Rare loss of function variants in the hepatokine gene *INHBE* protect from abdominal obesity

Aimee M. Deaton^{1*}, Aditi Dubey¹, Lucas D. Ward¹, Peter Dornbos^{2,3,4}, Jason Flannick^{2,3,4}, AMP-T2D-GENES Consortium^{**}, Elaine Yee¹, Simina Ticau¹, Leila Noetzli¹, Margaret M. Parker¹, Rachel A. Hoffing¹, Carissa Willis¹, Mollie E. Plekan¹, Aaron M. Holleman¹, Gregory Hinkle¹, Kevin Fitzgerald¹, Akshay K. Vaishnaw¹, and Paul Nioi¹

- ¹Alnylam Pharmaceuticals, Cambridge, MA
- ² Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA
- ³ Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
- ⁴ Department of Pediatrics, Harvard Medical School, Boston, MA
- * Correspondence to adeaton@alnylam.com
- ** A full list of consortium members is provided in the Supplementary Information

Supplementary Information

Supplementary Figures

Supplementary Figure 1: Gene-level associations with waist-to-hip ratio adjusted for BMI by variant set

Gene-based burden analysis of WHRadjBMI was performed in 362,679 European ancestry individuals for pLOF, missense and pLOF + missense variant masks using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. Genes significant in the overall analysis ($P \le 1.05 \times 10^{-6}$; Bonferroni correcting for the number of genes and variant masks tested) are labeled. The dashed line indicates the threshold for statistical significance.

. .

Supplementary Figure 2: QQ plots for sex-combined and sex-stratified analysis of WHRadjBMI Gene-based burden analysis of WHRadjBMI was performed in 362,679 European ancestry individuals for pLOF, missense and pLOF + missense variant masks using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. Analysis was performed in the entire population (sex-combined) or separately in men and women. N represents the number of rare variant carriers per gene and lambda is the genomic inflation factor.

Supplementary Figure 3: Gene-level associations with WHRadjBMI in men

Gene-based burden analysis of WHRadjBMI in men (N = 166,533) was performed for pLOF, missense and pLOF + missense variant masks using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. The best variant set per gene is shown and significant genes are labeled ($P \le 1.05 \times 10^{-6}$; Bonferroni correcting for the number of genes and variant masks tested). The dashed line indicates the threshold for statistical significance.

Waist-to-hip ratio adjusted for BMI: Men

Supplementary Figure 4: Gene-level associations with WHRadjBMI in women

Gene-based burden analysis of WHRadjBMI in women (N = 195,777) was performed for pLOF, missense and pLOF + missense variant masks using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. The best variant set per gene is shown and significant genes are labeled ($P \le 1.05 \times 10^{-6}$; Bonferroni correcting for the number of genes and variant masks tested). The dashed line indicates the threshold for statistical significance.

Supplementary Figure 5: Leave-one-variant-out analysis for selected genes

We performed leave-one-variant-out analysis for selected WHRadjBMI-associated genes. Gene-based burden analysis of WHRadjBMI was performed using a generalized linear model excluding one variant at a time from the analysis. The genomic position of the excluded variant is plotted versus -log10(*P*) for the association when that variant is excluded. The variant sets contributing most of the signal in gene-based tests are labeled.

Supplementary Figure 6: Association of significant genes with unadjusted WHR and BMI For genes associated with WHRadjBMI, we plotted the effect on WHR (without BMI adjustment) compared to the effect on BMI (both in standard deviations; SD) calculated in 362,679 European ancestry participants. Effects are shown for *INHBE* pLOF and, for the other genes, the most significant variant set per gene. Grey bars represent the 95% confidence interval.

Supplementary Figure 7: Association of significant genes with adipose tissue distribution assessed by MRI

For genes associated with WHRadjBMI, we plotted the effect on WHRadjBMI (tested in 362,679 European ancestry participants) compared to the effect on VATadjBMI and ASATadjBMI (tested in 33,318 European ancestry participants with abdominal MRI). Effects are shown for *INHBE* pLOF and, for the other genes, the most significant variant set per gene. Grey bars represent the 95% confidence interval. *INSR* pLOF is not shown because there were insufficient numbers of carriers with information on adipose distribution assessed by MRI. VATadjBMI, visceral adipose tissue adjusted for BMI; ASATadjBMI, abdominal subcutaneous adipose tissue adjusted for BMI.

Supplementary Figure 8: Survival analysis of *INHBE* pLOF carriers vs non-carriers in UKB The effect of *INHBE* pLOF genotype on survival was examined using a Cox proportional hazards regression looking at time from enrollment to death in UKB adjusting for age at enrollment, sex and 30 PCs of genetic ancestry.

Cumulative survival of *INHBE* pLOF carriers vs non-carriers

Supplementary Figure 9: Inhibin β E cross-species protein alignment The DSTS residues deleted by the splice acceptor variant are highlighted.

	80	90	100	108	112	120
Consensus	ALTRALRRLQ	Q P X S X X P G N X	<u> </u>	VXDX	STSXYX	SXLTF
Identity						
🖙 1. INHBE_Chicken	AVARALRRLQ	Q A D G P R R G D P P E I	DERRFEIISFAE	E E I	PTSSPG	TVLRF
🖙 2. INHBE Mouse	ALTRALRRLQ	Q P K S M V P G N I	R E – – – K V I S F A T		STSTYR	SMLTF
🖙 3. INHBE Rat	ALTRALRRLQ	Q P R S M V P G N I	R E – – – K V I S F A T	SIDK	STSTYR	SVLTF
🖙 4. INHBE CynoMonkey	ALTRALRRLQ	Q P G S V A P G N (3 E – – – E V I S F A T	VTD-	STSAYS	SLLTF
🖙 5. INHBE Human	ALTRALRRLQ	Q P G S V A P G N (3 E – – – E V I S F A T	VTD-	STSAYS	SLLTF

Supplementary Figure 10: Expression of *INHBE* in obese cynomolgus monkeys

Expression of *INHBE* mRNA in the liver of lean (n=24) and obese (n=13) cynomologous monkeys was quantified by RT-qPCR. *INHBE* expression for each animal was normalized to the geometric mean of *ARL6IP4* and *RPS9* expression. We then calculated the mean expression level in lean animals and expressed fold-change in *INHBE* relative to this value. Statistical significance was assessed using a two-sided unpaired t-test ($P = 1 \times 10^{-12}$). Error bars represent the standard error of the mean for each group.

Supplementary Figure 11: WHRadjBMI associations of Mendelian lipodystrophy genes Gene-based burden analysis of WHRadjBMI in 362,679 European ancestry individuals was performed using a generalized linear model. For genes implicated in lipodystrophies (according to OMIM https://omim.org/), associations with WHRadjBMI are shown for the most significant variant set per gene in the sex combined (All) and sex-stratified analyses. Red lines indicate the threshold for statistical significance ($P \le 0.004$, Bonferroni correcting for 13 genes tested) and Beta=0.

WHRadjBMI associations of lipodystrophy genes

Supplementary Tables

Supplementary Table 1: Gene burden analysis conditioning on nearby hits.

For genes within 1Mb of each other that were significant in the gene burden analysis, namely *KEAP1* and *COL5A3*, we performed conditional analysis. Burden analysis of WHRadjBMI was performed using a generalized linear model adjusting for the first 30 PCs of genetic ancestry and the relevant genotype as indicated ("adjustment"). The threshold for significance was $P \le 1.05 \times 10^{-6}$ (Bonferroni correcting for the number of genes and variant masks tested).

