

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Gestational diabetes mellitus and offspring's carotid intimamedia thickness at birth: MySweetHeart Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061649
Article Type:	Original research
Date Submitted by the Author:	31-Jan-2022
Complete List of Authors:	Epure, Adina Mihaela; University of Fribourg, Population Health Laboratory; University of Lausanne, Center for Primary Care and Public Health, Department of Epidemiology and Health Services Di Bernardo, Stefano; Lausanne University Hospital, Paediatric Cardiology Unit, Department Woman-Mother-Child Mivelaz, Yvan; Lausanne University Hospital, Paediatric Cardiology Unit, Department Woman-Mother-Child Estoppey Younes, Sandrine; University of Lausanne, Center for Primary Care and Public Health, Department of Epidemiology and Health Services Chiolero, Arnaud; University of Fribourg, Population Health Laboratory; University of Bern, Institute of Primary Health Care Sekarski, Nicole; Lausanne University Hospital, Paediatric Cardiology Unit, Woman-Mother-Child Department
Keywords:	Cardiovascular imaging < RADIOLOGY & IMAGING, Paediatric cardiology < CARDIOLOGY, Diabetes in pregnancy < DIABETES & ENDOCRINOLOGY, NEONATOLOGY, Cardiac Epidemiology < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Gestational diabetes mellitus and offspring's carotid intima-media thickness at
2	birth: <i>MySweetHeart</i> Cohort Study
3	
4	Adina Mihaela Epure ^{1,2} , Stefano Di Bernardo ³ , Yvan Mivelaz ³ , Sandrine Estoppey
5	Younes ² , Arnaud Chiolero ^{1,4,5¶} , Nicole Sekarski ^{3¶*} , on behalf of <i>MySweetHeart</i>
6	Research Group
7	
8	¹ Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg,
9	Switzerland;
10	² Department of Epidemiology and Health Services, Center for Primary Care and Public
11	Health (UNISANTÉ), University of Lausanne, Lausanne, Switzerland;
12	³ Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University
13	Hospital (CHUV), Lausanne, Switzerland;
14	⁴ Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;
15	⁵ School of Global and Population Health, McGill University, Montréal, Canada
16	
17	¶ These authors contributed equally to this work.
18	
19	* Corresponding author: Prof Nicole Sekarski, nicole.sekarski@chuv.ch, Lausanne
20	University Hospital (CHUV), 46 Route du Bugnon, Lausanne, 1011, Switzerland
21	
22	Word count (excluding title page, abstract and article summary, references, figure
23	legends and tables): 2'893

33

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20	
21	
21 22	
23	
24	
25	
26 27	
27	
28	
29	
30	
31	
32	
33 24	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
55 54	
55	
56	
57	
58	
59	
~~	

24 ABSTRACT

Objective Hyperglycemia during pregnancy is associated with cardiometabolic risks for the mother and the offspring. Mothers with gestational diabetes mellitus (GDM) have signs of subclinical atherosclerosis, including increased carotid intima-media thickness (CIMT). We assessed whether GDM is associated with increased CIMT in the offspring at birth.

Design and setting *MySweetHeart* Cohort is a prospective cohort study conducted in
 Switzerland.

Participants, exposure and outcome measures This work included pregnant women with and without GDM at 24 to 32 weeks of gestation and their singleton liveborn offspring with data on the primary outcome of CIMT. GDM was diagnosed based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. Offspring's CIMT was measured by ultrasonography after birth (range: 1 to 19 days).

40

60

Results Data on CIMT were available for 99 offspring of women without GDM and 101 41 offspring of women with GDM. Maternal age ranged from 18 to 47 years. Some 16% 42 of women with GDM and 6% of women without GDM were obese. Smoking during 43 pregnancy was more frequent among women with GDM (18%) than among those 44 without GDM (4%). Neonatal characteristics were comparable between the 2 groups. 45 The difference in CIMT between offspring of women with and without GDM was of 0.00 46 mm (95% CI: -0.01 to 0.01; p=0.96) and remained similar upon adjustment for potential 47 confounding factors, such as maternal pre-pregnancy BMI, maternal education, 48

smoking during pregnancy, family history of diabetes, as well as offspring's sex, age, and body surface area (0.00 mm (95% CI: -0.02 to 0.01; p=0.45)). **Conclusions** We found no evidence of increased CIMT in neonates exposed to GDM. A longer-term follow-up that includes additional vascular measures, such as endothelial function or arterial stiffness, may shed further light on the cardiovascular health trajectories in children born to mothers with GDM. **Registration** ClinicalTrials.gov (NCT02872974) Keywords gestational diabetes; carotid intima-media thickness; cardiovascular prevention; child; neonate List of abbreviations BMI, body mass index; CIMT, carotid intima-media thickness; CVD, cardiovascular disease; CHUV, Lausanne University Hospital; DOHaD, developmental origins of health and disease; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; IADPSG, International Association of Diabetes and Pregnancy Study Groups; I, intervention; OGTT, oral glucose tolerance test.

Strengths and limitations of this study

- One important strength of this study is represented by its prospective design and the enrollment of participants at the time of gestational diabetes diagnosis.
 - Carotid intima-media thickness was measured in non-sedated neonates by • experienced pediatric cardiologists using automated methods with manual tracing adjustment, in accordance with published guidelines.
- da. Ing and the limit. Limitations of this study include the relatively small sample size, the possibility • of residual confounding and the limited generalizability.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

76 INTRODUCTION

Gestational diabetes mellitus (GDM) is a state of hyperglycemia with onset or first recognition during pregnancy.[1-3] The prevalence of hyperglycemia during pregnancy has increased in recent decades, being estimated at 16% worldwide in 2019, with 84% of cases due to GDM.[4] GDM is associated with long-term metabolic consequences for both the mother and the offspring, such as type 2 diabetes and obesity.[5] Women with GDM also have subclinical atherosclerosis and an increased risk for cardiovascular disease (CVD) later in life.[6,7] However, little is known about the cardiovascular risk of their offspring.

CIMT is a surrogate marker of atherosclerosis, which has been shown to be increased in children exposed to risk factors in the first 1000 days of life, such as poor fetal growth,[8] as well as in children with type 1 diabetes.[9] From a developmental origins of health and disease (DOHaD) perspective, [10] exposure to adverse experiences in early life may produce lifelong adaptations in the organs' structure and function and may program the risk for CVD. For instance, a systematic review and meta-analysis showed that GDM was associated with a higher systolic blood pressure in childhood.[11] Whether GDM has an impact on children's CIMT is not clearly established. The evidence is scarce notably in the very young children although CIMT measurement is feasible from birth and could help discern between changes that occur before or after birth.[12] To fill this gap, we conducted MySweetHeart Cohort study to assess the early life cardiovascular consequences of GDM.[13] Herein, we evaluated CIMT at birth in offspring of mothers with and without GDM.

1		
2 3 4	101	METHODS
5 6	102	Study design and setting
7 8 9 10 11 12 13 14 15 16	103	MySweetHeart Cohort is a prospective cohort study conducted at the Lausanne
	104	University Hospital (CHUV), Switzerland. The study has been registered with
	105	ClinicalTrials.gov (clinicaltrials.gov/ct2/show/NCT02872974) and the study protocol
	106	has been published.[13] Ethical approval was granted by the Ethics Committee for
16 17 18	107	Human Research of the Canton de Vaud (study number 2016-00745).
19 20	108	
21 22	109	Study population
23 24	110	This cohort included pregnant women between 24 and 32 weeks of gestation, with and
25 26 27	111	without GDM. Other inclusion criteria were age 18 years or more and understanding
28 29	112	French or English. The exclusion criteria were pre-existing diabetes mellitus, strict bed
30 31 32 33 34 35 36	113	rest, or severe mental disorders. To facilitate recruitment and share resources, a
	114	collaboration was established with MySweetHeart Trial,[14] a randomized controlled
	115	trial assessing the effect of a lifestyle and psychosocial intervention on cardiometabolic
37 38	116	outcomes of women with GDM and their offspring. As such, women with GDM were
39 40 41	117	invited to contribute to both studies. Participating women with and without GDM were
41 42 43	118	included in the current analysis if CIMT data for their live-born singleton neonates were
44 45	119	available. All families gave a signed informed consent for use of their data.
46 47	120	
48 49 50	121	Data collection
50 51 52	122	GDM screening
53 54	123	Pregnant women screened at the prenatal care clinic of the CHUV had a fasting plasma
55 56 57	124	glucose (FPG) test between 24 and 28 weeks of gestation and GDM was diagnosed if
58 59 60	125	the test result was \geq 5.1 mmol/L.[13] If FPG was < 5.1 mmol/L, but \geq 4.4 mmol/L,

women had a 2-hour 75 g oral glucose tolerance test (OGTT) and GDM was diagnosed based on the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG).[15] Pregnant women screened by external obstetricians in the Canton of Vaud underwent the same procedure or directly a 2-hour 75 g OGTT.

Carotid ultrasound and CIMT measurement

A carotid ultrasound assessment was performed between 1 and 7 days of life in the majority of neonates (n=191). A small share (n=9) had the exam between 8 and 19 days of life due to organizational and logistical constraints. Parents were told to feed and burp their offspring ahead of the carotid ultrasound to make them more relaxed. Feeding or administration of a 30% glucose solution were used to comfort the neonates if they became agitated during the exam. The exam took place in a dark and quiet room and a cloth was placed under the neonates' shoulders to facilitate the extension of the neck.

Ultrasound image acquisition and analysis were performed by 2 experienced pediatric cardiologists who were blinded to the maternal glycemic status. Images were acquired in B-mode with no harmonics, sonoCT, dynamic range of 60dB, at a frame rate of 100-120Hz, with a depth of 1-2 cm. The right and left carotid arteries were scanned using a Philips EPIC echocardiograph (Philips Medical, Netherlands) with a L 15-7 MHz high-resolution linear array transducer, according to the American Heart Association's recommendations for standard assessment of subclinical atherosclerosis in children and adolescents.[16] Each observer recorded three consecutive 3-second cine loops from 2 different angles on each side, which were stored as native DICOM for subsequent offline analyses (QLab, Philips Medical, Netherlands). Whenever image

BMJ Open

quality was optimal enough, 6 right and 6 left frames were selected and, for each, the maximal IMT of the common carotid artery far wall was measured. Measurements were performed over a 1-cm region of interest proximal to the carotid bulb, on or closest to the R-wave of the electrocardiogram, using a semi-automated edge detection software with manual tracing adjustment when needed. The mean of 12 maximal CIMT measurements was used in the analysis for the majority of neonates (n=170). Two neonates had only one measurement available, whereas the rest had between 2 and 11 measurements that were averaged. A good interobserver reliability (coefficient of variation=5.9%) for measurements in non-sedated infants was proven in our laboratory previously.[12]

Other sample characteristics

Data on maternal characteristics (age, country of origin, education, smoking during pregnancy, pre-pregnancy weight and height, or parity) and family history of diabetes were record-based or self-reported by the mother at a researcher-administered interview upon inclusion in the study. Smoking during pregnancy was defined as a mother who was an active tobacco smoker at study baseline, i.e., between 24 and 32 weeks of gestation. A maternal blood sampling was also performed at baseline and glycated hemoglobin (HbA1c) was measured. Pre-pregnancy body mass index (BMI) was computed by dividing the pre-pregnancy weight (kg) by the squared height (m²). Delivery data such as newborn sex, anthropometry, gestational age, or mode of delivery were obtained from the medical records. Neonatal weight, length and blood pressure were measured by the study team at the time of the carotid ultrasound. Body surface area (m²) was computed using the Mosteller equation.[17] One systolic and diastolic blood pressure measurement was taken from the right upper arm, in a supine

position, using a clinically validated and regularly calibrated oscillometric
sphygmomanometer (Accutorr Plus; Datascope, Paramus, New Jersey, USA) with
neonate cuffs.

