	Control	X ²	Р
				0.549	0.578	0.544	25.96	3.47E-07
				0.413	0.385	0.418	24.13	8.99E-07
				0.030	0.027	0.031	1.86	0.17

f

otor element or 1 ma-a 50kb of TAD

j

h

k*) EcholocatoR Analyses: rs6565516l*) EcholocatoR Analyses: rs4969328 m*) EcholocatoR Analyses: rs4969331 n*) EcholocatoR Analyses: rs6565518 *see next page

00+00

Supplementary Figure 9: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *PRDM1-ATG5* locus.

- (a) Conditional analysis was performed, adjusting for rs526531. A residual effect was for the top SNP, rs11152944.
- (b) Posterior probabilities distribution of variants in *PRDM1-ATG5* locus, identifying rs548234 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *PRDM1-ATG5* association on Chromosome 6 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black, or colored based on *r*² (red: *r*²>0.08; orange: *r*²>0.06). The index SNP of the *PRDM1-ATG5* association, rs526531, is indicated. The outer circle displays the chromosome coordinate of the *PRDM1-ATG5* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g) Lack of epigenetic marks suggest that the index Sjögren-SNP rs526531 is not likely function. For details, see Supplementary Table 25.
- (h-I) Sjögren-SNPs rs11152966 (h), rs533733 (i), rs548234 (j), rs4946728 (k), and rs7768653 (I), positioned in intergenic space between *PRDM1* and *ATG5*, all exhibit epigenetic enhancer and promoter marks across several immune cell types and share several eQTLs, including *ATG5* and *PRDM1* in several immune cell types and *ATG5* in the minor salivary gland. *PRDM1* encodes B-lymphocyte induced maturation protein 1 (BLIMP1), which has several regulatory roles in innate and adaptive immune responses. *ATG5* is a prominent regulator of autophagy. Lack of reported chromatin-chromatin interactions in all but the EBV B cell types suggest that stimulation may be required for interactions between the enhancer and *PRDM1* or *ATG5* promoters. For details, see Supplementary Table 25.
- (m) Lack of epigenetic marks suggest that Sjögren-SNP rs4134466 is likely not function, despite being a SNP from the 95% credible set for the *PRDM1-ATG5* region. For details, see Supplementary Table 25.
- (n-t) EcholocatoR was used to identify, fine-map and annotate the *PRDM1-ATG5* region after specifying the index SNPs (indicated by red dotted line): rs526531 (n), rs11152966 (o), rs533733 (p), rs548234 (q), rs4946728 (r), rs7768653 (s), and rs4134466 (t). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

PRDM1_rs4946728

Supplementary Figure 10: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *PTTG1-MIR146A* locus.

- (a) Conditional analysis was performed, adjusting for rs2431098. No residual effects were observed in the region of association.
- (b) Posterior probabilities distribution of variants in *PTTG1-MIR146A* locus, identifying rs2431098 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *PTTG1-MIR146A* association on Chromosome 5 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black, or colored based on *r*² (red: *r*²>0.08; orange: *r*²>0.06). The index SNP of the *PTTG1-MIR146A* association, rs2431697, is indicated. The outer circle displays the chromosome coordinate of the *PTTG1-MIR146A* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer. The index gene for the *PTTG1-MIR146A* association are colored in blue.
- (g, h)Sjögren-SNPs rs2431697 (g) and rs2431099 (h), positioned in an intergenic region 3' of *PTTG1*, exhibited limited cell type-specific epigenetic enhancer marks in CD4⁺ T cells (green rectangles) and several eQTLs, including *PWWP2A* in salivary gland (top yellow triangles), and upstream *PTTG1* and *SLU7* in CD4+ T cells. Chromatin-chromatin interactions in GM12878 EBV B lymphocytes (bottom purple triangle) revealed interactions between this enhancer and the promoter of *NUDCD2*, *HMMR*, and *RP11-541P9.3*, but not with the promoters of *PTTG1* or *SLU7*. For details, see Supplementary Table 28.
- (i) Lack of epigenetic marks suggest that Sjögren-SNPs rs2431698 is likely not function, despite being a SNP from the 95% credible set for the region. For details, see Supplementary Table 28.
- (j) Annotation of Sjögren-SNPs shown in b-d using the IMPACT model to quantify SNP position in 700 cell-type specific active transcription factor binding sites. Top panel depicts SNP position (blue lines) relative to genomic coordinates (Mb) of the *PTTG1-MIR146A* locus. Bottom panel shows the total number of active transcription factor binding sites detected at each SNP.
- (k-m)EcholocatoR was used to identify, fine-map and annotate the *PTTG1-MIR146A* region after specifying the index SNPs (indicated by red dotted line): rs2431697 (k), rs2431099 (I), and rs2431698 (m). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

PTTG1-MIR146A_rs2431099

Supplementary Figure 11: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *TNFAIP3* locus.