Gene	Variant set	Gene coordinates (hg38)	adjustment	Р	Beta (95% CI) in SD units of WHRadjBMI
COL5A3	pLOF	19:9959561-10010532	unadjusted	4.20E-07	0.23 (0.14, 0.32)
COL5A3	pLOF	19:9959561-10010532	KEAP1	4.03E-07	0.23 (0.14, 0.32)
			pLOF+missense		
KEAP1	pLOF+missense	19:10486120-10503378	unadjusted	1.16E-08	0.25 (0.16, 0.33)
KEAP1	pLOF+missense	19:10486120-10503378	COL5A3 pLOF	1.11E-08	0.25 (0.16, 0.33)
KEAP1	missense	19:10486120-10503378	unadjusted	2.58E-08	0.25 (0.16, 0.34)
KEAP1	missense	19:10486120-10503378	COL5A3 pLOF	2.48E-08	0.25 (0.16, 0.34)

Supplementary Table 2: Gene burden analysis conditioning on nearby GWAS hits.

We conditioned genes significant in our burden analysis on the top array association(s) with WHRadjBMI (lead SNP in a 250kb window with $P \le 1.05 \times 10^{-6}$) in a 1Mb window. Conditional analysis was performed on 363,016 European ancestry individuals with exome and array genotypes available, unadjusted values are from our primary analysis. Burden analysis was performed using a generalized linear model adjusting for the first 30 PCs of genetic ancestry and the relevant genotype as indicated ("adjustment"). The threshold for significance was $P \le 1.05 \times 10^{-6}$ (Bonferroni correcting for the number of genes and variant masks tested in our primary analysis).

Gene	Variant set	Adjustment	Ρ	Beta (95% CI) in	N carriers	significant
				SD units of		
				WHRadjBMI		
PDE3B	pLOF	unadjusted	2.17E-17	-0.26 (-0.32, -0.2)	1020	Y
PDE3B	pLOF	rs1037378 and	3.91E-16	-0.25	1017	Y
		rs76613195		(-0.32, -0.19)		
PDE3B	pLOF	rs76613195	3.28E-16	-0.25	1017	Y
				(-0.32, -0.19)		
PDE3B	pLOF	rs1037378	5.27E-17	-0.26	1017	Y
				(-0.32, -0.20)		
PLIN4	pLOF	unadjusted	1.84E-09	0.13 (0.091,	1961	Y
				0.18)		
PLIN4	pLOF	rs13041	1.45E-09	0.14	1958	Y
				(0.092, 0.18)		
PLIN4	pLOF+missense	unadjusted	1.97E-09	0.13 (0.09, 0.17)	2199	Y
PLIN4	pLOF+missense	rs13041	1.20E-09	0.13	2194	Y
				(0.087, 0.17)		
INSR	pLOF	unadjusted	1.05E-07	-0.45 (-0.62, -	135	Y
				0.29)		
INSR	pLOF	rs199817986	1.05E-07	-0.45	135	Y
				(-0.62, -0.29)		
ACVR1C	missense	unadjusted	6.24E-10	-0.14 (-0.19, -	1892	Y
				0.097)		
ACVR1C	missense	rs55920843	6.64E-10	-0.14	1888	Y
				(-0.19, -0.096)		
ACVR1C	pLOF+missense	unadjusted	7.10E-10	-0.14 (-0.18, -	1923	Y
				0.095)		
ACVR1C	pLOF+missense	rs55920843	7.66E-10	-0.14	1919	Y
				(-0.18, -0.095)		
SLC5A3	missense	unadjusted	1.93E-08	0.072 (0.047,	6141	Y
				0.097)		
SLC5A3	missense	rs28451064	1.76E-08	0.072	6123	Y
				(0.047, 0.097)		
TRIM40	pLOF+missense	unadjusted	6.99E-07	0.074 (0.045,	4443	Y
				0.10)		
TRIM40	pLOF+missense	rs3094625	2.55E-06	0.07	4433	N
				(0.041, 0.1)		

Supplementary Table 3: WHRadjBMI associations in men

Results for any variant set significant in the male-specific, female-specific or sex-combined analysis are shown. Burden analysis was performed using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. The threshold for significance was $P \le 1.05 \times 10^{-6}$ (Bonferroni correcting for the number of genes and variant masks tested). N = 166,533 men with WHRadjBMI measurements.

Gene	Variant set	Gene coordinates	Р	Beta (95% CI) in	Ν	significant
				SD units of	(carriers non-	
				WHRadjBMI	carriers)	
PLIN1	pLOF	15:89664365-	3.55E-09	-0.33 (-0.44, -	316 166217	Y
		89679417		0.22)		
LIPE	pLOF+missense	19:42401507-	1.21E-07	-0.09 (-0.12, -	3498 163035	Y
		42427426 0.057		0.057)		
LIPE	missense	19:42401507-	1.42E-07	-0.091 (-0.13, -	3342 163191	Y
		42427426		0.057)		
GIGYF1	pLOF	7:100679506-	6.76E-07	0.57 (0.34, 0.79)	76 166457	Y
		100694280				
PYGM	pLOF	11:64746389-	4.3E-06	0.12 (0.068, 0.17)	1502 165031	N
		64760715				
ANKRD12	pLOF	18:9136753-	1.28E-05	0.38 (0.21, 0.55)	131 166402	N
		9285985				
SLC5A3	missense	21:34073523-	4.51E-05	0.077 (0.04, 0.11)	2803 163730	N
		34106262				
PLIN1	pLOF+missense	15:89664365-	5.53E-05	-0.087 (-0.13, -	2140 164393	N
		89679417		0.045)		
INHBE	pLOF	12:57455291-	3.87E-04	-0.21 (-0.33, -	277 166256	N
		57458013		0.095)		
INHBE	pLOF+missense	12:57455291-	0.001	-0.16 (-0.25, -	410 166123	N
		57458013		0.062)		
ACVR1C	missense	2:157526767-	0.003	-0.1 (-0.17, -	857 165676	N
		157628887		0.033)		
ACVR1C	pLOF+missense	2:157526767-	0.005	-0.096 (-0.16, -	871 165662	N
		157628887		0.03)		
KEAP1	pLOF+missense	19:10486120-	0.02	0.15 (0.021, 0.29)	212 166321	N
		10503378				
KEAP1	missense	19:10486120-	0.03	0.15 (0.013, 0.29)	196 166337	N
		10503378				
TRIM40	pLOF+missense	6:30135998-	0.04	0.047 (0.0031,	2029 164504	N
		30148773		0.09)		
SLC35F5	pLOF+missense	2:113702677-	0.14	0.029 (-0.0095,	2589 163944	N
		113756823		0.068)		
SLC35F5	missense	2:113702677-	0.14	0.03 (-0.01, 0.07)	2389 164144	N
		113756823				
COL5A3	pLOF	19:9959561-	0.17	0.093 (-0.039,	220 166313	N
		10010532		0.22)		
PDE3B	pLOF	11:14643691-	0.18	-0.062 (-0.15,	464 166069	N
		14874139		0.028)		

PLIN4	pLOF+missense	19:4502180-	0.38	0.028 (-0.034,	1001 165532	N
		4520285		0.089)		
ABCA1	missense	9:104781002-	0.50	-0.011 (-0.044,	3603 162930	Ν
		104928246		0.021)		
ABCA1	pLOF+missense	9:104781002-	0.50	-0.011 (-0.043,	3804 162729	N
		104928246		0.021)		
PLIN4	pLOF	19:4502180-	0.61	0.017 (-0.048,	888 165645	N
		4520285		0.083)		
INSR	pLOF+missense	19:7112255-	0.61	-0.019 (-0.095,	663 165870	N
		7294405		0.056)		
INSR	pLOF	19:7112255-	0.67	0.052 (-0.19,	66 166467	N
		7294405		0.29)		

Supplementary Table 4: WHRadjBMI associations in women

Results for any variants set significant in the male-specific, female-specific or sex-combined analysis are shown. Burden analysis was performed using a generalized linear model adjusting for the first 30 PCs of genetic ancestry. The threshold for significance was $P \le 1.05 \times 10^{-6}$ (Bonferroni correcting for the number of genes and variant masks tested). N = 195,777 women with WHRadjBMI measurements.