180 Data analysis

Descriptive statistics on study participants are reported as percentages (%) or as mean, standard deviation, minimum and maximum values. The relationship of GDM with CIMT was evaluated by a set of linear regression models with and without adjustment for potential confounders, i.e., baseline covariates associated with metabolic and cardiovascular risks, offspring's sex, and anthropometry at CIMT assessment. Potential confounders were maternal pre-pregnancy BMI, maternal education (university/no university), smoking during pregnancy (yes/no), and family history of diabetes (yes/no). The variable family history of diabetes summarized disease occurrence in a 1st degree relative of the mother, 1st degree relative of the father or in the father himself and assumed missing data in any of these variables as no history of diabetes unless values for all 3 variables were missing. To account for differences in body size, [18,19] we adjusted for body surface area and age at CIMT assessment. All statistical analyses were performed in Stata 16 (Stata Corporation, Texas, USA).

7 195

RESULTS

197 Characteristics of study participants

Data collection started in September 2016 and ended in October 2020. A total of 137 participants without GDM exposure and 212 participants with GDM exposure were recruited in the study. Some 101 neonates without GDM exposure and 117 neonates

 BMJ Open

with GDM exposure attended the cardiovascular follow-up visit early after birth. Of
these, 200 singleton neonates born at more than 36 weeks of gestation (non-GDM:
n=99; GDM: n=101) had CIMT measurements and constitute the analytic sample for
the current analysis.

Family and neonatal characteristics of study participants are presented in Table 1. The maternal characteristics were generally comparable between the non-GDM and GDM groups. The majority of women were non-Swiss and their age ranged from 18 to 47 years. Approximately half of the women in each group had a high level of education and no previous deliveries. More women with GDM (16%) were obese (pre-pregnancy BMI \geq 30 kg/m²) compared to women without GDM (6%). Smoking during pregnancy was more frequent among women with GDM (18%) than among those without GDM (4%). Offspring of women with and without GDM had similar neonatal characteristics, such as sex, gestational age, birth weight, length, or blood pressure. The majority were born at term, i.e., between 37 and 41 weeks (GDM: 96%; non-GDM: 98%) and a small share had macrosomia, i.e., a birth weight higher than 4'000 g (GDM: 6%; non-GDM: 5%). Offspring of women with GDM (46%) had a higher frequency of family history of diabetes compared to their non-GDM counterparts (24%).

Table 1 Characteristics of study participants by GDM exposure.

	Non-GDM ^a (n=9	Non-GDMª (n=99)			GDM ^b (n=101)			
	mean or %	sd	min	max	mean or %	sd	min	max
MATERNAL								
Age (years)	33	5	18	44	33	5	21	47
Swiss origin (%)	24				33			
University education (%)	60				55			
Primiparous (%)	55				48			
Smoking during pregnancy (%)	4				18			
Pre-pregnancy obesity (BMI ≥ 30 kg/m2) (%)	6				16			
HbA1C (%)	4.9	0.3	4.2	5.7	5.3	0.3	4.7	7.2
NEONATAL								
Male (%)	52				53			
Cesarean section (%)	22				32			
Term birth (37 to 41 weeks) (%)	98				96			
Birth weight (g)	3'352	425	2'190	4'190	3'357	442	2'220	4'34
Macrosomia (Birth weight > 4'000 g) (%)	5				6			
Length (cm)	50	2	45	54	50	2	45	56
Body surface area (m ²)	0.21	0.02	0.16	0.25	0.21	0.02	0.17	0.26
Systolic BP (mmHg)	78	9	60	101	78	10	60	111
Diastolic BP (mmHg)	47	8	30	66	48	10	28	90
Family history of diabetes (%)	24				46			

Abbreviations: BMI, body mass index; BP, blood pressure; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin n, total number of participants; max, maximum; min, minimum; sd, standard deviation.

^a Non-GDM: Missing values for swiss origin (n=1), university education (n=2), pre-pregnancy obesity (n=1), HbA1c (n=13), cesarean section (n=4), term birth (n=10), systolic BP (n=1), diastolic BP (n=1); family history of diabetes (n=1).

^b GDM: Missing values for age (n=3), swiss origin (n=3), university education (n=18), primiparous (n=3), smoking (n=5), pre-pregnancy obesity (n=4), HbA1c (n=5), male (n=16), cesarean section (n=6), term birth (n=16), birth weight (n=16); family history of diabetes (n=4).

2		
- 3 4	221	GDM and CIMT at birth
5 6	222	The distribution of CIMT values is presented in Fig. 1 and Fig. 2. CIMT ranged from
7 8	223	0.21 to 0.42 mm, with a mean CIMT of 0.30 mm (sd 0.04) overall and in each of the
9 10 11	224	studied groups (Table 2, Table S1 in Supplementary Material).
12 13	225	
14 15	226	Fig. 1 Histograms of CIMT at birth, overall and by GDM exposure.
16 17 18	227	Figure legend This figure shows the distribution of CIMT values in our sample, overall
19 20	228	(n=200) and by GDM exposure (Non-GDM: n=99; GDM: n=101). The black line
21 22	229	represents the kernel density estimate. Abbreviations: CIMT, carotid intima-media
23 24	230	thickness; GDM, gestational diabetes mellitus.
25 26 27	231	
28 29	232	Fig. 2 Box plots of CIMT at birth by GDM exposure and assignment to a lifestyle and
30 31	233	psychosocial intervention.
32 33 34	234	Figure legend This figure shows the distribution of CIMT in the offspring of women
35 36	235	without GDM (Non-GDM; n=99) and the offspring of women with GDM who were
37 38	236	assigned to no intervention (GDM, non-I; n=48) or to a lifestyle and psychosocial
39 40	237	intervention (GDM, I; n=53) as part of their participation in the MySweetHeart Trial.
41 42 43	238	Abbreviations: CIMT, carotid intima-media thickness; GDM, gestational diabetes
44 45	239	mellitus; I, intervention.
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57		

Table 2 The relationship of GDM with offspring's CIMT at birth.

	Mean (SD), mm	Model 1 (n=200)		Model 2 (n=165) Model 3 (n=165)			j)	
		Difference (95% CI), mm	p	Difference (95% CI), mm	p	Difference (95% CI), mm	р	
Non-GDM	0.30 (0.04)	ref	ref	ref	ref	ref	ref	
GDM	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.96	0.00 (-0.02 to 0.01)	0.47	0.00 (-0.02 to 0.01)	0.45	

Model 2: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes and sex.

Model 3: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes, sex, body surface area and age at CIMT assessment

and age at CIMT assessment.

Abbreviations: CI, confidence interval; CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus; n, total number of participants; p, p-value;

sd, standard deviation; ref, reference group.

Note: Similar results were obtained when Model 1 was run in the sample (n=165) with data on outcome, exposure, and all covariates included in Models 2 and 3 (GDM: 0.00 mm (95% CI: -0.02 to 0.01; p=0.54)).

Page 15 of 31

BMJ Open

The relationship of GDM with offspring's CIMT early after birth is presented in Table 2. In the unadjusted analysis (Model 1), the difference in CIMT between offspring of women with and without GDM was 0.00 mm (95% CI -0.01 to 0.01; p=0.96). Adjustment for offspring sex and potential confounding factors (Model 2), as well as for offspring's body surface area and age at CIMT assessment (Model 3), resulted in a difference of 0 mm (95% CI -0.02 to 0.01; p=0.45). When exposure to GDM was analyzed separately for offspring whose mothers were assigned or not to a lifestyle and psychosocial intervention as part of their participation in MySweetHeart Trial, results were similar to those presented above (Table S1 in Supplementary Material).

1 251

DISCUSSION

253 Summary of findings and comparison with other studies

Our goal was to assess the relationship of GDM with neonatal CIMT. We found no evidence of an increased CIMT in neonates born to women with GDM as compared to those born to women without GDM. Our findings are in line with other studies that evaluated CIMT after intrauterine exposure to maternal hyperglycemia. A recent meta-analysis pooled data from 3 studies and reported no clear evidence of increased CIMT in children exposed to maternal hyperglycemia compared to those not exposed (pooled standardized mean difference (SMD): 0.08 (95% CI -0.16 to 0.33)).[8] Two of these studies included 6-year and 8-year children, respectively, and found no difference in CIMT after exposure to GDM (SMD 0.00 (95% CI -0.28 to 0.28) at 6 years and 0.00 (95% CI -0.41 to 0.41) at 8 years).[8,20,21] The third study included neonates and found a slightly higher CIMT among those exposed to diabetes (SMD 0.46 (95% CI -0.07 to 1.00)),[8,22] but the imprecision around the estimated difference was high, the

 study had a very small sample size (n=55) and the authors did not specify whether
they included women with pre-gestational or gestational diabetes.[22]

269 Strengths and limitations

A major strength of this study is its prospective design. Enrollment of study participants and collection of baseline characteristics took place close to the moment of GDM diagnosis and ahead of the CIMT outcome assessment. This implies that the choice of participation in the study is unlikely to be related to both the exposure and the outcome, which makes selection bias due to enrollment unlikely. Further, GDM was diagnosed using the new criteria of the IADPG. These criteria were derived based on the risk of adverse neonatal outcomes, such as birth weight, cord blood C-peptide levels, or percent infant body fat > 90th percentile.[15] They were endorsed by the World Health Organization along with several other bodies to achieve a universal consensus for GDM diagnosis and increase comparability of the evidence.[23,24] Another strength is the assessment of ultrasound CIMT using automated methods with manual tracing adjustment, in accordance with the current guidelines in children.[16,25] The semi-automated methods are associated with a lower interoperator variability and high reliability, [16,25] including in infants, as it was previously proved in our laboratory. [12]

45 284

This study has some limitations. Firstly, our results have limited generalizability, as we used a convenient sample of pregnant women recruited from health care facilities in Switzerland. Secondly, the GDM glucose screening test (FPG or 75-g OGTT) varied between participants. This is because our hospital used a 2-step targeted approach for identifying women with GDM. While the 2-step approach is practical and more acceptable to patients, [26] it may be related to a lower likelihood of diagnosing GDM