- (a) Conditional analysis was performed, adjusting for rs61117627. A residual effect was for the top SNP, rs17264332.
- (b) Posterior probabilities distribution of variants in *TNFAIP3* locus, identifying rs61117627 as the most probable SNP.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *TNFAIP3* association on Chromosome 6 (outer most layer). All SNPs with a -log₁₀(p-value) <0.05 are shown in black, or colored based on r² (red: r²>0.08; orange: r²>0.06). The index SNP of the *TNFAIP3* association, rs61117627, is indicated. The outer circle displays the chromosome coordinate of the *TNFAIP3* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g) Sjögren-SNP rs7749323 is the proxy SNP for the previously described TT>A enhancer 3' of the *TNFAIP3* gene. Consistent with reports, rs7749323 exhibited epigenetic enhancer marks, but minimal chromatin-chromatin interactions or eQTLs for *TNFAIP3*. rs7749323 is an eQTL for *IFNGR1* in the minor salivary gland. Looping data is currently unavailable for the salivary gland but looping data in EBV B cells revealed an interaction between the TT>A enhancer region and the *IFNGR1* promoter upstream. IFNγ signaling plays a prominent role in the inflammatory pathways that drive SS pathogenesis in the salivary gland. For details, see Supplementary Table 31.
- (h, i) Sjögren-SNPs rs10499197 (h) and rs58905141 (i), positioned in an intergenic enhancer 5' of the TNFAIP3 promoter, exhibit epigenetic enhancer and promoter marks across several immune cell types and share several eQTLs, including *CCDC28A* in the minor salivary gland. SNP rs10499197 (h) also has coalescence of eQTL and chromatin-chromatin interactions with the *TNFAIP3* promoter in several immune cell types, suggesting that this enhancer may function to modulate expression of *TNFAIP3*, an important regulator of inflammatory signaling. For details, see Supplementary Table 31.
- (j) Sjögren-SNP rs5029937, positioned in an intronic region of *TNFAIP3*, exhibit epigenetic enhancer and promoter marks and is an eQTL for several genes across several cell types. For details, see Supplementary Table 31.
- (k) Sjögren-SNP rs5029924 is positioned in the *TNFAIP3* promoter region and exhibits epigenetic promoter marks across several immune cell types. For details, see Supplementary Table 31.
- (I) The coding variant, rs2230926, in *TNFAIP3* is also a reported eQTL for *TNFAIP3* in several immune cell types. For details, see Supplementary Table 30.
- (m-s)EcholocatoR was used to identify, fine-map and annotate the *TNFAIP3* region after specifying the index SNPs (indicated by red dotted line): rs7749323 (m), rs10499197 (n) rs58905141 (o), rs5029937 (p), rs5029924(q), rs2230926 (r), and rs61117627 (s). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