Gene	Variant set	Gene coordinates	Ρ	Beta (95% CI) in	Ν	significant
				SD units of	(carriers non-	
				WHRadjBMI	carriers)	
PDE3B	pLOF	11:14643691-	6.31E-23	-0.42 (-0.5, -	555 195222	Y
		14874139		0.33)		
PLIN1	pLOF	15:89664365-	3.94E-14	-0.39 (-0.49, -	365 195412	Y
		89679417		0.29)		
INSR	pLOF	19:7112255-	1.48E-13	-0.88 (-1.1, -	69 195708	Υ
		7294405		0.65)		
PLIN4	pLOF	19:4502180-	1.68E-12	0.21 (0.16,	1070 194707	Υ
		4520285		0.27)		
PLIN4	pLOF+missense	19:4502180-	1.19E-11	0.2 (0.14, 0.25)	1195 194582	Y
		4520285				
PLIN1	pLOF+missense	15:89664365-	1.29E-11	-0.13 (-0.17, -	2579 193198	Y
		89679417		0.095)		
ACVR1C	pLOF+missense	2:157526767-	2.25E-08	-0.17 (-0.23, -	1052 194725	Y
		157628887		0.11)		
ACVR1C	missense	2:157526767-	2.88E-08	-0.17 (-0.23, -	1035 194742	Y
		157628887		0.11)		
ABCA1	pLOF+missense	9:104781002-	4.24E-08	-0.082 (-0.11, -	4511 191266	Y
		104928246		0.053)		
INSR	pLOF+missense	19:7112255-	4.56E-08	-0.2 (-0.27, -	773 195004	Y
		7294405		0.13)		
COL5A3	pLOF	19:9959561-	8.73E-08	0.33 (0.21,	259 195518	Y
		10010532		0.45)		
SLC35F5	missense	2:113702677-	1.78E-07	-0.095 (-0.13, -	3002 192775	Y
		113756823		0.06)		
KEAP1	pLOF+missense	19:10486120-	3.41E-07	0.29 (0.18, 0.4)	307 195470	Y
		10503378				
SLC35F5	pLOF+missense	2:113702677-	3.98E-07	-0.089 (-0.12, -	3256 192521	Y
		113756823		0.055)		
KEAP1	missense	19:10486120-	5.40E-07	0.3 (0.18, 0.41)	280 195497	Y
		10503378				
ABCA1	missense	9:104781002-	5.93E-07	-0.077 (-0.11, -	4289 191488	Y
		104928246		0.046)		
INHBE	pLOF+missense	12:57455291-	2.19E-06	-0.21 (-0.3, -	503 195274	N
		57458013		0.12)		
TRIM40	pLOF+missense	6:30135998-	5.49E-06	0.092 (0.053,	2409 193368	N
		30148773		0.13)		
INHBE	pLOF	12:57455291-	3.06E-05	-0.22 (-0.33, -	340 195437	N
		57458013		0.12)		

SLC5A3	missense	21:34073523-	5.83E-05	0.07 (0.036,	3331 192446	N
		34106262		0.10)		
PYGM	pLOF	11:64746389-	4.57E-04	0.081 (0.036,	1857 193920	N
		64760715		0.13)		
ANKRD12	pLOF	18:9136753-	0.002	0.27 (0.1, 0.44)	130 195647	N
		9285985				
LIPE	pLOF+missense	19:42401507-	0.04	0.033 (0.0023,	4084 191693	N
		42427426		0.064)		
LIPE	missense	19:42401507-	0.09	0.027 (-0.0041,	3895 191882	N
		42427426		0.059)		
GIGYF1	pLOF	7:100679506-	0.78	-0.037 (-0.3,	54 195723	N
		100694280		0.23)		

Supplementary Table 5: Meta-analysis of WHRadjBMI in men and women

Gene burden results from sex-stratified analysis of WHRadjBMI were meta-analyzed using an inversevariance weighted method implemented in METAL. Results for any variant set significant in the malespecific, female-specific or sex-combined analysis are shown. P_{het} ; heterogeneity P-value from Cochran's Q test ($P \le 0.05$ suggests evidence of heterogeneity).

Gene	Variant set	Р	Beta (95% CI) in	Direction	P _{het}	sig	het
			SD units of				
			WHRadjBMI				
PLIN1	pLOF	1.18E-21	-0.36 (-0.44, -0.29)		0.41	Y	Ν
PDE3B	pLOF	2.61E-16	-0.26 (-0.32, -0.19)		1.58E-08	Υ	Y
PLIN1	pLOF+missense	1.15E-14	-0.11 (-0.14, -		0.12	Y	Ν
			0.084)				
ACVR1C	missense	1.21E-09	-0.14 (-0.18, -		0.12	Y	Ν
			0.094)				
ACVR1C	pLOF+missense	1.49E-09	-0.14 (-0.18, -		0.10	Y	N
SLCEAD	missonso	1.005.00	0.093)		0.77	V	N
SLCSAS	missense	1.005-08	0.073 (0.048,	++	0.77	ř	IN
PYGM	nl OF	1 35F-08	0.098/	++	0.28	V	N
1 10101	ploi	1.552 00	0.13)		0.20	1	
INHBE	pLOF+missense	1.36E-08	-0.19 (-0.25, -0.12)		0.44	Y	N
PLIN4	pLOF+missense	2.19E-08	0.12 (0.077, 0.16)	++	8.53E-05	Y	Y
PLIN4	pLOF	2.62E-08	0.13 (0.081, 0.17)	++	1.22E-05	Y	Y
INHBE	pLOF	4.44E-08	-0.22 (-0.30, -0.14)		0.88	Y	N
KEAP1	pLOF+missense	7.95E-08	0.23 (0.15, 0.32)	++	0.13	Y	N
ANKRD12	pLOF	1.27E-07	0.32 (0.2, 0.45)	++	0.38	Y	N
KEAP1	missense	1.77E-07	0.24 (0.15, 0.33)	++	0.12	Y	N
INSR	pLOF	6.12E-07	-0.43 (-0.59, -0.26)	-+	4.5E-08	Y	Y
COL5A3	pLOF	1.1E-06	0.22 (0.13, 0.31)	++	0.009	N	Y
TRIM40	pLOF+missense	1.84E-06	0.072 (0.042, 0.1)	++	0.13	N	N
ABCA1	pLOF+missense	7.00E-06	-0.05 (-0.071, -		0.001	Ν	Y
			0.028)				
INSR	pLOF+missense	1.32E-05	-0.11 (-0.17, -		8.29E-04	Ν	Y
			0.063)				
ABCA1	missense	3.45E-05	-0.047 (-0.069, -		0.004	Ν	Y
			0.025)				
GIGYF1	pLOF	2.96E-04	0.32 (0.14, 0.49)	-+	6.38E-04	N	Y
SLC35F5	missense	0.003	-0.04 (-0.066, -	-+	4.93E-06	N	Y
		0.007	0.013)				
SLC35F5	pLOF+missense	0.005	-0.037 (-0.062, -	-+	7.6E-06	N	Y
	missonso	0.02	0.011)			N	V
LIPE	missense	0.02	-0.027 (-0.051, -	+-	5.1/E-0/	IN	ľ
LIDE		0.04	-0.024 (-0.046 -	+_	1.075-07	N	v
	PLOI 11113361136	0.04	0.0011)		1.07 L-07		'