Page 17 of 31

BMJ Open

compared to a one-step universal screening based on a 75-g OGTT [27] On the other hand, the IADGSP criteria, which have a lower threshold for a positive FPG test (≥5.1 mmol/L) compared to other guidelines, [23] may identify as having GDM women who are at low absolute risk for fetal and pregnancy complications and, thus, overdiagnose GDM in some populations. [28,29] Therefore, misclassification of the exposure cannot be excluded and our estimates of association might be biased, maybe underestimated. Additionally, women with GDM participated in *MySweetHeart* Trial and approximately half of them were assigned to a lifestyle and psychosocial intervention with the aim of improving their cardiometabolic outcomes. Although this intervention could have also modified the association of GDM with CIMT, this seems not likely, as mean CIMT values were very similar in offspring of women with GDM who participated in the intervention and the control arms of the trial. Thirdly, CIMT was assessed using conventional high-resolution ultrasound frequencies (< 15 MHz), which tend to overestimate the arterial thickness in the young children when compared to very high-resolution ultrasound systems (25 to 55 MHz).[30,31] Measurement error in CIMT cannot be excluded, but systematic differences between the two groups are unlikely because the outcome assessors were blinded to the glycemic status of the mothers. Fourthly, while we adjusted for key confounders at the analysis stage, there is a possibility of residual confounding due to the relatively small sample size and some imprecision in the measurement of confounder variables, especially in those self-reported. Lastly, our study was limited to CIMT, which is a measure of arterial structure. In fact, changes in the vessel function might occur earlier than changes in the vessel structure, therefore, a combination of vascular measures would be needed for a clearer view on the cardiovascular status of children exposed to adverse experiences in early life. However, certain techniques to assess arterial function and stiffness, such as flow-

Page 18 of 31

1 2		
- 3 4	316	mediated dilation and pulse-wave velocity, are not currently feasible in the very young
5 6	317	due to limited compliance and technical inconveniences.[18]
7 8 9	318	
10 11	319	Implications and future research
12 13	320	Our results suggest that intrauterine exposure to GDM does not induce changes in the
14 15 16 17 18	321	carotid artery structure that are detectable with conventional ultrasound techniques at
	322	birth and may not be linked to early vascular aging at this arterial site in the short term.
19 20	323	Measurements at other arterial sites, such as the aorta,[32] may be more useful to
21 22	324	investigate early or subtle abnormalities related to accelerated vascular aging or
23 24 25	325	subclinical atherosclerosis. A long-term follow-up that includes complementary
26 27	326	vascular measures, for instance, endothelium-dependent and endothelium-
28 29	327	independent vasodilation or large-artery stiffness,[20] may shed further light on the
30 31 32	328	cardiovascular health of children born to mothers with GDM.
33 34	329	
35 36	330	Patient and public involvement
37 38	331	There was no patient or public involvement in the design, conduct, analysis, or
39 40 41	332	reporting of this study's findings.
42 43	333	reporting of this study's findings.
44 45	334	Author affiliations
46 47 48	335	¹ Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg,
49 50	336	Switzerland;
51 52	337	² Department of Epidemiology and Health Services, Center for Primary Care and Public
53 54 55	338	Health (UNISANTÉ), University of Lausanne, Lausanne, Switzerland;
55 56 57	339	³ Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University
58 59	340	Hospital (CHUV), Lausanne, Switzerland;
60		

BMJ Open

⁴Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;
 ⁵School of Global and Population Health, McGill University, Montréal, Canada

344 Authors' contributions

AC, NS, SDB, and YM designed the study and the data collection procedures with input from SEY, AME. SEY and AME collected baseline characteristics for participants without GDM. SDB and NS collected neonatal cardiovascular characteristics for all participants. SEY performed data management and curation. AME carried out the statistical analyses with input and supervision from AC. AME wrote the first draft of the manuscript with input from AC and NS. SDB, SEY, YM made critical revisions to the manuscript for important intellectual content. All authors read and approved the content of the manuscript.

354 Acknowledgements

The study teams of *MySweetHeart* Cohort and *MySweetHeart* Trial form MySweetHeart Research group and collaborated on data collection, management, and curation. We thank the following members of *MySweetHeart* Research Group, listed in alphabetical order: Amar Arhab, Pascal Bovet, Arnaud Chiolero, Stefano Di Bernardo, Adina Mihaela Epure, Sandrine Estoppey Younes, Leah Gilbert, Justine Gross, Antie Horsch, Stefano Lanzi, Seyda Mayerat, Yvan Mivelaz, Jardena J. Puder, Dan Quansah, Jean-Benoit Rossel, Nicole Sekarski, Umberto Simeoni, Bobby Stuijfzand, Yvan Vial.

364 Funding

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
-+U /1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

This study was funded by the Swiss National Science Foundation (www.snf.ch; 365 366 MySweetHeart Cohort project number 32003B-163240; MySweetHeart Trial project number 32003B 176119). The funder had no role in the study design, data collection 367 and analysis, or interpretation of results. 368 369

- **Competing interests** 370
- None declared. 371
- **Consent for publication** 373

Ethics approval

- 374 Not applicable.
- 375 376

372

- Ethical approval was obtained through the Ethics Committee for Human Research of 377
- the Canton of Vaud (2016-00745). 378
- 379
 - Data availability statement 380
 - Data could be made available by the principal investigator and corresponding author 381
 - (Prof Nicole Sekarski: nicole.sekarski@chuv.ch) on reasonable request. 382

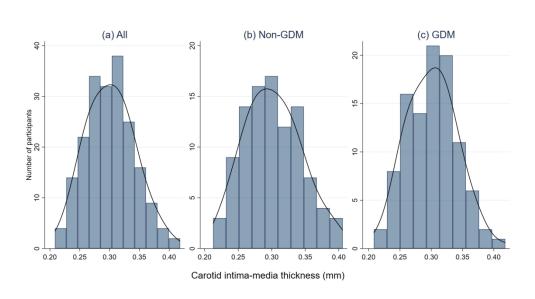
383

59 60

1		
2 3 4	384	REFERENCES
5 6	385	1. Reece EA, Leguizamon G, Wiznitzer A. Gestational diabetes: the need for a
7 8	386	common ground. <i>Lancet</i> 2009;373(9677):1789-97. doi: 10.1016/s0140-
9 10 11	387	6736(09)60515-8.
12 13	388	2. Reece EA. The fetal and maternal consequences of gestational diabetes mellitus. J
14 15	389	Matern Fetal Neonatal Med 2010;23(3):199-203. doi:
16 17 18	390	10.3109/14767050903550659.
19 20	391	3. American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes:
21 22	392	Standards of Medical Care in Diabetes—2021. Diabetes Care
23 24 25	393	2021;44(Supplement 1):S15-S33. doi: 10.2337/dc21-S002.
26 27	394	4. International Diabetes Federation. IDF Diabetes Atlas. 9th edition. Brussels,
28 29	395	Belgium: International Diabetes Federation, 2019.
30 31 32	396	5. Damm P, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus
33 34	397	and long-term consequences for mother and offspring: a view from Denmark.
35 36	398	<i>Diabetologia</i> 2016;59(7):1396-99. doi: 10.1007/s00125-016-3985-5.
37 38	399	6. Li JW, He SY, Liu P, et al. Association of gestational diabetes mellitus (GDM) with
39 40 41	400	subclinical atherosclerosis: a systemic review and meta-analysis. BMC
42 43	401	Cardiovasc Disord 2014;14:132. doi: 10.1186/1471-2261-14-132.
44 45	402	7. Tobias DK, Stuart JJ, Li S, et al. Association of History of Gestational Diabetes With
46 47 48	403	Long-term Cardiovascular Disease Risk in a Large Prospective Cohort of US
49 50	404	Women. JAMA Intern Med 2017;177(12):1735-42. doi:
51 52	405	10.1001/jamainternmed.2017.2790.
53 54 55	406	8. Epure AM, Rios-Leyvraz M, Anker D, et al. Risk factors during first 1,000 days of life
55 56 57 58 59 60	407	for carotid intima-media thickness in infants, children, and adolescents: A

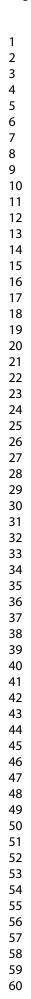
1 2 Page 22 of 31

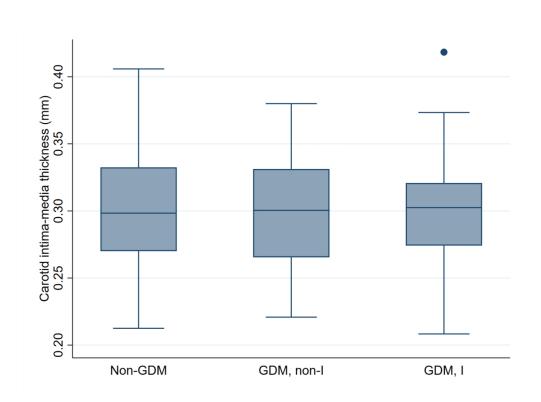
408	systematic review with meta-analyses. <i>PLoS Med</i> 2020;17(11):e1003414. doi:
409	10.1371/journal.pmed.1003414.
410	9. Giannopoulou EZ, Doundoulakis I, Antza C, et al. Subclinical arterial damage in
411	children and adolescents with type 1 diabetes: A systematic review and meta-
412	analysis. Pediatr Diabetes 2019;20(6):668-77. doi: 10.1111/pedi.12874.
413	10. Hanson MA, Gluckman PD. Early developmental conditioning of later health and
414	disease: physiology or pathophysiology? <i>Physiol Rev</i> 2014;94(4):1027-76. doi:
415	10.1152/physrev.00029.2013.
416	11. Aceti A, Santhakumaran S, Logan KM, et al. The diabetic pregnancy and offspring
417	blood pressure in childhood: a systematic review and meta-analysis.
418	<i>Diabetologia</i> 2012;55(11):3114-27. doi: 10.1007/s00125-012-2689-8.
419	12. Mivelaz Y, Di Bernardo S, Boulos Ksontini T, et al. Feasibility and reliability of
420	carotid intima-media thickness measurements in nonsedated infants. J
421	<i>Hypertens</i> 2016;34(11):2227-32. doi: 10.1097/hjh.00000000000000000000000000000000000
422	13. Di Bernardo S, Mivelaz Y, Epure AM, et al. Assessing the consequences of
423	gestational diabetes mellitus on offspring's cardiovascular health:
424	MySweetHeart Cohort study protocol, Switzerland. BMJ Open
425	2017;7(11):e016972. doi: 10.1136/bmjopen-2017-016972.
426	14. Horsch A, Gilbert L, Lanzi S, et al. Improving cardiometabolic and mental health in
427	women with gestational diabetes mellitus and their offspring: study protocol for
428	MySweetHeart Trial, a randomised controlled trial. BMJ Open
429	2018;8(2):e020462. doi: 10.1136/bmjopen-2017-020462.
430	15. Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and
431	pregnancy study groups recommendations on the diagnosis and classification
	 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430