		TNFAIP3_rs10499197
((5· 0·	138 138.1 138.2 138.3
GWAS (-log10(p))		
	5· 0·	SUSIE
	0.5.	rs142373084
	0.0	(s10499197)
1 (PP	0.0	POLYFUN_SUSIE
ping	1.9	rs142373084
-Map	0.5	(s10499197)
Fine.	0.0	Mean
	1.0	rs675640 (rs113237273
	0.5	rs142373084
	0.0.	
	5	CD19 Primary Cells_Cord Blood BivFink PeprPCWk
	1e-03 -	EnhBiv TssAFink EnhG TssBiv Het Tx
	5e-04 -	Repr/C ZNF/Rpts
	1e-03 -	CD19 Primary Cells_Peripheral Blood
ity)	5e-04 -	
ensi	9e±82	CD4 Memory Primary Cells
te (D	4e-04 -	
Sta	0e+00	CD4 Naive Primary Cells
natin	40-04	
Chror	0e+00-	
	8e-04 -	CD4* CD25 ⁻ CD45RA* Naive Primary Cells
	4e-04 -	
	0e+00 - 6e-04 -	CD4+ CD25+ CD127- Treg Primary Cells
	3e-04 -	
	00+00- 5e-04-	Mobilized CD34 Primary Cells_Female
<u> </u>	0e+00-	TERS Cluster CM12979 Lumphoblesteid
	1e-04 •	
	1e-04-	TFBS Cluster: GM12891
	0e+00-	
	1e-04 -	TFBS Cluster: HeLa-S3
	0e+00-	TEBS Cluster: HepG2
	1e-04 -	
sity)	0e+00-	TFBS Cluster: K562
Den	1e-04 -	
) gui	1e-05	DNasel Cluster: 102
ıster	5e-06 ·	GM12844 Th1 GM12878
E Clu	0e+00 1e-05	DNasel Cluster: 123
	5e-06+	
ENO	1e-05	DNasel Cluster: 20
	5e-06+	
	1e-05+	DNasel Cluster: 57
	oe+00+	
	1e-05-	DNasel Cluster: 87
	000	Provide National Action of Magaza
ston∈ v)		Broad Histone GM12878 H3t4me1 H3t8dme1 H3t8dme1 H3t27me3
d His ensit	1.0704.08	
D(D(5e-04 •	
	00.00.	

TNFAIP3	rs58905141
	133030314

		r ² =
		· · · · · · · · · · · · · · · · · · ·
	5.	م ي و المسيحة الم
	0.	138 1381 1382 1383 1384
		100.1 100.2 100.0 100.4
<u>(</u>		
10(F		INFAIH3
-log		
s,		
MA		
Ō		
	2	
		• • • • • • • • • • • • • • •
	5.	
	0.	1980-196 50 5 mm rat op moto op op 1 mm rat op 100000 0 0 0 0 0
	1.0	- rs113237273 - rs142373084 - rs675640
	0.5	
		rs5029937
(dc	0.0	2004 20 2004 200 200 200 200 200 200 200
) <u></u> []	1.0	- 15113237273 - 15142373084 - 15675640
pir		
Map	0.5	rs5029937
ne-l	0.0	
i.	1.0	ivican 15113237273 - 1514237 <u>3</u> 084 - 15675640
	0.5	re5029037
	0.0	
	_	CD14 Primary Cells ChromState
	0.00	EnhBiv TssA EnhBiv TssA
	0.0010	EnhG TssBiv Het Tx Ouies TyWk
	0.0005	ReprPC ZNF/Rpts
	0.0015	CD15 Primary Cells
	0.0010	14.2
	0.0005	
	0.0000	CD19 Primary Cells_Cord Blood
	0.0010	
	0.0005	
	0.0000	CD19 Primary Cells_Peripheral Blood
	0.0010	
$\overline{\mathbf{x}}$	0.0005 •	
sity	1e-03 ·	CD3 Primary Cells_Cord Blood
Der	5e-04 ·	
te (0e+00 ·	CD3 Primary Cells Peripheral Blood
Sta	1e-03 ·	
atin	5e-04 -	
om 8	0e+00+	CD34 Primary Cells
Chr	1e-03 -	
-	5e-04 ·	
	8e-04 -	CD4 ⁺ CD25 ⁻ IL17 ⁻ PMA-Ionomycin stimulated MAC\$ Purified Th Cells
	4e-04 -	
	pa.00.	
	0.004	Thymus
	0.001	
	0.000	GM12878 Lymphoblastoid
	100000	
	0.000	
	5.000	Monocyte CD14 ⁺ RO01746
	0,001	
	0.001	
	2e-04	TFBS Cluster: GM12878 Lymphoblastoid
	1e-04 - 0e+00 -	NFIC
	2e-04 ·	TFBS Cluster: GM12891
	1e-04 -	
	0e+00 ·	TFBS Cluster: HepG2
	1e-04	
(ty	0e+00	TFBS Cluster: K562
snsi	2e-04 ·	
ing (De	1e-04 · 0e+00 ·	Direct Obstan 444
	1e-05 •	Divaser Clusier: 111 CO144 SAEC HAEpiC Th1
Istei	5e-06-	DNasel Olympic 100
Clu	1e-05 -	DNasei Cluster: 123
DE	5e-06 •	
ENCOL	Ue+00 -	DNasel Cluster: 13
	1e-05 - 5e-06 -	
	0e+00-	DNasel Cluster: 34
	1e-05 •	
	-90-9c	Direct Output of
	1e-05 -	DNasel Cluster: 45
	5e-06 -	
ne		Broad Histone NheK
listc itv)		H3k36me3
id H	6e-04 -	
L Sroe	3e-04 -	