Supplementary Table 6: Replication of gene-level associations in AMP-T2D-GENES

Gene-based analysis of WHRadjBMI was performed using a burden test with linear regression in up to 27,380 unrelated individuals. The analysis used 10 PCs of genetic ancestry, sample cohort subgroup, and sequencing technology as covariates. The threshold for statistical significance adjusting for 10 genes tested is $P \le 0.005$ with $P \le 0.05$ indicating nominal significance.

Gene	Variant set	Р	Beta (95% CI)	Ν	N carriers
INHBE	pLOF	9.41x10 ⁻⁴	-1.03 (-1.60, -0.42)	13456	10
INHBE	pLOF+missense	0.04	-0.31 (-0.61, -0.0076)	20052	41
PLIN1	pLOF+missense	0.05	-0.13 (-0.27, 0.002)	25380	204
PLIN4	pLOF	0.11	0.15 (-0.032, 0.32)	25761	121
PLIN1	pLOF	0.17	-0.26 (-0.64, 0.12)	19549	26
PDE3B	pLOF	0.18	-0.32 (-0.78, 0.14)	13270	17
KEAP1	missense	0.20	0.28 (-0.14, 0.70)	19995	21
KEAP1	pLOF+missense	0.20	0.263 (-0.14, 0.66)	19995	23
INSR	pLOF	0.29	-0.33 (-0.95, 0.29)	6269	10
SLC5A3	missense	0.42	0.19 (-0.27, 0.66)	16430	17
ACVR1C	missense	0.50	0.08 (-0.15, 0.31)	25154	70
ACVR1C	pLOF+missense	0.50	0.08 (-0.15, 0.31)	25154	70
PLIN4	pLOF+missense	0.55	0.03 (-0.07, 0.13)	25761	401
COL5A3	pLOF	0.76	0.06 (-0.30, 0.41)	21776	29
PYGM	pLOF	0.85	0.02 (-0.21, 0.26)	24037	67

Supplementary Table 7: Sensitivity analysis in White outgroup of UKB

Association results for genes significant in the discovery analysis with \geq 5 rare variant carriers in the White outgroup. Burden analysis of WHRadjBMI was performed using a generalized linear model. The direction of effect in the sensitivity analysis and discovery analysis respectively is shown as well as metaanalysis of these results. The threshold for statistical significance adjusting for 11 genes tested is $P \leq$ 0.003 with $P \leq$ 0.05 indicating nominal significance

Gene	Variant set	Р	Beta (95% Cl)	N carrier	Significance ** $P \le 0.05$ * $P \le 0.003$	Direction	P meta	Beta meta (95% CI)
PLIN1	pLOF	2.38E-04	-0.48	59	**		3.57E-23	-0.36
			(-0.73, -0.22)					(-0.43, -0.29)
PLIN1	pLOF+missense	0.16	-0.061	560			3.16E-14	-0.10
			(-0.14, 0.023)					(-0.13, -0.077)
PLIN4	pLOF	0.006	0.23	149	*	++	6.6E-11	0.14
			(0.067, 0.39)					(0.01, 0.18)
PLIN4	pLOF+missense	0.002	0.24	173	**	++	3.93E-11	0.14
			(0.086, 0.38)					(0.095, 0.17)
INSR	pLOF	0.007	-0.96	8	*		6.44E-09	-0.48
			(-1.6, -0.26)					(-0.64, -0.32)
INHBE	pLOF	0.44	-0.13	38			4.24E-08	-0.21
			(-0.44, 0.19)					(-0.29, -0.14)
INHBE	pLOF+missense	0.64	-0.063	54			2.65E-08	-0.18
			(-0.33, 0.2)					(-0.24, -0.11)
ACVR1C	missense	0.58	-0.052	114			8.3E-10	-0.14
			(-0.24, 0.13)					(-0.18, -0.093)
ACVR1C	pLOF+missense	0.57	-0.052	118			9.26E-10	-0.13
			(-0.23, 0.13)					(-0.18, -0.092)
COL5A3	pLOF	0.40	0.16	27		++	3.07E-07	0.23
			(-0.21, 0.54)					(0.14, 0.31)
KEAP1	missense	4.30E-04	0.40	79	**	++	9.18E-11	0.27
			(0.18, 0.62)					(0.19, 0.36)
KEAP1	pLOF+missense	4.99E-04	0.38	86	**	++	4.31E-11	0.27
			(0.16, 0.59)					(0.19, 0.35)
PDE3B	pLOF	0.15	-0.16	78			1.12E-17	-0.26
			(-0.38, 0.06)					(-0.32, -0.20)
PYGM	pLOF	0.66	-0.029	220		+-	3.78E-07	0.085
			(-0.16, 0.1)					(0.052, 0.12)
SLC5A3	missense	0.11	0.064	662		++	5.09E-09	0.071
			(-0.013, 0.14)					(0.047, 0.095)

Supplementary Table 8: INHBE pLOF leave-one-variant-out analysis in UKB

We performed leave-one-variant-out analysis for *INHBE* pLOF variants in UKB. Gene-based burden analysis of WHRadjBMI was performed using a generalized linear model excluding one variant at a time from the analysis. Single variant analysis was performed using a linear model.

Variant set	P burden	Beta burden (95% CI)	N carrier	rsid	consequence	HGVS annotation	MAF	P single variant	Beta single variant (95%
			burden						CI)
INHBE pLOF all	4.98E-08	-0.22	618						
variants		(-0.3, -0.14)							
INHBE pLOF	0.34	-0.10	80	rs150777893	splice	NM_031479.4:	0.074%	4.31E-08	-0.23
12:57456093:G:C		(-0.32, 0.11)			acceptor	c.299-1G>C			(-0.32, -0.15)
					variant				
INHBE pLOF	2.44E-07	-0.21	569	rs375342858	splice donor	NM_031479.4:	0.007%	0.08	-0.25
12:57455835:G:T		(-0.3, -0.13)			variant	c.298+1G>T			(-0.53, 0.03)
INHBE pLOF	3.19E-08	-0.22	604		stop gained	NP_113667.1:	0.002%	0.92	0.03
12:57455654:C:T		(-0.3, -0.14)				p.Arg40Ter			(-0.49, 0.55)
INHBE pLOF	1.49E-08	-0.23	611		frameshift	NP_113667.1:	0.001%		
12:57455698:GT:G		(-0.31, -0.15)			variant	p.Leu55CysfsTer3			
INHBE pLOF	8.50E-08	-0.21	614	rs750332159	stop gained	NP_113667.1:	0.0005%		
12:57455588:C:T		(-0.29, -0.14)				p.Arg18Ter			
INHBE pLOF	4.49E-08	-0.22	616		frameshift	NP_113667.1:	0.0003%		
12:57455553:TC:T		(-0.3, -0.14)			variant	p.Gln7SerfsTer40			
INHBE pLOF	3.82E-08	-0.22	616		stop gained	NP_113667.1:	0.0003%		
12:57455645:C:T		(-0.3, -0.14)				p.Gln37Ter			
INHBE pLOF	4.01E-08	-0.22	616		splice	NP_113667.1:	0.0003%		
12:57455742:A:G		(-0.3, -0.14)			acceptor	p.Gln69Arg			
					variant				

Supplementary Table 9: INHBE pLOF leave-one-variant-out analysis in AMP-T2D-GENES

We performed leave-one-variant-out analysis for *INHBE* pLOF in AMP-T2D-GENES. Analysis was performed using a burden test with linear regression excluding one variant at a time from the analysis.