Page 23 of 31

BMJ Open

1 2		
- 3 4	432	of hyperglycemia in pregnancy. <i>Diabetes Care</i> 2010;33(3):676-82. doi:
5 6	433	10.2337/dc09-1848.
7 8	434	16. Urbina EM, Williams RV, Alpert BS, et al. Noninvasive assessment of subclinical
9 10 11	435	atherosclerosis in children and adolescents: recommendations for standard
12 13	436	assessment for clinical research: a scientific statement from the American Heart
14 15	437	Association. <i>Hypertension</i> 2009;54(5):919-50. doi:
16 17 18	438	10.1161/hypertensionaha.109.192639.
19 20	439	17. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med
21 22	440	1987;317(17):1098. doi: 10.1056/nejm198710223171717.
23 24	441	18. Torigoe T, Dallaire F, Slorach C, et al. New Comprehensive Reference Values for
25 26 27	442	Arterial Vascular Parameters in Children. J Am Soc Echocardiogr 2020 doi:
28 29	443	10.1016/j.echo.2020.03.001.
30 31	444	19. Sarkola T, Manlhiot C, Slorach C, et al. Evolution of the arterial structure and
32 33 34	445	function from infancy to adolescence is related to anthropometric and blood
35 36	446	pressure changes. Circulation 2012;126(21).
37 38	447	20. Sundholm JKM, Litwin L, Rönö K, et al. Maternal obesity and gestational diabetes:
39 40	448	Impact on arterial wall layer thickness and stiffness in early childhood - RADIEL
41 42 43	449	study six-year follow-up. <i>Atherosclerosis</i> 2019 doi:
44 45	450	10.1016/j.atherosclerosis.2019.01.037.
46 47	451	21. Ayer JG, Harmer JA, Nakhla S, et al. HDL-cholesterol, blood pressure, and
48 49 50	452	asymmetric dimethylarginine are significantly associated with arterial wall
50 51 52	453	thickness in children. Arterioscler Thromb Vasc Biol 2009;29(6):943-49. doi:
53 54	454	10.1161/ATVBAHA.109.184184.
55 56		
57 58		
59 60		


22. Atabek ME, Çağan HH, Eklioğlu BS, et al. Absence of increase in carotid artery Intima-Media thickness in infants of diabetic mothers. J Clin Res Pediatr Endocrinol 2011;3(3):144-48. doi: 10.4274/jcrpe.v3i3.28. 23. World Health Organization. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract 2014;103(3):341-63. doi: 10.1016/j.diabres.2013.10.012. 24. Yuen L, Saeedi P, Riaz M, et al. Projections of the prevalence of hyperglycaemia in pregnancy in 2019 and beyond: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107841. doi: 10.1016/j.diabres.2019.107841. 25. Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, et al. Intima media thickness measurement in children: A statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention Association for European endorsed the Paediatric Cardiology. by Atherosclerosis 2015;238(2):380-7. doi: 10.1016/j.atherosclerosis.2014.12.029. 26. Agarwal MM, Dhatt GS, Shah SM. Gestational Diabetes Mellitus: Simplifying the International Association of Diabetes and Pregnancy diagnostic algorithm using fasting plasma glucose. Diabetes Care 2010;33(9):2018. doi: 10.2337/dc10-0572. 27. Mahdavian M, Hivert M-F, Baillargeon J-P, et al. Gestational Diabetes Mellitus: Simplifying the International Association of Diabetes and Pregnancy Diagnostic Algorithm Using Fasting Plasma Glucose. Comment on Agarwal, Dhatt, and Shah. Diabetes Care 2010;33(11):e145. doi: 10.2337/dc10-1454.


1 2							
3 4 5 6 7 8 9 10 11 12 13	479	28. McIntyre HD, Jensen DM, Jensen RC, et al. Gestational Diabetes Mellitus: Does					
	480	One Size Fit All? A Challenge to Uniform Worldwide Diagnostic Thresholds.					
	481	<i>Diabetes Care</i> 2018;41(7):1339-42. doi: 10.2337/dc17-2393.					
	482	29. Brodersen J, Schwartz LM, Heneghan C, et al. Overdiagnosis: what it is and what					
	483	it isn't. BMJ Evidence-Based Medicine 2018;23(1):1. doi: 10.1136/ebmed-2017-					
14 15	484	110886.					
16 17	485	30. Olander RFW, Sundholm JKM, Ojala TH, et al. Neonatal Arterial Morphology Is					
18 19 20	486	Related to Body Size in Abnormal Human Fetal Growth. Circ Cardiovasc					
21 22	487	Imaging 2016;9(9) doi: 10.1161/CIRCIMAGING.116.004657.					
22 23 24 25 26 27 28 29 30 31	488	31. Sarkola T, Slorach C, Hui W, et al. Transcutaneous very-high resolution ultrasound					
	489	for the quantification of carotid arterial intima-media thickness in children -					
	490	feasibility and comparison with conventional high resolution vascular ultrasound					
	491	imaging. Atherosclerosis 2012;224(1):102-7. doi:					
32 33	492	10.1016/j.atherosclerosis.2012.06.054.					
34 35 36 37 38 39 40	493	32. Koklu E, Akcakus M, Kurtoglu S, et al. Aortic intima-media thickness and lipid					
	494	profile in macrosomic newborns. <i>Eur J Pediatr</i> 2007;166(4):333-8. doi:					
	495	10.1007/s00431-006-0243-8.					
41 42							
43 44 45	496						
46							
47 48							
49 50							
50 51							
52							
53 54							
55							
56							
57 58							
59							
60							

This figure shows the distribution of CIMT values in our sample, overall (n=200) and by GDM exposure (Non-GDM: n=99; GDM: n=101). The black line represents the kernel density estimate. Abbreviations: CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus.

599x326mm (72 x 72 DPI)

This figure shows the distribution of CIMT in the offspring of women without GDM (Non-GDM; n=99) and the offspring of women with GDM who were assigned to no intervention (GDM, non-I; n=48) or to a lifestyle and psychosocial intervention (GDM, I; n=53) as part of their participation in the MySweetHeart Trial. Abbreviations: CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus; I, intervention.

543x395mm (72 x 72 DPI)

SUPPLEMENTARY MATERIAL

Gestational diabetes mellitus and offspring's carotid intima-media thickness at birth: MySweetHeart

Cohort Study

Adina Mihaela Epure^{1,2}, Stefano Di Bernardo³, Yvan Mivelaz³, Sandrine Estoppey Younes², Arnaud Chiolero^{1,4,5}, Nicole Sekarski³, on behalf of *MySweetHeart* Research Group

¹Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland;

²Department of Epidemiology and Health Services, Center for Primary Care and Public Health (UNISANTÉ), University of Lausanne,

Lausanne, Switzerland;

³Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland;

⁴Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;

⁵School of Global and Population Health, McGill University, Montréal, Canada

¶ These authors contributed equally to this work.

BMJ Open

Table S1 Differences in CIMT at birth by GDM exposure and assignment to a lifestyle and psychosocial intervention.
--

	Mean (sd), mm	Model 1 (n=200)		Model 2 (n=165)		Model 3 (n=165)	
		Difference (95% CI), mm	р	Difference (95% CI), mm	р	Difference (95% CI), mm	р
Non-GDM	0.30 (0.04)	ref	ref	ref	ref	ref	ref
GDM, non-I	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.94	0.00 (-0.02 to 0.02)	0.93	0.00 (-0.02 to 0.01)	0.91
GDM, I	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.98	-0.01 (-0.03 to 0.01)	0.19	-0.01 (-0.02 to 0.01)	0.25

Model 1: unadjusted estimates.

Model 2: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes and sex.

Model 3: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes, sex, body surface area

and age at CIMT assessment.

Abbreviations: CI, confidence interval; CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus; I, intervention; n, total number of participants;

p, p-value; sd, standard deviation; ref, reference group.

Note: Similar results were obtained when Model 1 was run in the sample (n=165) with data on outcome, exposure, and all covariates included in Models 2

and 3 (GDM, non-I: 0.00 mm (95% CI: -0.01 to 0.01; p=0.99); GDM, I: -0.01 mm (95% CI: -0.02 to 0.01; p=0.29)).

Section/Topic	ltem #	Recommendation	Reported in section [page # in Main text]
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Title page [page 1]
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Abstract [page 2-3]
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction (paragraphs 1-2) [page 5]
Objectives	3	State specific objectives, including any prespecified hypotheses	Introduction (paragraph 2) [page 5]
Methods			
Study design	4	Present key elements of study design early in the paper	 Methods (subheadings: Study design and setting; Study population) [page 6] Published protocol (see reference [2])
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	 Methods (subheadings: Study design and setting; Study population; Data collection) [page 6-9] Results (subheadings: Characteristics of study participants) [page 9] Published protocol (see reference [2])
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	- Methods (subheadings: Study population) [page 6] - Published protocol (see reference [2])
		(b) For matched studies, give matching criteria and number of exposed and unexposed	- N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	 Methods (subheadings: Data collection; Data analysis) [page 6-9]
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	- Methods (subheadings: Data collection) [page 6-8]
Bias	9	Describe any efforts to address potential sources of bias	 Methods (subheadings: Data analysis) [page 9] Discussion (subheadings: Strengths and limitations) [page 15-16]

STROPE 2007 (v/l) Statement - Charlist of items that should be included in reports of schort studies [1]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Study size	10	Explain how the study size was arrived at	- Published protocol[2]	
uantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why			- Methods (subheadings: Data analysis) [page 9]	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	- Methods (subheadings: Data analysis) [page 9]	
		(b) Describe any methods used to examine subgroups and interactions		
		(c) Explain how missing data were addressed	- Methods (subheadings: Study population; Data	
			analysis) [page 6; 9]	
			- Table 1 footnote [page 11]	
		(d) If applicable, explain how loss to follow-up was addressed	- Methods (subheadings: Study population) [page 6]	
		(e) Describe any sensitivity analyses	- Supplementary material (Table S1)	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,	- Results (subheadings: Characteristics of study	
		examined for eligibility, confirmed eligible, included in the study, completing follow-up,	participants) [page 9-10]	
		and analysed		
		(b) Give reasons for non-participation at each stage		
		(c) Consider use of a flow diagram		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	- Results (subheadings: Characteristics of study	
		information on exposures and potential confounders	participants; Table 1) [page 10-11]	
		(b) Indicate number of participants with missing data for each variable of interest	- Results (Table 1) [page 11]	
		(c) Summarise follow-up time (eg, average and total amount)	- Methods (subheadings: Study population; Carotid	
			ultrasound and CIMT measurement) [page 6-7]	
Outcome data	15*	Report numbers of outcome events or summary measures over time	- Results (Table 2) [page 13]	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	- Results (Table 2) [page 13]	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for		
		and why they were included		
		(b) Report category boundaries when continuous variables were categorized	- Results (Table 1) [page 11]	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	- N/A	
		meaningful time period		
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity	- Supplementary material (Table S1)	
		analyses		

Discussion			
Key results	18	Summarise key results with reference to study objectives	- Discussion (Summary of findings and comparison
			with other studies) [page 14]
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	- Discussion (Summary of findings and comparison
		multiplicity of analyses, results from similar studies, and other relevant evidence	with other studies; Strengths and limitations) [page 14-
			16]
Generalisability	21	Discuss the generalisability (external validity) of the study results	- Discussion (Strengths and limitations) [page 15-16]
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if	- Funding statement [page 19]
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: Information on the STROBE Initiative is available at www.strobe-statement.org

References

- 1. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. *PLOS Medicine* 2007;4(10):e296. doi: 10.1371/journal.pmed.0040296.
- 2. Di Bernardo S, Mivelaz Y, Epure AM, et al. Assessing the consequences of gestational diabetes mellitus on offspring's cardiovascular health: MySweetHeart Cohort study protocol, Switzerland. *BMJ Open* 2017;7(11):e016972. doi: 10.1136/bmjopen-2017-016972.