TNFAIP3_rs5029937

TNFAIP3_rs5029924

	0.000			
	0.000	Thymus	1	
	0.001			
	0.000	GM12878 Lymphoblastoid		
	0.001	Give 2070 Lymphoblastold		
	0.000		in	
	1e-04 •	TFBS Cluster: GM12878 Lymphoblastoid		FOS POLR2A
	10.04			NFIC
	0e+00 -	TFBS Cluster: GM12891		
	1e-04 -			
	0e+00-			A
	00100	TFBS Cluster: HepG2		
	1e-04 -			
5	0e+00-	TERS Cluster: KE62		
Jsit	10-04 -	TFBS Cluster, N302		
Der	10.04			
) 0	0e+00 -	DNasel Cluster: 111		CD14+ SAEC
erin	1e-05 -			HAEpiC HEEpiC
usti	0e+00-	DNasel Cluster: 123		
ō	1e-05 -			
Ë	5e-06 -			
8	0e+00 -	DNasel Cluster: 13		
Z Ш	1e-05 -			
	0e+00 -			
	10.05	DNasel Cluster: 34		
	5e-06 -			
	0e+00-	DNasel Cluster: 45		
	1e-05 -			
	5e-06 -			

5 0 138.2 GWAS (-log10(p) 5 1.0 0.5 rs2230926 Fine-Mapping (PP) 0.0 POLYFUN_SUSIE 1.0 rs113237273 - rs142373084 rs675640 0.5 rs2230926 0.0 Mean TS113237273 1.0 rs142373084 -- rs675640 0.5 rs2230926 CD15 Primary Cells ChromState 0.0015 ReprPCV TssA TssAFInk TssBiv Tx Tx 0.0010 0.0005 0.0000 CD19 Primary Cells_Cord Blood 0.0010 0.0005 0.0000 -CD19 Primary Cells_Peripheral Blood 0.0010 0.0005 CD3 Primary Cells_Cord Blood 1e-03 5e-04 0e+00 CD34 Primary Cells 1e-03 Chromatin State (Density) 5e-04 16:83 CD4+ CD25- CD45RA+ Naive Primary Cells 5e-04 0e+00 6e-04 CD4⁺ CD25⁻ IL17⁻ PMA-Ionomycin stimulated MACS Purified Th Cells 3e-04 0e+00 CD4+ CD25- IL17+ PMA-Ionomycin stimulated Th17 Primary Cells 6e-04 3e-04 0e+00 Thymus 0.001 8.000 GM12878 Lymphoblastoid 0.000 Monocyte CD14⁺ RO01746 0.001 TFBS Cluster: GM12878 Lymphoblastoid POLR2A RELA CTCF FOS 2e-04 1e-04 0e+00 TFBS Cluster: GM12891 2e-04 1e-04 0e+00 TFBS Cluster: HepG2 2e-04 1e-04 ring (Density 0e+00 TFBS Cluster: K562 2e-04 1e-04 0e+00 CD14+ HAEpiC HEEpiC DNasel Cluster: 111 SAEC Th1 1e-05 **ENCODE** Cluster 5e-06 0e+00 DNasel Cluster: 123 1e-05 5e-06 0e+00 DNasel Cluster: 13 1e-05 5e-06 0e+00 DNasel Cluster: 34 1e-05 5e-06 0e+00 DNasel Cluster: 45 1e-05 5e-06 Broad Histone (Density) 06+00 06+00 H2az H3k27me3 H3k36me3 H3k36me3 Broad Histone NheK 6e-04

TNFAIP3_rs2230926

TNFAIP3_rs61117627

Supplementary Figure 12: Conditional analysis, posterior probability analysis, chromatin looping, and eQTL mapping in the *TYK2* locus.