Variant set	Р	Beta in SD (95%	Ν	Ν	rsid	consequence
		CI)		carrier		
INHBE pLOF all variants	9.41E-04	-1.03	13456	10		
		(-1.64, -0.42)				
INHBE pLOF exclude	0.03	-0.77	12550	8	rs146517777	stop gain
12:57850337 C/T,A		(-1.45, -0.09)				(Tyr253Ter)
INHBE pLOF exclude	0.008	-1.16	7100	5	rs150777893	splice acceptor
12:57849876 G/C		(-2.01, -0.31)				variant
INHBE pLOF exclude	1.18E-04	-1.26	13456	9	rs375342858	splice donor
12:57849618 G/T		(-1.90, -0.62)				variant
INHBE pLOF exclude	0.006	-0.95	11813	8	rs764817559	stop gain
12:57850164 G/T		(-1.63, -0.27)				(Glu196Ter)

Supplementary Table 10: Association of WHRadjBMI genes with unadjusted WHR and BMI. For genes associated with WHRadjBMI, the effects on WHR (without BMI adjustment) and BMI are shown. Analysis was performed using a generalized linear model adjusting for age, sex, and the first 30 PCs of genetic ancestry. Whether variant sets are significant correcting for the number of variant sets and phenotypes tested is indicated (P < 0.0016).

Title	Variant set	Р	Beta in SD (95% CI)	significant
WHR	ACVR1C missense	1.24E-05	-0.076 (-0.11, -0.042)	Y
BMI	ACVR1C missense	0.16	0.031 (-0.013, 0.076)	Ν
WHR	ACVR1C pLOF+missense	2.77E-05	-0.072 (-0.11, -0.038)	Y
BMI	ACVR1C pLOF+missense	0.09	0.038 (-0.0056, 0.082)	Ν
WHR	ANKRD12 pLOF	3.15E-09	0.27 (0.18, 0.37)	Υ
BMI	ANKRD12 pLOF	0.005	0.17 (0.052, 0.29)	Ν
WHR	COL5A3 pLOF	2.26E-06	0.16 (0.095, 0.23)	Y
BMI	COL5A3 pLOF	0.57	0.025 (-0.063, 0.11)	Ν
WHR	INHBE pLOF	3.57E-05	-0.12 (-0.18, -0.066)	Y
BMI	INHBE pLOF	0.77	0.011 (-0.066, 0.089)	Ν
WHR	INHBE pLOF+missense	2.95E-04	-0.09 (-0.14, -0.041)	Y
BMI	INHBE pLOF+missense	0.13	0.049 (-0.015, 0.11)	Ν
WHR	INSR pLOF	8.53E-07	-0.32 (-0.45, -0.19)	Y
BMI	INSR pLOF	0.64	0.039 (-0.13, 0.2)	Ν
WHR	KEAP1 missense	7.31E-06	0.15 (0.087, 0.22)	Y
BMI	<i>KEAP1</i> missense	0.69	-0.018 (-0.11, 0.07)	Ν
WHR	KEAP1 pLOF+missense	1.01E-05	0.14 (0.08, 0.21)	Y
BMI	KEAP1 pLOF+missense	0.59	-0.023 (-0.11, 0.061)	Ν
WHR	PDE3B pLOF	3.36E-07	-0.12 (-0.17, -0.074)	Y
BMI	PDE3B pLOF	1.41E-04	0.12 (0.057, 0.18)	Y
WHR	PLIN1 pLOF	1.07E-11	-0.2 (-0.25, -0.14)	Y
BMI	PLIN1 pLOF	0.08	0.066 (-0.0079, 0.14)	Ν
WHR	PLIN1 pLOF+missense	2.07E-05	-0.046 (-0.068, -0.025)	Y
BMI	PLIN1 pLOF+missense	1.67E-04	0.054 (0.026, 0.082)	Y
WHR	PLIN4 pLOF	2.06E-04	0.063 (0.03, 0.096)	Y
BMI	PLIN4 pLOF	0.010	-0.057 (-0.1, -0.014)	Ν
WHR	PLIN4 pLOF+missense	1.99E-04	0.059 (0.028, 0.091)	Y
BMI	PLIN4 pLOF+missense	0.008	-0.055 (-0.096, -0.014)	Ν
WHR	PYGM pLOF	3.88E-05	0.053 (0.028, 0.079)	Y
BMI	PYGM pLOF	0.61	-0.0086 (-0.042, 0.025)	Ν
WHR	SLC5A3 missense	7.39E-09	0.055 (0.037, 0.074)	Y
BMI	SLC5A3 missense	0.02	0.029 (0.0048, 0.054)	Ν

Supplementary Table 11: Association of WHRadjBMI genes with metabolic syndrome score The association of WHRadjBMI-associated genes with MetS score was tested using ordinal regression adjusting for age, sex, and the first 30 PCs of genetic ancestry. The p-value and beta from the ordinal regression are shown as well as the change in MetS score expressed in terms of number of MetS traits.

Title	Variant set	Р	Beta from ordinal	Change in MetS score	N carrier
			regression (95% CI)	(95% CI)	measured
MetS score	PLIN1 pLOF	1.36E-08	-0.44 (-0.59, -0.29)	-0.31 (-0.41, -0.21)	537
MetS score	PLIN1	9.69E-04	-0.097 (-0.15, -	-0.074 (-0.11, -0.036)	3691
	pLOF+missense		0.039)		
MetS score	PDE3B pLOF	5.82E-08	-0.34 (-0.47, -0.22)	-0.22 (-0.3, -0.14)	811
MetS score	ACVR1C missense	0.004	-0.14 (-0.23, -0.046)	-0.085 (-0.15, -0.024)	1448
MetS score	ACVR1C	0.006	-0.13 (-0.22, -0.036)	-0.08 (-0.14, -0.019)	1468
	pLOF+missense				
MetS score	INHBE pLOF	0.02	-0.19 (-0.35, -0.03)	-0.12 (-0.23, -0.016)	483
MetS score	INHBE	0.04	-0.14 (-0.27, -	-0.08 (-0.17, 0.0057)	727
	pLOF+missense		0.0078)		
MetS score	PYGM pLOF	0.006	0.097 (0.028, 0.17)	0.067 (0.021, 0.11)	2577
MetS score	ANKRD12 pLOF	0.03	0.28 (0.033, 0.53)	0.2 (0.045, 0.36)	215
MetS score	INSR pLOF	0.04	-0.35 (-0.68, -0.013)	-0.22 (-0.44, -0.0011)	112
MetS score	KEAP1	0.22	0.11 (-0.065, 0.29)	0.08 (-0.034, 0.19)	409
	pLOF+missense				
MetS score	KEAP1 missense	0.25	0.11 (-0.075, 0.29)	0.085 (-0.034, 0.2)	380
MetS score	COL5A3 pLOF	0.37	0.083 (-0.098, 0.26)	0.06 (-0.06, 0.18)	378
MetS score	PLIN4 pLOF	0.45	0.035 (-0.055, 0.12)	0.015 (-0.044, 0.075)	1518
MetS score	PLIN4	0.46	0.032 (-0.053, 0.12)	0.015 (-0.041, 0.071)	1717
	pLOF+missense				
MetS score	SLC5A3 missense	0.62	0.013 (-0.038,	0.0079 (-0.026, 0.041)	4831
			0.064)		