BMJ Open

Gestational diabetes mellitus and offspring's carotid intimamedia thickness at birth: MySweetHeart Cohort Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-061649.R1
Article Type:	Original research
Date Submitted by the Author:	17-Jun-2022
Complete List of Authors:	Epure, Adina Mihaela; University of Fribourg, Population Health Laboratory; University of Lausanne, Center for Primary Care and Public Health, Department of Epidemiology and Health Services Di Bernardo, Stefano; Lausanne University Hospital, Paediatric Cardiology Unit, Department Woman-Mother-Child Mivelaz, Yvan; Lausanne University Hospital, Paediatric Cardiology Unit, Department Woman-Mother-Child Estoppey Younes, Sandrine; University of Lausanne, Center for Primary Care and Public Health, Department of Epidemiology and Health Services Chiolero, Arnaud; University of Fribourg, Population Health Laboratory; University of Bern, Institute of Primary Health Care Sekarski, Nicole; Lausanne University Hospital, Paediatric Cardiology Unit, Woman-Mother-Child Department
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Epidemiology, Paediatrics
Keywords:	Cardiovascular imaging < RADIOLOGY & IMAGING, Paediatric cardiology < CARDIOLOGY, Diabetes in pregnancy < DIABETES & ENDOCRINOLOGY, NEONATOLOGY, Cardiac Epidemiology < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Gestational diabetes mellitus and offspring's carotid intima-media thickness at
2	birth: <i>MySweetHeart</i> Cohort Study
3	
4	Adina Mihaela Epure ^{1,2} , Stefano Di Bernardo ³ , Yvan Mivelaz ³ , Sandrine Estoppey
5	Younes ² , Arnaud Chiolero ^{1,4,5} , Nicole Sekarski ³ , on behalf of <i>MySweetHeart</i>
6	Research Group
7	
8	¹ Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg,
9	Switzerland;
10	² Department of Epidemiology and Health Services, Center for Primary Care and Public
11	Health (UNISANTÉ), University of Lausanne, Lausanne, Switzerland;
12	³ Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University
13	Hospital (CHUV), Lausanne, Switzerland;
14	⁴ Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;
15	⁵ School of Global and Population Health, McGill University, Montréal, Canada
16	
17	¶ These authors contributed equally to this work.
18	
19	* Corresponding author: Prof Nicole Sekarski, nicole.sekarski@chuv.ch, Lausanne
20	University Hospital (CHUV), 46 Route du Bugnon, Lausanne, 1011, Switzerland
21	
22	Word count (excluding title page, abstract and article summary, references, figure
23	legends and tables): 2'924

24 ABSTRACT

Objective Hyperglycemia during pregnancy is associated with cardiometabolic risks for the mother and the offspring. Mothers with gestational diabetes mellitus (GDM) have signs of subclinical atherosclerosis, including increased carotid intima-media thickness (CIMT). We assessed whether GDM is associated with increased CIMT in the offspring at birth.

Design and setting *MySweetHeart* Cohort is a prospective cohort study conducted in
 Switzerland.

Participants, exposure and outcome measures This work included pregnant women with and without GDM at 24 to 32 weeks of gestation and their singleton liveborn offspring with data on the primary outcome of CIMT. GDM was diagnosed based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. Offspring's CIMT was measured by ultrasonography after birth (range: 1 to 19 days).

Results Data on CIMT were available for 99 offspring of women without GDM and 101 offspring of women with GDM. Maternal age ranged from 18 to 47 years. Some 16% of women with GDM and 6% of women without GDM were obese. Smoking during pregnancy was more frequent among women with GDM (18%) than among those without GDM (4%). Neonatal characteristics were comparable between the 2 groups. The difference in CIMT between offspring of women with and without GDM was of 0.00 mm (95% CI: -0.01 to 0.01; p=0.96) and remained similar upon adjustment for potential confounding factors, such as maternal pre-pregnancy BMI, maternal education,

49 smoking during pregnancy, family history of diabetes, as well as offspring's sex, age,

50 and body surface area (0.00 mm (95% CI: -0.02 to 0.01; p=0.45)).

Conclusions We found no evidence of increased CIMT in neonates exposed to GDM.

53 A longer-term follow-up that includes additional vascular measures, such as 54 endothelial function or arterial stiffness, may shed further light on the cardiovascular 55 health trajectories in children born to mothers with GDM.

Registration ClinicalTrials.gov (NCT02872974)

Keywords gestational diabetes; carotid intima-media thickness; cardiovascular
prevention; child; neonate

List of abbreviations BMI, body mass index; CIMT, carotid intima-media thickness; CVD, cardiovascular disease; CHUV, Lausanne University Hospital; DOHaD, developmental origins of health and disease; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; IADPSG, International Association of Diabetes and Pregnancy Study Groups; I, intervention; OGTT, oral glucose tolerance test.

Strengths and limitations of this study

- One important strength of this study is represented by its prospective design and the enrollment of participants at the time of gestational diabetes diagnosis.
 - Carotid intima-media thickness was measured in non-sedated neonates by • experienced pediatric cardiologists using automated methods with manual tracing adjustment, in accordance with published guidelines.
- Limitations of this study include the relatively small sample size, the possibility • of residual confounding and the limited generalizability.

da. .g and the limite.

76 INTRODUCTION

Gestational diabetes mellitus (GDM) is a state of hyperglycemia with onset or first recognition during pregnancy.[1-3] The prevalence of hyperglycemia during pregnancy has increased in recent decades, being estimated at 16% worldwide in 2019, with 84% of cases due to GDM.[4] GDM is associated with long-term metabolic consequences for both the mother and the offspring, such as type 2 diabetes and obesity.[5] Women with GDM also have subclinical atherosclerosis and an increased risk for cardiovascular disease (CVD) later in life.[6,7] However, little is known about the cardiovascular risk of their offspring.

CIMT is a surrogate marker of atherosclerosis, which has been shown to be increased in children exposed to risk factors in the first 1000 days of life, such as poor fetal growth, [8] as well as in children with type 1 diabetes. [9] From a developmental origins of health and disease (DOHaD) perspective, [10] exposure to adverse experiences in early life may produce lifelong adaptations in the organs' structure and function and may program the risk for CVD. For instance, a systematic review and meta-analysis showed that GDM was associated with a higher systolic blood pressure in childhood.[11] Whether GDM has an impact on children's CIMT is not clearly established. The evidence is scarce notably in the very young children although CIMT measurement is feasible from birth and could help discern between changes that occur before or after birth.[12] To fill this gap, we conducted MySweetHeart Cohort study to assess the early life cardiovascular consequences of GDM.[13] Herein, we evaluated CIMT at birth in offspring of mothers with and without GDM.

1		
2 3 4	101	METHODS
5 6	102	Study design and setting
7 8	103	MySweetHeart Cohort is a prospective cohort study conducted at the Lausanne
9 10 11	104	University Hospital (CHUV), Switzerland. The study has been registered with
12 13	105	ClinicalTrials.gov (clinicaltrials.gov/ct2/show/NCT02872974) and the study protocol
14 15	106	has been published.[13] Ethical approval was granted by the Ethics Committee for
16 17 18	107	Human Research of the Canton de Vaud (study number 2016-00745).
19 20	108	
21 22	109	Study population
23 24	110	This cohort included pregnant women between 24 and 32 weeks of gestation, with and
25 26 27	111	without GDM. Other inclusion criteria were age 18 years or more and understanding
28 29	112	French or English. The exclusion criteria were pre-existing diabetes mellitus, strict bed
30 31	113	rest, or severe mental disorders. To facilitate recruitment and share resources, a
32 33 34	114	collaboration was established with MySweetHeart Trial,[14] a randomized controlled
35 36	115	trial assessing the effect of a lifestyle and psychosocial intervention on cardiometabolic
37 38	116	outcomes of women with GDM and their offspring. As such, women with GDM were
39 40 41	117	invited to contribute to both studies. Participating women with and without GDM were
41 42 43	118	included in the current analysis if CIMT data for their live-born singleton neonates were
44 45	119	available. All families gave a signed informed consent for use of their data.
46 47	120	
48 49 50	121	Data collection
50 51 52	122	GDM screening
53 54	123	Pregnant women screened at the prenatal care clinic of the CHUV had a fasting plasma
55 56 57	124	glucose (FPG) test between 24 and 28 weeks of gestation and GDM was diagnosed if
58 59 60	125	the test result was \geq 5.1 mmol/L.[13] If FPG was < 5.1 mmol/L, but \geq 4.4 mmol/L,

women had a 2-hour 75 g oral glucose tolerance test (OGTT) and GDM was diagnosed based on the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG).[15] Pregnant women screened by external obstetricians in the Canton of Vaud underwent the same procedure or directly a 2-hour 75 g OGTT.

Carotid ultrasound and CIMT measurement

A carotid ultrasound assessment was performed between 1 and 7 days of life in the majority of neonates (n=191). A small share (n=9) had the exam between 8 and 19 days of life due to organizational and logistical constraints. Parents were told to feed and burp their offspring ahead of the carotid ultrasound to make them more relaxed. Feeding or administration of a 30% glucose solution were used to comfort the neonates if they became agitated during the exam. The exam took place in a dark and quiet room and a cloth was placed under the neonates' shoulders to facilitate the extension of the neck.