- (a) Conditional analysis was performed, adjusting for rs11085725. A residual effect was for the top SNP, rs2278442.
- (b) Posterior probabilities distribution of variants in *TYK2* locus, identifying rs11085725 and rs35251378 as the most probable SNPs.
- (c-e) The pairwise $D'(\mathbf{c})$, $r^2(\mathbf{d})$, and haplotypes with their frequencies of the top and functional variants in the region are displayed (e).
- (f) Circos plot mapping the zoom regional Manhattan plot of the imputed GWAS data for the *TYK2* association on Chromosome 19 (outer most layer). All SNPs with a $-\log_{10}(p-value)$ <0.05 are shown in black, or colored based on r^2 (red: $r^2>0.08$; orange: $r^2>0.06$). The index SNP of the *TYK2* association, rs11085725, is indicated. The outer circle displays the chromosome coordinate of the *TYK2* risk locus highlighted in blue. Genes that are eQTLs or exhibit chromatin interaction by Hi-C in GM12878 Epstein-Barr virus (EBV)-transformed B lymphocytes are reported on the inner circles in green or orange font, respectively, and are shown as links colored green or orange, respectively, on the inner most layer.
- (g) Sjögren-SNP rs2304256 is a previously characterized missense variant in *TYK2*. For details, see Supplementary Table 34.
- (h) Sjögren-SNP rs11879191, positioned in an intronic region of CDC37 downstream of TYK2, exhibits epigenetic promoter and enhancer marks in all immune cell types presented (rectangles). The intronic regulatory element engages a broad regulatory network including the promoters of several eQTLs including *ICAM5* and *CDC37* in monocytes, and *OLFM2* and *EIF3G* in the salivary gland. For details, see Supplementary Table 34.
- (i) Sjögren-SNP rs2278442 is positioned in intronic region of *ICAM3* that is enriched with epigenetic promoter and enhancer marks across most immune cell types shown. Coalescence of chromatin interactions and eQTL data suggest that this regulatory region may also modulate the expression of *ICAM5*, *ICAM4*, *MRPL4*, *TYK2*, and *ICAM1*. For details, see Supplementary Table 34.
- (j-n) EcholocatoR was used to identify, fine-map and annotate the *TYK2* region after specifying the index SNPs (indicated by red dotted line): rs2304256 (j), rs11879191 (k), rs2278442 (l), rs34953890 (m), and rs753859 (n). Additional SNPs with plausible function were identified and indicated by the dotted yellow lines.

10 5 0 10.3 10.4 10.5 10.6 GWAS (-log10(p)) TYK2 CDC37 ₩ Н 10 5 . 0 8 08 0 2 SIE 1.0 rs753859 rs8101195 rs280525 rs7247198 0.5 rs2304256 0.0 Fine-Mapping (PP) POLYFUN_SUSIE 1.0 ۲ rs8101195 rs753859 rs11085727 rs280525 rs12720270 0.5 rs2304256 0.0 Mear 1.0 rs11085727 rs753859 rs8101195 rs280525 rs12720270 0.5 ۲ rs7247198 rs2304256 ChromState CD14 Primary Cells BivFlnk Enh EnhBiv EnhG Het ReprPCW TssA TssAFInk TssBiv Tx TxWk ZNF/Rpts 6e-04 3e-04 HOD 0e+00 6e-04 CD15 Primary Cells 3e-04 Chromatin State (Density) 0e+00 Mobilized CD34 Primary Cells_Female 1e-04 5e-05 0e+00 Mobilized CD34 Primary Cells_Male 1e-04 5e-05 0e+00 Peripheral Blood Mononuclear Primary Cells 1e-04 5e-05 0e+00 Thymus 1e-04 5e-05 CTCF MAX POLR2A TFBS Cluster: GM12878 Lymphoblastoid 5e-05 0e+00 TFBS Cluster: H1-hESC 5e-05 0e+00 TFBS Cluster: HeLa-S3 5e-05 0e+00 TFBS Cluster: HepG2 5e-05 0e+00 TFBS Cluster: K562 ENCODE Clustering (Density) 5e-05 DNasel Cluster: 102 Fibrobl Osteobl HMEC Th1 Medullo 1e-05 5e-06 0e+00 DNasel Cluster: 123 1e-05 5e-06 0e+00 DNasel Cluster: 20 1e-05 5e-06 0e+00 DNasel Cluster: 52 1e-05 5e-06 0e+00 DNasel Cluster: 92 1e-05 5e-06