Supplementary Table 12: Association of *INHBE* pLOF with metabolic traits

The association of *INHBE* pLOF with various metabolic traits was performed using a generalized linear model adjusting for 30 PCs and other covariates as indicated in the Methods. The effect in standard deviations (SD) and clinical units is shown. VATadjBMI, visceral adipose tissue adjusted for BMI; ASATadjBMI, abdominal subcutaneous adipose tissue adjusted for BMI.

Title	P	Beta in SD (95% CI)	Beta in clinical units	N carrier	Clinical
			(95% CI)	measured	units
WHRadjBMI	4.98E-08	-0.22 (-0.3, -0.14)		618	
WHR	3.57E-05	-0.12 (-0.18, -0.07)	-0.01 (-0.02, -0.006)	619	
Hip circumference	0.37	0.035 (-0.04, 0.11)	0.33 (-0.39, 1.00)	619	cm
Waist	0.08	-0.06 (-0.13, 0.01)	-0.82 (-1.8, 0.11)	619	cm
circumference					
BMI	0.58	0.02 (-0.06, 0.10)	0.11 (-0.27, 0.48)	596	kg/m2
Triglycerides	9.65E-04	-0.13 (-0.21, -0.05)	-0.13 (-0.21, -0.06)	594	mmol/L
HDL cholesterol	0.01	0.10 (0.02, 0.18)	0.04 (0.01, 0.07)	550	mmol/L
LDL cholesterol	0.26	-0.05 (-0.13, 0.03)	-0.04 (-0.11, 0.03)	594	mmol/L
LDL adj medication	0.11	-0.06 (-0.14, 0.02)	-0.054 (-0.12, 0.01)	594	mmol/L
АроВ	0.06	-0.076 (-0.16, 0.004)	-0.02 (-0.04, 0.001)	593	g/L
ALT	0.04	-0.08 (-0.15, -0.004)	-1.10 (-2.20, -0.06)	595	U/L
HbA1c	0.78	-0.011 (-0.087, 0.065)	-0.074 (-0.59, 0.44)	595	mmol/mol
Glucose	0.21	0.05 (-0.03, 0.13)	0.07 (-0.04, 0.17)	551	mmol/L
Fasting glucose	0.03	-0.17 (-0.33, -0.02)	-0.37 (-0.70, -0.03)	90	mmol/L
(GP)					
Diastolic BP	0.10	-0.07 (-0.15, 0.01)	-0.71 (-1.60, 0.15)	574	mmHg
Systolic BP	0.46	-0.03 (-0.10, 0.05)	-0.56 (-2.10, 0.94)	574	mmHg
ASATadjBMI	0.12	-0.27 (-0.61, 0.07)		33	
VATadjBMI	0.26	-0.20 (-0.54, 0.14)		33	
Liver fat	0.93	-0.02 (-0.46, 0.42)	-0.09 (-2.10, 1.90)	18	%

Supplementary Table 13: Association of INHBE pLOF with cardiometabolic disease

The association of *INHBE* pLOF with disease diagnosis was tested using a mixed-effects model with the effect on disease risk from this regression shown as an odds ratio ("OR"). The odds ratio predicted from a Mendelian Randomization study of WHRadjBMI¹ is also shown ("MR-predicted OR") along with the total number of individuals we would need to sequence to detect a statistically significant effect on disease risk ("N total for P = 0.05").

Diagnosis	Р	OR	N cases	Ν	MAF	MR-	N total for P
		(95% CI)	N controls	carrier		predicted	= 0.05
				cases		OR	
Coronary Heart	0.05	0.78	48193 350357	70	0.08%	0.92	7,357,216
Disease		(0.60, 1.00)					
(phecode 411)							
Type 2 diabetes	0.65	0.94	32383 366167	51	0.08%	0.88	4,925,516
(phecode 250.2)		(0.70, 1.24)					

Supplementary Table 14: Association of rs150777893 with INHBC protein levels in an Icelandic plasma proteomic study

The *INHBE* pLOF variant rs150777893 was examined in a recent independent study of plasma proteins performed in the Icelandic population ². The association with circulating INHBC levels is shown.

Title	rsid	gene	Р	Beta in SD (95% CI)
INHBC protein	rs150777893	INHBE	0.006	0.52 (0.15, 0.90)

Supplementary Table 15: CNVs deleting INHBE in WES and WGS data from UKB

CNVs impacting *INHBE* that are present in the UKB WES data (n=454,756 participants) and/or WGS data (n=150,119 participants). Two of the CNVs identified in the WES data were also identified using the WGS data, with slightly different breakpoints as shown. The start and end positions for these deletions in hg38 coordinates are provided and the genes overlapped are indicated. *INHBE* hg38 coordinates used were 12:57455291-57458013.

CNV Chr:Start- End (WES)	CNV Type	Genes overlapped (WES)	CNV Chr:Start-End (WGS)	CNV Type	Genes overlapped (WGS)
• •	(WES)	· ·		(WGS)	· ·
12:57,449,276-	DEL	INHBE, INHBC,	12:57,438,169-	DEL	INHBE, INHBC, GLI1,
57,490,644		ARHGAP9,	57,495,228		ARHGAP9, MARS1
		GLI1, MARS1			
12:57,449,276-	DEL	INHBC, INHBE	NA (individual has no		
57,456,848			WGS data)		
12:57,418,185-	DEL	INHBC, INHBE,	12:57,414,374-	DEL	INHBE, INHBC, R3HDM2
57,456,848		R3HDM2	57,458,676		
			12:57,456,367-	DEL	INHBE
			57,458,350		
			12:57,456,367 -	DEL	INHBE
			57,458,350		

Supplementary Table 16: PheWAS of ACVR1C damaging missense variants

Phenome-wide significant associations of ACVR1C damaging missense variants ($P \le 5x10^{-5}$) are shown along with associations with selected cardiometabolic traits and diseases. Association testing was performed using a generalized linear model for quantitative traits and a mixed-effects model for disease diagnoses.