Ultrasound image acquisition and analysis were performed by 2 experienced pediatric cardiologists who were blinded to the maternal glycemic status. Images were acquired in B-mode with no harmonics, sonoCT, dynamic range of 60dB, at a frame rate of 100-120Hz, with a depth of 1-2 cm. The right and left carotid arteries were scanned using a Philips EPIC echocardiograph (Philips Medical, Netherlands) with a L 15-7 MHz high-resolution linear array transducer, according to the American Heart Association's recommendations for standard assessment of subclinical atherosclerosis in children and adolescents.[16] Each observer recorded three consecutive 3-second cine loops from 2 different angles on each side, which were stored as native DICOM for subsequent offline analyses (QLab, Philips Medical, Netherlands). Whenever image

BMJ Open

quality was optimal enough, 6 right and 6 left frames were selected and, for each, the maximal IMT of the common carotid artery far wall was measured. Measurements were performed over a 1-cm region of interest proximal to the carotid bulb, on or closest to the R-wave of the electrocardiogram, using a semi-automated edge detection software with manual tracing adjustment when needed. The mean of 12 maximal CIMT measurements was used in the analysis for the majority of neonates (n=170). Two neonates had only one measurement available, whereas the rest had between 2 and 11 measurements that were averaged. A good interobserver reliability (coefficient of variation=5.9%) for measurements in non-sedated infants was proven in our laboratory previously.[12]

Other sample characteristics

Data on maternal characteristics (age, country of origin, education, smoking during pregnancy, pre-pregnancy weight and height, or parity) and family history of diabetes were record-based or self-reported by the mother at a researcher-administered interview upon inclusion in the study. Smoking during pregnancy was defined as a mother who was an active tobacco smoker at study baseline, i.e., between 24 and 32 weeks of gestation. A maternal blood sampling was also performed at baseline and glycated hemoglobin (HbA1c) was measured. Pre-pregnancy body mass index (BMI) was computed by dividing the pre-pregnancy weight (kg) by the squared height (m²). Delivery data such as newborn sex, anthropometry, gestational age, or mode of delivery were obtained from the medical records. Neonatal weight, length and blood pressure were measured by the study team at the time of the carotid ultrasound. Body surface area (m²) was computed using the Mosteller equation.[17] One systolic and diastolic blood pressure measurement was taken from the right upper arm, in a supine

position, using a clinically validated and regularly calibrated oscillometric
sphygmomanometer (Accutorr Plus; Datascope, Paramus, New Jersey, USA) with
neonate cuffs.

180 Data analysis

Descriptive statistics on study participants are reported as percentages (%) or as mean, standard deviation, minimum and maximum values. The relationship of GDM with CIMT was evaluated by a set of linear regression models with and without adjustment for potential confounders, i.e., baseline covariates associated with metabolic and cardiovascular risks, offspring's sex, and anthropometry at CIMT assessment. Potential confounders were maternal pre-pregnancy BMI, maternal education (university/no university), smoking during pregnancy (yes/no), and family history of diabetes (yes/no). The variable family history of diabetes summarized disease occurrence in a 1st degree relative of the mother, 1st degree relative of the father or in the father himself and assumed missing data in any of these variables as no history of diabetes unless values for all 3 variables were missing. To account for differences in body size, [18,19] we adjusted for body surface area and age at CIMT assessment. All statistical analyses were performed in Stata 16 (Stata Corporation, Texas, USA).

7 195

RESULTS

197 Characteristics of study participants

Data collection started in September 2016 and ended in October 2020. A total of 137 participants without GDM exposure and 212 participants with GDM exposure were recruited in the study. Some 101 neonates without GDM exposure and 117 neonates

 BMJ Open

with GDM exposure attended the cardiovascular follow-up visit early after birth. Of
these, 200 singleton neonates born at more than 36 weeks of gestation (non-GDM:
n=99; GDM: n=101) had CIMT measurements and constitute the analytic sample for
the current analysis.

Family and neonatal characteristics of study participants are presented in Table 1. The maternal characteristics were generally comparable between the non-GDM and GDM groups. The majority of women were non-Swiss and their age ranged from 18 to 47 years. Approximately half of the women in each group had a high level of education and no previous deliveries. More women with GDM (16%) were obese (pre-pregnancy BMI \geq 30 kg/m²) compared to women without GDM (6%). Smoking during pregnancy was more frequent among women with GDM (18%) than among those without GDM (4%). Offspring of women with and without GDM had similar neonatal characteristics, such as sex, gestational age, birth weight, length, or blood pressure. The majority were born at term, i.e., between 37 and 41 weeks (GDM: 96%; non-GDM: 98%) and a small share had macrosomia, i.e., a birth weight higher than 4'000 g (GDM: 6%; non-GDM: 5%). Offspring of women with GDM (46%) had a higher frequency of family history of diabetes compared to their non-GDM counterparts (24%).

	Non-GDM ^a (n=9	Non-GDM ^a (n=99)			GDM ^b (n=101)			
	mean or %	sd	min	max	mean or %	sd	min	max
MATERNAL								
Age (years)	33	5	18	44	33	5	21	47
Swiss origin (%)	24				33			
University education (%)	60				55			
Primiparous (%)	55				48			
Smoking during pregnancy (%)	4				18			
Pre-pregnancy obesity (BMI ≥ 30 kg/m2) (%)	6				16			
HbA1C (%)	4.9	0.3	4.2	5.7	5.3	0.3	4.7	7.2
NEONATAL								
Male (%)	52				53			
Cesarean section (%)	22				32			
Term birth (37 to 41 weeks) (%)	98				96			
Birth weight (g)	3'352	425	2'190	4'190	3'357	442	2'220	4'34
Macrosomia (Birth weight > 4'000 g) (%)	5				6			
Length (cm)	50	2	45	54	50	2	45	56
Body surface area (m ²)	0.21	0.02	0.16	0.25	0.21	0.02	0.17	0.26
Systolic BP (mmHg)	78	9	60	101	78	10	60	111
Diastolic BP (mmHg)	47	8	30	66	48	10	28	90
Family history of diabetes (%)	24				46			

Abbreviations: BMI, body mass index; BP, blood pressure; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin n, total number of participants; max, maximum; min, minimum; sd, standard deviation.

^a Non-GDM: Missing values for swiss origin (n=1), university education (n=2), pre-pregnancy obesity (n=1), HbA1c (n=13), cesarean section (n=4), term birth (n=10), systolic BP (n=1), diastolic BP (n=1); family history of diabetes (n=1).

^b GDM: Missing values for age (n=3), swiss origin (n=3), university education (n=18), primiparous (n=3), smoking (n=5), pre-pregnancy obesity (n=4), HbA1c (n=5), male (n=16), cesarean section (n=6), term birth (n=16), birth weight (n=16); family history of diabetes (n=4).

Page 13 of 32

1 2		
2 3 4	221	GDM and CIMT at birth
5 6	222	The distribution of CIMT values is presented in Fig. 1, Fig. 2, and Fig. S2 in
7 8	223	Supplementary Material. CIMT ranged from 0.21 to 0.42 mm, with a mean CIMT of
9 10 11	224	0.30 mm (sd 0.04) overall and in each of the studied groups (Table 2, Table S1 in
12 13	225	Supplementary Material).
14 15	226	
16 17 18	227	Fig. 1 Histograms of CIMT at birth, overall and by GDM exposure.
19 20	228	Figure legend This figure shows the distribution of CIMT values in our sample, overall
21 22	229	(n=200) and by GDM exposure (Non-GDM: n=99; GDM: n=101). The black line
23 24	230	represents the kernel density estimate. Abbreviations: CIMT, carotid intima-media
25 26 27	231	thickness; GDM, gestational diabetes mellitus.
28 29	232	
30 31	233	Fig. 2 Box plots of CIMT at birth by GDM exposure and assignment to a lifestyle and
32 33 34	234	psychosocial intervention.
35 36	235	Figure legend This figure shows the distribution of CIMT in the offspring of women
37 38	236	without GDM (Non-GDM; n=99) and the offspring of women with GDM who were
39 40	237	assigned to no intervention (GDM, non-I; n=48) or to a lifestyle and psychosocial
41 42 43	238	intervention (GDM, I; n=53) as part of their participation in the MySweetHeart Trial. The
44 45	239	line inside the box represents the median value of the distribution, while the lower and
46 47	240	upper boundaries of the box represent the first (Q1) and third quartiles (Q3),
48 49 50	241	respectively. The interquartile range (IQR) corresponds to Q3 – Q1. The whiskers
50 51 52	242	extend from either side of the box up to 1.5*IQR (i.e., Q1-1.5*IQR and Q3+1.5*IQR).
53 54	243	Outliers are depicted as circles. Abbreviations: CIMT, carotid intima-media thickness;
55 56 57 58 59 60	244	GDM, gestational diabetes mellitus; I, intervention.

Table 2 The relationship of GDM with offspring's CIMT at birth.

	Mean (SD), mm	Model 1 (n=200)		Model 2 (n=165)		Model 3 (n=165)	
		Mean difference (95% CI), mm	р	Mean difference (95% CI), mm	р	Mean difference (95% CI), mm	p
Non-GDM	0.30 (0.04)	ref	ref	ref	ref	ref	ref
GDM	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.96	0.00 (-0.02 to 0.01)	0.47	0.00 (-0.02 to 0.01)	0.45

Estimates were obtained from linear regression models with the following specification: Model 1: unadjusted estimates; Model 2: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes and sex; Model 3: estimates adjusted for maternal pre-pregnancy BMI, education, and tobacco smoking; offspring family history of diabetes, sex, body surface area and age at CIMT assessment. The outcome variable (i.e., CIMT) was continuous. The exposure variable was binary (GDM/Non-GDM; the reference category was Non-GDM). Similar results were obtained when Model 1 was run in the sample (n=165) with data on outcome, exposure, and all covariates included in Models 2 and 3 (GDM: 0.00 mm (95% CI: -0.02 to 0.01; p=0.54)). Abbreviations: CI, confidence interval; CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus; n, total number of participants; p, p-value; sd, standard deviation; ref, reference group.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 32

BMJ Open

The relationship of GDM with offspring's CIMT early after birth is presented in Table 2 and Fig. 3. In the unadjusted analysis (Model 1), the difference in CIMT between offspring of women with and without GDM was 0.00 mm (95% CI -0.01 to 0.01; p=0.96). Adjustment for offspring sex and potential confounding factors (Model 2), as well as for offspring's body surface area and age at CIMT assessment (Model 3), resulted in a difference of 0 mm (95% CI -0.02 to 0.01; p=0.45). When exposure to GDM was analyzed separately for offspring whose mothers were assigned or not to a lifestyle and psychosocial intervention as part of their participation in MySweetHeart Trial, results were similar to those presented above (Table S1 and Fig. S1 in Supplementary Material).

Fig 3 Illustration of the relationship of GDM with offspring's CIMT at birth through a forest plot.

Figure legend The boxes represent the mean differences in CIMT between offspring of women with and without GDM (i.e., GDM versus non-GDM). The horizontal lines represent the 95% CIs. The plot was constructed using regression estimates and models presented in Table 2. Model specification: Model 1 is unadjusted, while Models 2 and 3 are adjusted for various factors as described in the methods and footnote of Table 2. Abbreviations: CI, confidence interval; CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus.