TYK2_rs2304256

0.5 0

	0e+00 4e-04	Thymus	
	2e-04 -		
	000	GM12878 Lymphoblastoid	
	5e-05 -		
	0e+00 -	Monocyte CD14 ⁺ RO01746	
	5e-05 -		
	0e+00•		
	1.120.001.55	Spleen	
	5e-05 -		
	5.0e-05 -	TFBS Cluster: GM12878 Lymphoblastoid	CTCF POLR2A
	2.5e-05 -		MAX MXI1 YY1
	0.0e+00 - 5.0e-05 -	TFBS Cluster: H1-hESC	
	2.5e-05 -		
	0.0e+00	TFBS Cluster: HeLa-S3	
	2.5e-05 -		
	0.0e+00-	TEBS Cluster: HapG2	
	5.0e-05 -		
	0.00+00-		
nsity)	5.0e-05 -	TFBS Cluster: K562	
Der	10-05		
iring (5e-06 ·	DNasel Cluster: 102	Fibrobi Osteobl HMEC Th1 K562
luste	0e+00 1e-05	DNasel Cluster: 123	
Ц С	5e-06 ·		
00	0e+00 1e-05	DNasel Cluster: 20	
ENC	5e-06 •		
	0e+00 1e-05	DNasel Cluster: 57	
	5e-06 ·		
	0e+00 1e-05	DNasel Cluster: 87	
	5e-06 •		
	0.00050 -	Broad Histone Heng?	H3k36mo2 H4k20mo1
'ty)	0.00025 -		H3k4me1 Pol2b H3k9me1
(Densi	0.00050 -	Broad Histone HUVEC	
one	0.00000 -	Broad Histone K562	
road Histo	0.00025 -		
	0.00000 -	Broad Histone NheK	
Ō	0.00025 -		
	0.00000		

	2e-04 -		
	2e-04 ·	TFBS Cluster: GM12878 Lymphoblastoid	OLR2A AF1
	0e+00 • 2e-04 •	TFBS Cluster: H1-hESC	
	0e+00 • 2e-04 •	TFBS Cluster: HeLa-S3	
<u>(</u>)	0e+00 • 2e-04 •	TFBS Cluster: HepG2	
(Densit	0e+00 • 2e-04 •	TFBS Cluster: K562	
lustering	0e±00+ 1e-05+ 5e-06+	DNasel Cluster: 102	Osteobl Th1
CODE CI	0e+00 1e-05 5e-06	DNasel Cluster: 123	
ENG	0e+00 1e-05 5e-06	DNasel Cluster: 20	
	0e+00 1e-05 5e-06	DNasel Cluster: 52	
	0e+00 1e-05	DNasel Cluster: 92	

Supplementary Figure 13: Pathway, function, and disease enrichment of the index genes of each novel Sjögren's-associated risk locus and genes that share a predicted regulatory network with the index gene.

Ingenuity Pathway Analysis (IPA) Canonical Pathway and Disease and Function analyses were performed to assess the functional potential of the index gene, as well as genes that share a regulatory network with the index genes. Blue color indicates tested genes (top row) that were associated with specified cell functions, signaling pathways, or diseases (first two columns).