Title	Variant set	Р	Beta in SD or OR (95% CI)	N carrier measured/	phenome- wide
				N carrier	significant
				cases	
WHRadjBMI	ACVR1C missense	6.24E-10	-0.14 (-0.19, -0.097)	1892	Y
Birth weight	ACVR1C missense	1.92E-23	0.30 (0.24, 0.36)	1088	Y
WHR	ACVR1C missense	1.24E-05	-0.076	1894	Y
			(-0.11, -0.042)		
Whole body water	ACVR1C missense	6.96E-04	0.048	1857	N
mass			(0.02, 0.077)		
BMI	ACVR1C missense	0.17	0.031	1857	N
			(-0.013, 0.076)		
Waist	ACVR1C missense	0.67	-0.009	1894	N
circumference			(-0.048, 0.031)		
Triglycerides	ACVR1C missense	0.06	-0.043	1795	N
			(-0.088, 0.0014)		
HDL cholesterol	ACVR1C missense	0.08	0.039	1645	N
			(-0.005, 0.082)		
LDL cholesterol	ACVR1C missense	0.26	0.027 (-0.02, 0.073)	1792	N
АроВ	ACVR1C missense	0.63	0.011	1791	N
			(-0.035, 0.058)		
LDL adj	ACVR1C missense	0.59	0.013	1792	N
medication			(-0.033, 0.058)		
ALT	ACVR1C missense	0.67	-0.009	1797	N
			(-0.053, 0.034)		
HbA1c	ACVR1C missense	0.06	-0.042 (-0.086,	1806	N
			0.0011)		
Diastolic BP	ACVR1C missense	0.01	-0.06 (-0.11, -0.014)	1754	N
Systolic BP	ACVR1C missense	0.04	-0.046	1754	N
			(-0.089, -0.0021)		
VATadjBMI	ACVR1C missense	0.02	-0.23 (-0.42, -0.04)	107	N
ASATadjBMI	ACVR1C missense	0.84	-0.02 (-0.21, 0.17)	107	N
Type 2 diabetes	ACVR1C missense	0.005	0.78 (0.66, 0.94)	138	N
Coronary Heart	ACVR1C missense	0.53	1.0 (0.91, 1.2)	268	Ν
Disease					

Supplementary Table 17: PheWAS of PLIN1 pLOF

Phenome-wide significant associations of *PLIN1* pLOF variants ($P \le 5x10^{-5}$) are shown along with associations with selected cardiometabolic traits and diseases. Association testing was performed using a generalized linear model for quantitative traits and a mixed-effects model for disease diagnoses.

Title	Variant set	Р	Beta in SD or OR (95% CI)	N carrier measured/N	Phenome- wide
				carrier cases	significant
WHRadjBMI	PLIN1 pLOF	2.12E-20	-0.35 (-0.43, -0.28)	681	Y
HDL cholesterol	<i>PLIN1</i> pLOF	3.29E-20	0.34 (0.27, 0.41)	601	Y
АроА	PLIN1 pLOF	4.71E-13	0.27 (0.20, 0.34)	594	Υ
Triglycerides	PLIN1 pLOF	9.56E-12	-0.26 (-0.33, -0.18)	651	Y
WHR	PLIN1 pLOF	1.07E-11	-0.2 (-0.25, -0.14)	682	Υ
Reticulocyte count	PLIN1 pLOF	4.11E-08	-0.21 (-0.29, -0.14)	656	Υ
Reticulocyte percentage	PLIN1 pLOF	5.31E-07	-0.20 (-0.27, -0.12)	656	Y
Hip circumference	PLIN1 pLOF	3.34E-06	0.18 (0.10, 0.25)	682	Υ
HLS reticulocyte count	PLIN1 pLOF	4.65E-06	-0.18 (-0.25, -0.1)	656	Y
Leukocyte count	PLIN1 pLOF	9.54E-06	-0.17 (-0.25, -0.095)	665	Y
HLS reticulocyte	PLIN1 pLOF	4.52E-05	-0.16 (-0.24, -0.083)	656	Υ
percentage					
АроВ	<i>PLIN1</i> pLOF	6.77E-04	-0.13 (-0.21, -0.056)	649	Ν
LDL adj medication	<i>PLIN1</i> pLOF	0.004	-0.11 (-0.19, -0.035)	652	Ν
Diastolic BP	PLIN1 pLOF	0.02	-0.08 (-0.15, -0.01)	636	Ν
Systolic BP	<i>PLIN1</i> pLOF	0.03	-0.08 (-0.16, -0.007)	636	Ν
HbA1c	<i>PLIN1</i> pLOF	0.08	-0.065 (-0.14, 0.007)	656	Ν
BMI	PLIN1 pLOF	0.08	0.067 (-0.008, 0.14)	669	Ν
LDL cholesterol	PLIN1 pLOF	0.09	-0.066 (-0.14, 0.011)	652	Ν
Waist circumference	PLIN1 pLOF	0.34	-0.032 (-0.098,	682	Ν
			0.034)		
ASATadjBMI	PLIN1 pLOF	0.21	0.21 (-0.12, 0.54)	36	Ν
VATadjBMI	PLIN1 pLOF	0.88	-0.025 (-0.35, 0.3)	36	Ν
Type 2 diabetes	PLIN1 pLOF	0.11	0.81 (0.62, 1.05)	52	N
Coronary Heart Disease	PLIN1 pLOF	0.07	0.81 (0.65, 1.02)	79	Ν
Essential hypertension	PLIN1 pLOF	0.53	0.95 (0.8, 1.12)	241	N

AMP-T2D-GENES Consortium members

Carlos A. Aguilar-Salinas¹, Gil Atzmon^{2,3,4}, Francisco Barajas-Olmos⁵, Nir Barzilai^{2,4}, John Blangero⁶, Eric Boerwinkle^{7,8}, Lori L. Bonnycastle⁹, Erwin Bottinger¹⁰, Donald W Bowden^{11,12,13}, Federico Centeno- Cruz⁵, John C. Chambers^{14,15}, Edmund Chan¹⁶, Juliana Chan^{17,18,19,20}, Ching-Yu Cheng^{21,22,23}, Yoon Shin Cho²⁴, Cecilia Contreras-Cubas⁵, Emilio Córdova⁵, Adolfo Correa²⁵, Ralph A. DeFronzo²⁶, Ravindranath Duggirala⁶, Josée Dupuis²⁷, Humberto García-Ortiz⁵, Christian Gieger^{28,29,30}, Benjamin Glaser³¹, Clicerio Gonzalez³², Ma Elena Gonzalez³³, Niels Grarup³⁴, Leif Groop^{35,36}, Myron Gross³⁷, Christopher Haiman³⁸, Sohee Han³⁹, Craig L. Hanis⁷, Torben Hansen³⁴, Nancy L. Heard-Costa^{40,41}, Brian E. Henderson³⁸, Juan Manuel Malacara Hernandez⁴², Mi Yeong Hwang³⁹, Sergio Islas-Andrade⁵, Marit E. Jørgensen^{43,44,45}, Hyun Min Kang⁴⁶, Bong-Jo Kim³⁹, Young Jin Kim³⁹, Heikki A. Koistinen^{47,48,49}, Jaspal Singh Kooner^{50,51,52}, Johanna Kuusisto⁵³, Soo Heon Kwak⁵⁴, Markku Laakso⁵³, Leslie A. Lange⁵⁵, Juyoung Lee³⁹, Jong-Young Lee⁵⁶, Donna M. Lehman²⁶, Allan Linneberg^{57,58,59}, Jianjun Liu^{16,60,61}, Ruth Loos^{10,62}, Valeriya Lyssenko^{33,63}, Ronald C.W. Ma^{17,18,19,20}, Angélica Martínez-Hernández⁵, James B. Meigs^{64,65,66}, Thomas Meitinger^{67,68}, Elvia Mendoza-Caamal⁵, Karen L. Mohlke⁶⁹, Andrew D. Morris^{70,71}, Alanna C. Morrison^{7,72}, Maggie C.Y. Ng^{11,12,13}, Peter Nilsson⁷³, Christopher J. O'Donnell^{74,75,76,77}, Lorena Orozco⁵, Colin N.A. Palmer⁷⁸, Kyong Soo Park^{54,79,80}, Oluf Pedersen³⁴, Wendy S. Post⁸¹, Michael Preuss¹⁰, Bruce M. Psaty^{82,83}, Ramachandran S. Vasan^{40,84}, Alexander P. Reiner⁸⁵, Cristina Revilla-Monsalve⁵, Stephen S. Rich⁸⁶, Jerome I. Rotter⁸⁷, Zhe Wang¹⁰, Maria Eugenia Garay Sevilla^{88,89}, Xueling Sim⁶⁰, Rob Sladek^{90,91,92}, Kerrin S. Small⁹³, Wing Yee So^{17,18,19}, Timothy D. Spector⁹³, Konstantin Strauch^{29,94}, Tim M. Strom^{67,95}, E-Shyong Tai^{16,60,96}, Claudia H.T. Tam^{17,18,19}, Yik Ying Teo^{60,96}, Farook Thameem⁹⁷, Brain Tomlinson⁹⁸, Russell P. Tracy^{99,100}, Tiinamaija Tuomi^{101,102}, Jaakko Tuomilehto^{103,104,105,106}, Teresa Tusié-Luna^{107,108}, Rob M. van Dam^{16,60,109}, James G. Wilson¹¹⁰, Daniel R. Witte^{111,112}, Tien-Yin Wong^{21,22,23}, Peter Dornbos^{64,74,113}, Jason A. Flannick^{64,74,113}, Jose C. Florez^{64,65,114}, Mark I. McCarthy¹¹⁵, Michael Boehnke⁴⁶, Noël P. Burtt⁶⁴