DISCUSSION

Summary of findings and comparison with other studies

Our goal was to assess the relationship of GDM with neonatal CIMT. We found no evidence of an increased CIMT in neonates born to women with GDM as compared to

those born to women without GDM. Our findings are in line with other studies that evaluated CIMT after intrauterine exposure to maternal hyperglycemia. A recent meta-analysis pooled data from 3 studies and reported no clear evidence of increased CIMT in children exposed to maternal hyperglycemia compared to those not exposed (pooled standardized mean difference (SMD): 0.08 (95% CI -0.16 to 0.33)).[8] Two of these studies included 6-year and 8-year children, respectively, and found no difference in CIMT after exposure to GDM (SMD 0.00 (95% CI -0.28 to 0.28) at 6 years and 0.00 (95% CI -0.41 to 0.41) at 8 years).[8,20,21] The third study included neonates and found a slightly higher CIMT among those exposed to diabetes (SMD 0.46 (95% CI -0.07 to 1.00)),[8,22] but the imprecision around the estimated difference was high, the study had a very small sample size (n=55) and the authors did not specify whether they included women with pre-gestational or gestational diabetes.[22]

285 Strengths and limitations

A major strength of this study is its prospective design. Enrollment of study participants and collection of baseline characteristics took place close to the moment of GDM diagnosis and ahead of the CIMT outcome assessment. This implies that the choice of participation in the study is unlikely to be related to both the exposure and the outcome, which makes selection bias due to enrollment unlikely. Further, GDM was diagnosed using the new criteria of the IADPG. These criteria were derived based on the risk of adverse neonatal outcomes, such as birth weight, cord blood C-peptide levels, or percent infant body fat > 90th percentile.[15] They were endorsed by the World Health Organization along with several other bodies to achieve a universal consensus for GDM diagnosis and increase comparability of the evidence. [23,24] Another strength is the assessment of ultrasound CIMT using automated methods with manual tracing

Page 17 of 32

BMJ Open

adjustment, in accordance with the current guidelines in children.[16,25] The semi-automated methods are associated with a lower interoperator variability and high reliability, [16,25] including in infants, as it was previously proved in our laboratory. [12]

This study has some limitations. Firstly, our results have limited generalizability, as we used a convenient sample of pregnant women recruited from health care facilities in Switzerland. Secondly, the GDM glucose screening test (FPG or 75-g OGTT) varied between participants. This is because our hospital used a 2-step targeted approach for identifying women with GDM. While the 2-step approach is practical and more acceptable to patients [26] it may be related to a lower likelihood of diagnosing GDM compared to a one-step universal screening based on a 75-g OGTT.[27] On the other hand, the IADGSP criteria, which have a lower threshold for a positive FPG test (≥5.1 mmol/L) compared to other guidelines, [23] may identify as having GDM women who are at low absolute risk for fetal and pregnancy complications and, thus, overdiagnose GDM in some populations. [28,29] Therefore, misclassification of the exposure cannot be excluded and our estimates of association might be biased, maybe underestimated. Additionally, women with GDM participated in *MySweetHeart* Trial and approximately half of them were assigned to a lifestyle and psychosocial intervention with the aim of improving their cardiometabolic outcomes. Although this intervention could have also modified the association of GDM with CIMT, this seems not likely, as mean CIMT values were very similar in offspring of women with GDM who participated in the intervention and the control arms of the trial. Thirdly, CIMT was assessed using conventional high-resolution ultrasound frequencies (< 15 MHz), which have a lower spatial resolution and, thus, tend to overestimate the arterial thickness in the young children when compared to very high-resolution ultrasound systems (25 to 55

MHz).[30,31] Measurement error in CIMT cannot be excluded, but systematic differences between the two groups are unlikely because the outcome assessors were blinded to the glycemic status of the mothers. Fourthly, while we adjusted for key confounders at the analysis stage, there is a possibility of bias due to unmeasured factors, such as family history of premature cardiovascular death, or residual confounding due to the relatively small sample size and imprecision in the measurement of confounder variables, especially in those self-reported. Lastly, our study was limited to CIMT, which is a measure of arterial structure. In fact, changes in the vessel function might occur earlier than changes in the vessel structure, therefore, a combination of vascular measures would be needed for a clearer view on the cardiovascular status of children exposed to adverse experiences in early life. However, certain techniques to assess arterial function and stiffness, such as flow-mediated dilation and pulse-wave velocity, are not currently feasible in the very young due to limited compliance and technical inconveniences.[18]

337 Implications and future research

Our results suggest that intrauterine exposure to GDM does not induce changes in the carotid artery structure that are detectable with conventional ultrasound techniques at birth and may not be linked to early vascular aging at this arterial site in the short term. Measurements at other arterial sites, such as the aorta, [32] may be more useful to investigate early or subtle abnormalities related to accelerated vascular aging or subclinical atherosclerosis. A long-term follow-up that includes complementary vascular measures, for instance, endothelium-dependent and endothelium-independent vasodilation or large-artery stiffness, [20] may shed further light on the cardiovascular health of children born to mothers with GDM.

1		
2 3 4	347	
5 6	348	Patient and public involvement
7 8	349	There was no patient or public involvement in the design, conduct, analysis, or
9 10 11	350	reporting of this study's findings.
12 13	351	
14 15	352	Author affiliations
16 17 18	353	¹ Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg,
19 20	354	Switzerland;
21 22	355	² Department of Epidemiology and Health Services, Center for Primary Care and Public
23 24 25	356	Health (UNISANTÉ), University of Lausanne, Lausanne, Switzerland;
26 27	357	³ Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University
28 29 30 31 32 33 34	358	Hospital (CHUV), Lausanne, Switzerland;
	359	⁴ Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;
	360	⁵ School of Global and Population Health, McGill University, Montréal, Canada
35 36	361	
37 38	362	Authors' contributions
39 40 41	363	AC, NS, SDB, and YM designed the study and the data collection procedures with
42 43	364	input from SEY, AME. SEY and AME collected baseline characteristics for participants
44 45	365	without GDM. SDB and NS collected neonatal cardiovascular characteristics for all
46 47 48	366	participants. SEY performed data management and curation. AME carried out the
49 50	367	statistical analyses with input and supervision from AC. AME wrote the first draft of the
51 52	368	manuscript with input from AC and NS. SDB, SEY, YM made critical revisions to the
53 54 55	369	manuscript for important intellectual content. All authors read and approved the content
56 57	370	of the manuscript.
58 59 60	371	

2 3 4	372	Acknowledgements
5 6	373	The study teams of MySweetHeart Cohort and MySweetHeart Trial form
7 8	374	MySweetHeart Research group and collaborated on data collection, management, and
9 10 11	375	curation. We thank the following members of MySweetHeart Research Group, listed in
12 13	376	alphabetical order: Amar Arhab, Pascal Bovet, Arnaud Chiolero, Stefano Di Bernardo,
14 15	377	Adina Mihaela Epure, Sandrine Estoppey Younes, Leah Gilbert, Justine Gross, Antje
16 17 18	378	Horsch, Stefano Lanzi, Seyda Mayerat, Yvan Mivelaz, Jardena J. Puder, Dan
19 20	379	Quansah, Jean-Benoit Rossel, Nicole Sekarski, Umberto Simeoni, Bobby Stuijfzand,
21 22	380	Yvan Vial.
23 24	381	
25 26 27	382	Funding
28 29	383	This study was funded by the Swiss National Science Foundation (www.snf.ch;
30 31	384	MySweetHeart Cohort project number 32003B-163240; MySweetHeart Trial project
32 33 34	385	number 32003B_176119). The funder had no role in the study design, data collection
35 36	386	and analysis, or interpretation of results.
37 38	387	
39 40 41	388	Competing interests
41 42 43	389	None declared.
44 45	390	
46 47	391	Consent for publication
48 49 50	392	Not applicable.
51 52	393	
53 54	394	Ethics approval
55 56 57	395	Ethical approval was obtained through the Ethics Committee for Human Research of
57 58 59	396	the Canton of Vaud (2016–00745).
60		

1		
2 3 4	397	
5 6	398	Data availability statement
7 8 9	399	Data could be made available by the principal investigator and corresponding author
9 10 11	400	(Prof Nicole Sekarski: nicole.sekarski@chuv.ch) on reasonable request.
12 13	401	
14 15 16		
17 18		
19 20 21		
22 23		
24 25 26		
20 27 28		
29 30		
31 32 33		
34 35		
36 37 38		
39 40		
41 42 43		
44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59 60		

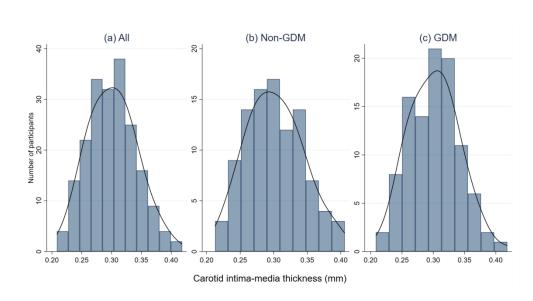
2 3 4	402	REFERENCES
5 6	403	1. Reece EA, Leguizamon G, Wiznitzer A. Gestational diabetes: the need for a
7 8	404	common ground. <i>Lancet</i> 2009;373(9677):1789-97. doi: 10.1016/s0140-
9 10 11	405	6736(09)60515-8.
12 13	406	2. Reece EA. The fetal and maternal consequences of gestational diabetes mellitus. J
14 15	407	Matern Fetal Neonatal Med 2010;23(3):199-203. doi:
16 17	408	10.3109/14767050903550659.
18 19 20	409	3. American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes:
21 22	410	Standards of Medical Care in Diabetes—2021. Diabetes Care
23 24	411	2021;44(Supplement 1):S15-S33. doi: 10.2337/dc21-S002.
25 26 27	412	4. International Diabetes Federation. IDF Diabetes Atlas. 9th edition. Brussels,
28 29	413	Belgium: International Diabetes Federation, 2019.
30 31	414	5. Damm P, Houshmand-Oeregaard A, Kelstrup L, et al. Gestational diabetes mellitus
32 33 34	415	and long-term consequences for mother and offspring: a view from Denmark.
35 36	416	<i>Diabetologia</i> 2016;59(7):1396-99. doi: 10.1007/s00125-016-3985-5.
37 38	417	6. Li JW, He SY, Liu P, et al. Association of gestational diabetes mellitus (GDM) with
39 40 41	418	subclinical atherosclerosis: a systemic review and meta-analysis. BMC
41 42 43	419	Cardiovasc Disord 2014;14:132. doi: 10.1186/1471-2261-14-132.
44 45	420	7. Tobias DK, Stuart JJ, Li S, et al. Association of History of Gestational Diabetes With
46 47	421	Long-term Cardiovascular Disease Risk in a Large Prospective Cohort of US
48 49 50	422	Women. JAMA Intern Med 2017;177(12):1735-42. doi:
51 52	423	10.1001/jamainternmed.2017.2790.
53 54	424	8. Epure AM, Rios-Leyvraz M, Anker D, et al. Risk factors during first 1,000 days of life
55 56 57 58 59 60	425	for carotid intima-media thickness in infants, children, and adolescents: A