	Chromosome			1		Т		2	Т	3		5	Т	(6		7		8		1	ī		17	Т			1	9		Т		22	2
	Gene Name	POGK	GPA33	CD247	CREG1	MESDA	NAR1	STAT1	STAT4	IL12A	TNIP1	PTTG1 MIR146A	PRDM1	ATG5	TNFAIP3	CCDC28A	IRF5	RP1L1	MTMR9	BLK	DDX6	CRUR3	MAPT	RPTOR	CHMP6	MRPI 4	ICAM1	ICAM4	ICAM5	TYK2	CDC37	CBX/	evincial	ATE4
	Antigen Presentation					Т	Γ						Г						Τ						T	Т					Т		T	T
Il Activation/Function	B Cells					T							Г									T		Π	T								T	Т
	Dendritic Cells					T																		Π									Т	Г
	Leukocyte Activation & Response					Т							Г									T		Π	T	T							T	
	Immune Cell Extravasation					Т	Γ						Г																					
	Lymphocyte Survival, Activation & Proliferation					Т	Г						Г													Т							Т	T
	Monocyte/Macrophage												Г																					
	Natural Killer Cells																																	
	Pathogen Pattern Recognition (PPR) Signaling																																	
	Platelet Production																																	
	T Cell Function & Signaling																																	
ပီ	CD4+ T helper Cell Differentiation																																	
e l	CD4+ T helper type-1																																	
Ē	CD4+ T helper type-17																																	
<u> </u>	CD4+ T helper type-2																																	
	CD8+ Cytotoxic T cells																																	
	T Cell Exhaustion					1																4		Ц				\square						
	Lymphocyte Survival & Proliferation				_	1					_		L												4					\square		_		
	Viral Infection					4							L									+										4	4	
	Cell Adhesion & Cell Matrix					+													+			+			+	+			-				4	
-	Cell Death					∔							L									+			+	+			+					
tio	Cell Cycle & Cellular Division			_	_	∔	+					_			+			_				∔			+	+	1	\square	_			4	4	+
u n	Cellular Endocytosis	⊢		_	+	∔	+				_	_	Ł		-		4				_					+	╞	\square	+	⊢	+		4	
L I	Cellular Energy and Metabolism				+	∔			_				L				_	-					-	Η		-		\square	+				+	+
ပိ	Cell Growth, Survival, Proliteration, Differentiation					L							L									L												
era	Cellular Signaling	Г			+	t							T				1	1	T			T	Г	Π	T			H	+	Π			T	T
Gen	Cytokine Production and Signaling					T	T						t									Т		Π	T	T		Π					T	
ľ	Systemic Iron Homeostasis					T							T									T		Π	Т	T							T	T
	Tissue Damage, Repair and Fibrosis					Τ																												
	Calcium Signaling																																	
	IL-3 Signaling					1																												
	IL-4 Signaling					1																1		Ц	+			\square				-		
	IL-6 Signaling			_	-	+	+				_								+			Į.	1	Ц	+	+		\square	-	\square	_	+	4	
	IL-8 Signaling			_	_	Ŧ	1					_	L		-							ł		Ц	+	+			_	\square	_	_	4	
ß	IL-9 Signaling			_	_	╇						_	Ł									+	-	Н	+	+		\square		⊢	+	+	÷	
nal	IL-10 Signaling					÷							Ł									ł		Н	+	+		\square			-	+	÷	+
Sig	IL-12 Signaling			_	+	∔	+				_	-	ł					-	+		_	ł	-	Η	+	+	+	\square	+	⊢	+	+	+	+
1	IL-17 Signaling			_	+	╋	╞		_		_	+	Ł		+	\square	-	+	+	-		╋	⊢	H	+	+	╞	\square	+		+	+	+	
ľ	IL-22 Signaling			_	-	╋	+		_		_	-			+		-		-	\vdash		+	┝	\square	+	+		\vdash	-		-	+	÷	╇
				-	-	╋	+	-					ł				-				+	ł	-	H	+	+		\vdash	+	H	+	+	+	
	Interferon Signaling			+	+	÷	┢						H				-	+	+	\vdash	+	÷	⊢	H	+	+	┝	H	+	H	+	+	+	+
	NF-KB Signaling			-	+	╋	┢				+		ł				+		+	H	+	÷	⊢	H	+	+	⊢	\mathbb{H}	+	⊢	+	+	÷	
	TNEP Signaling			+	+	t	+	+			+	-	t				-	+	+	\vdash	+	t	H	H	t	+	┢	H	+	H	+	+	t	
	Anontosis Necrontosis and Ferrontosis	F				t	t			-		+	t	H								t		H	t	t	t	H		H	t		t	T
elle	Autophagy					t	+	H					t	H									t	H		+	t	H					+	
s o	Integrated Stress Response Pathways	F	Η			t	t				+		t					+				t	F	Π	t	t	t	Ħ	+		1	+	t	
	Angiogenesis	T				t	t						T				1		T			t	T											T
ous	Other Autoimmune Diseases					t	Г	H					t	Ħ					T						T	t	T	Ħ		П	T		T	T
licti	Cardiovascular Disease & Atherosclerosis					T																T			T									T
E.	Epithelial-Mesenchymal Transition & Cancer																																T	
ılar	Lymphoma												Γ												I									
Selle	Nephritis	Ĺ				I																									I			
ero	Neuron Function and Neuroprotection																																	
f d	Pulmonary Disease													1																				
Ĺ	Stem Cell Pluripotency																																	