Affiliations:

¹Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico

²Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA. ³Faculty of Natural Science, University of Haifa, Haifa, Israel.

⁴Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA

⁵Instituto Nacional de Medicina Genómica, Mexico City, Mexico

⁶Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville and Edinburg, TX, USA

⁷Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA

⁸Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.

⁹Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA

¹⁰The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA ¹¹Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.

¹²Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.

¹³Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

¹⁴Department of Epidemiology and Biostatistics, Imperial College London, London, UK.

¹⁵Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

¹⁶Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

¹⁷Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.

¹⁸Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong, China.

¹⁹Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.

²⁰Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

²¹Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore

²²Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore

²³Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore.

²⁴Department of Biomedical Science, Hallym University, Chuncheon, South Korea

²⁵Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.

²⁶Department of Medicine, University of Texas Health San Antonio (aka University of Texas Health Science Center at San Antonio), San Antonio, TX, USA

²⁷Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.

²⁸Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

²⁹Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

³⁰German Center for Diabetes Research (DZD), Neuherberg, Germany.

³¹Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

³²Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Publica, Cuernavaca, Mexico. ³³Centro de Estudios en Diabetes, Mexico City, Mexico.

³⁴Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

³⁵Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden.

³⁶Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.

³⁷Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.

³⁸Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA.

³⁹Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea.

⁴⁰Boston University and National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA.

⁴¹Department of Neurology, Boston University School of Medicine, Boston, MA, USA.

⁴²Department of Medical Science, División of Health Science. University of Guanjuato. Campus León. León, Gto. México.

⁴³Steno Diabetes Center Copenhagen, Gentofte, Denmark.

⁴⁴National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.

⁴⁵Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland.

⁴⁶Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

⁴⁷Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.

⁴⁸University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.

⁴⁹Minerva Foundation Institute for Medical Research, Helsinki, Finland.

⁵⁰Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK.

⁵¹MRC-PHE Centre for Environment and Health, Imperial College London, London, UK. Imperial College Healthcare NHS Trust, Imperial College London, London, UK. ⁵²National Heart and Lung Institute, Imperial College London, London, UK.

⁵³Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.

⁵⁴Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.

⁵⁵Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.

⁵⁶Oneomics Soonchunhyang Mirae Medical Center, Bucheon-si Gyeonggi-do, Republic of Korea.

⁵⁷Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

⁵⁸Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.

⁵⁹Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark.

⁶⁰Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.

⁶¹Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.

⁶²The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA.

⁶³Department of Clinical Science, University of Bergen, Bergen, Norway.

⁶⁴Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

⁶⁵Department of Medicine, Harvard Medical School, Boston, MA, USA.

⁶⁶Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA.

⁶⁷Institute of Human Genetics, Technical University of Munich, Munich, Germany.

⁶⁸German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.

⁶⁹Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.

⁷⁰Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

⁷¹Department of Biostatistics, University of Liverpool, Liverpool, UK.

⁷²Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.

⁷³Department of Clinical Sciences, Medicine, Lund University, Malmö, Sweden.

⁷⁴Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

⁷⁵Section of Cardiology, Department of Medicine, VA Boston Healthcare, Boston, MA, USA.

⁷⁶Brigham and Women's, Hospital, Boston, MA, USA.

⁷⁷Intramural Administration Management Branch, National Heart Lung and Blood Institute, NIH, Framingham, MA, USA. ⁷⁸Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, University of Dundee, Dundee, UK

⁷⁹Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.

⁸⁰Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.

⁸¹Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.

⁸²Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA.

⁸³Kaiser Permanente Washington Research Institute, Seattle, WA, USA.

⁸⁴Preventive Medicine & Epidemiology, and Cardiovascular Medicine, Medicine, Boston University School of Medicine, and Epidemiology, Boston University School of Public health, Boston, MA, USA.

⁸⁵Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

⁸⁶Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA

⁸⁷The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA.

⁸⁸Digital Health Center, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, Potsdam, Germany.

⁸⁹Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.

⁹⁰Department of Human Genetics, McGill University, Montreal, QC, Canada.

⁹¹Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada.

⁹²McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada.

⁹³Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.

⁹⁴Institute for Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians University, Munich, Germany.

⁹⁵Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

⁹⁶Life Sciences Institute, National University of Singapore, Singapore, Singapore.

⁹⁷Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait.

⁹⁸Faculty of Medicine, Macau University of Science & Technology, Macau, China.

⁹⁹Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA.

¹⁰⁰Department of Biochemistry, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA.

¹⁰¹Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

¹⁰²Folkhaalsan Research Centre, Helsinki, Finland; Research Programs Unit, Clinical and Molecular Medicine, University of Helsinki, Helsinki, Finland.

¹⁰³Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.

¹⁰⁴Center for Vascular Prevention, Danube University Krems, Krems, Austria.

¹⁰⁵Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

¹⁰⁶Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), University Hospital LaPaz, Autonomous University of Madrid, Madrid, Spain.

¹⁰⁷Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

¹⁰⁸Departamento de Medicina Genómica y Toxiología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.

¹⁰⁹Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

¹¹⁰Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.

¹¹¹Department of Public Health, Aarhus University, Aarhus, Denmark.

¹¹²Danish Diabetes Academy, Odense, Denmark.

¹¹³Boston Children, Äôs Hospital, Boston, Massachusetts, USA.

¹¹⁴Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.

¹¹⁵Genentech, South San Francisco, California, USA.

Supplementary References

- 1. Emdin CA, *et al.* Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease. *JAMA* **317**, 626-634 (2017).
- 2. Ferkingstad E, et al. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53, 1712-1721 (2021).