Page 23 of 32

BMJ Open

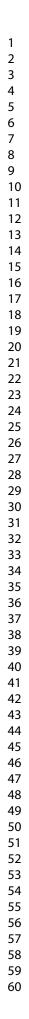
1 2		
3 4	426	systematic review with meta-analyses. PLoS Med 2020;17(11):e1003414. doi:
5 6 7 8 9	427	10.1371/journal.pmed.1003414.
	428	9. Giannopoulou EZ, Doundoulakis I, Antza C, et al. Subclinical arterial damage in
9 10 11	429	children and adolescents with type 1 diabetes: A systematic review and meta-
12 13	430	analysis. <i>Pediatr Diabetes</i> 2019;20(6):668-77. doi: 10.1111/pedi.12874.
14 15	431	10. Hanson MA, Gluckman PD. Early developmental conditioning of later health and
16 17	432	disease: physiology or pathophysiology? Physiol Rev 2014;94(4):1027-76. doi:
18 19 20	433	10.1152/physrev.00029.2013.
20 21 22	434	11. Aceti A, Santhakumaran S, Logan KM, et al. The diabetic pregnancy and offspring
23 24	435	blood pressure in childhood: a systematic review and meta-analysis.
25 26 27 28 29 30 31 32 33 34 35	436	<i>Diabetologia</i> 2012;55(11):3114-27. doi: 10.1007/s00125-012-2689-8.
	437	12. Mivelaz Y, Di Bernardo S, Boulos Ksontini T, et al. Feasibility and reliability of
	438	carotid intima-media thickness measurements in nonsedated infants. J
	439	<i>Hypertens</i> 2016;34(11):2227-32. doi: 10.1097/hjh.00000000000001065.
	440	13. Di Bernardo S, Mivelaz Y, Epure AM, et al. Assessing the consequences of
36 37 28	441	gestational diabetes mellitus on offspring's cardiovascular health:
38 39 40	442	MySweetHeart Cohort study protocol, Switzerland. BMJ Open
41 42	443	2017;7(11):e016972. doi: 10.1136/bmjopen-2017-016972.
43 44		14. Horsch A, Gilbert L, Lanzi S, et al. Improving cardiometabolic and mental health in
45 46	444	
47 48 49	445	women with gestational diabetes mellitus and their offspring: study protocol for
49 50 51	446	MySweetHeart Trial, a randomised controlled trial. BMJ Open
52 53	447	2018;8(2):e020462. doi: 10.1136/bmjopen-2017-020462.
54 55	448	15. Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and
56 57 58 59 60	449	pregnancy study groups recommendations on the diagnosis and classification

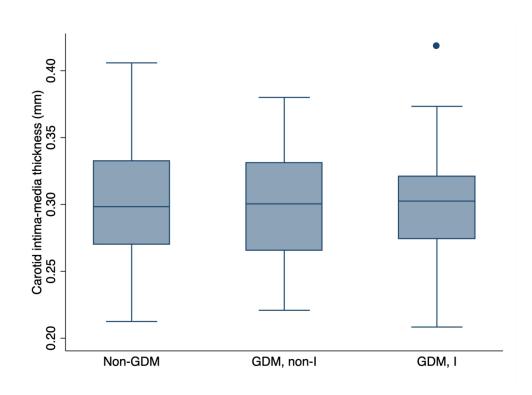
Page 24 of 32


1 2		
2 3 4 5 6 7 8 9	450	of hyperglycemia in pregnancy. <i>Diabetes Care</i> 2010;33(3):676-82. doi:
	451	10.2337/dc09-1848.
	452	16. Urbina EM, Williams RV, Alpert BS, et al. Noninvasive assessment of subclinical
9 10 11	453	atherosclerosis in children and adolescents: recommendations for standard
12 13	454	assessment for clinical research: a scientific statement from the American Heart
14 15	455	Association. <i>Hypertension</i> 2009;54(5):919-50. doi:
16 17 18	456	10.1161/hypertensionaha.109.192639.
19 20	457	17. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med
21 22	458	1987;317(17):1098. doi: 10.1056/nejm198710223171717.
23 24 25	459	18. Torigoe T, Dallaire F, Slorach C, et al. New Comprehensive Reference Values for
26 27 28 29 30 31 32 33 34 35 36	460	Arterial Vascular Parameters in Children. J Am Soc Echocardiogr 2020 doi:
	461	10.1016/j.echo.2020.03.001.
	462	19. Sarkola T, Manlhiot C, Slorach C, et al. Evolution of the arterial structure and
	463	function from infancy to adolescence is related to anthropometric and blood
	464	pressure changes. Circulation 2012;126(21).
37 38	465	20. Sundholm JKM, Litwin L, Rönö K, et al. Maternal obesity and gestational diabetes:
39 40 41	466	Impact on arterial wall layer thickness and stiffness in early childhood - RADIEL
42 43	467	study six-year follow-up. <i>Atherosclerosis</i> 2019 doi:
44 45	468	10.1016/j.atherosclerosis.2019.01.037.
46 47 48	469	21. Ayer JG, Harmer JA, Nakhla S, et al. HDL-cholesterol, blood pressure, and
49 50	470	asymmetric dimethylarginine are significantly associated with arterial wall
51 52	471	thickness in children. Arterioscler Thromb Vasc Biol 2009;29(6):943-49. doi:
53 54 55	472	10.1161/ATVBAHA.109.184184.
56 57		
58 59		
60		

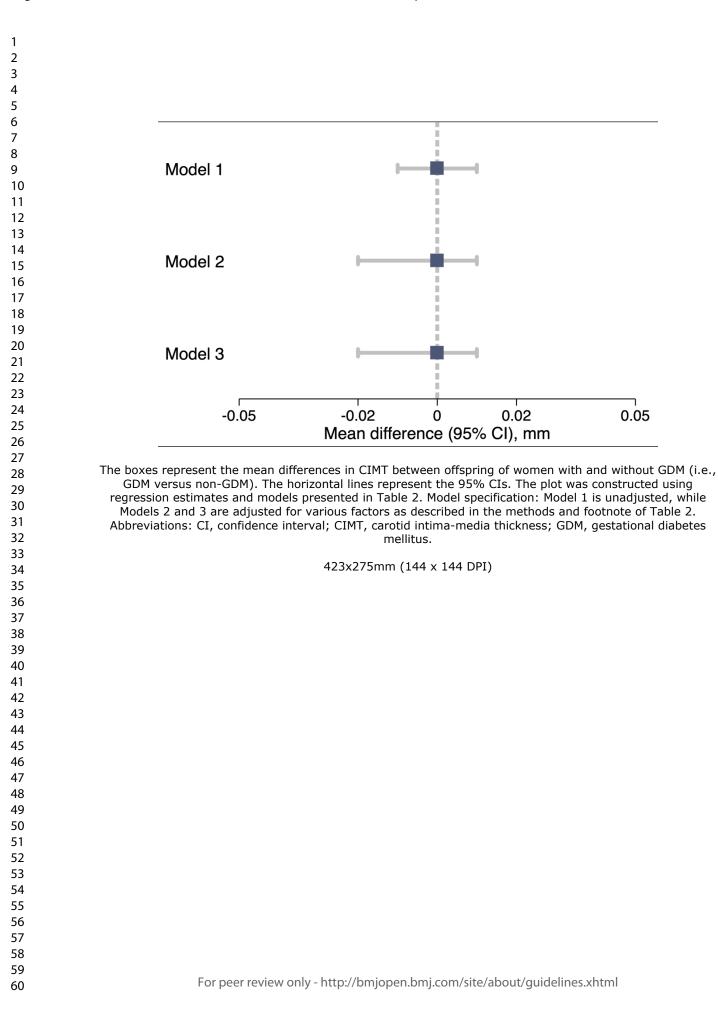
Page 25 of 32

1 2 BMJ Open


3 4	473	22. Atabek ME, Çağan HH, Eklioğlu BS, et al. Absence of increase in carotid artery					
5 6	474	Intima-Media thickness in infants of diabetic mothers. J Clin Res Pediatr					
7 8	475	Endocrinol 2011;3(3):144-48. doi: 10.4274/jcrpe.v3i3.28.					
9 10 11	476	23. World Health Organization. Diagnostic criteria and classification of hyperglycaemia					
12 13	477	first detected in pregnancy: a World Health Organization Guideline. Diabetes					
14 15	478	<i>Res Clin Pract</i> 2014;103(3):341-63. doi: 10.1016/j.diabres.2013.10.012.					
16 17 18 19 20 21 22 23 24	479	24. Yuen L, Saeedi P, Riaz M, et al. Projections of the prevalence of hyperglycaemia					
	480	in pregnancy in 2019 and beyond: Results from the International Diabetes					
	481	Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract					
	482	2019;157:107841. doi: 10.1016/j.diabres.2019.107841.					
25 26 27	483	25. Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, et al. Intima media thickness					
28 29	484	measurement in children: A statement from the Association for European					
30 31	485	Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention					
32 33 34	486	endorsed by the Association for European Paediatric Cardiology.					
35 36	487	<i>Atherosclerosis</i> 2015;238(2):380-7. doi:					
37 38	488	10.1016/j.atherosclerosis.2014.12.029.					
39 40	489	26. Agarwal MM, Dhatt GS, Shah SM. Gestational Diabetes Mellitus: Simplifying the					
41 42 43							
	490	International Association of Diabetes and Pregnancy diagnostic algorithm using					
44 45	490 491	International Association of Diabetes and Pregnancy diagnostic algorithm using fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-					
45 46 47							
45 46 47 48 49	491	fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-					
45 46 47 48	491 492	fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-0572.					
45 46 47 48 49 50 51 52 53 54	491 492 493	 fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-0572. 27. Mahdavian M, Hivert M-F, Baillargeon J-P, et al. Gestational Diabetes Mellitus: 					
45 46 47 48 49 50 51 52 53 54 55 56	491 492 493 494	 fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-0572. 27. Mahdavian M, Hivert M-F, Baillargeon J-P, et al. Gestational Diabetes Mellitus: Simplifying the International Association of Diabetes and Pregnancy Diagnostic 					
45 46 47 48 49 50 51 52 53 54 55	491 492 493 494 495	 fasting plasma glucose. <i>Diabetes Care</i> 2010;33(9):2018. doi: 10.2337/dc10-0572. 27. Mahdavian M, Hivert M-F, Baillargeon J-P, et al. Gestational Diabetes Mellitus: Simplifying the International Association of Diabetes and Pregnancy Diagnostic Algorithm Using Fasting Plasma Glucose. Comment on Agarwal, Dhatt, and 					


2 3	497	28. McIntyre HD, Jensen DM, Jensen RC, et al. Gestational Diabetes Mellitus: Does					
4 5							
6 7	498	One Size Fit All? A Challenge to Uniform Worldwide Diagnostic Thresholds.					
8 9	499	<i>Diabetes Care</i> 2018;41(7):1339-42. doi: 10.2337/dc17-2393.					
10 11	500	29. Brodersen J, Schwartz LM, Heneghan C, et al. Overdiagnosis: what it is and what					
12 13	501	it isn't. BMJ Evidence-Based Medicine 2018;23(1):1. doi: 10.1136/ebmed-2017-					
14 15	502	110886.					
16 17 18	503	30. Olander RFW, Sundholm JKM, Ojala TH, et al. Neonatal Arterial Morphology Is					
19 20	504	Related to Body Size in Abnormal Human Fetal Growth. Circ Cardiovasc					
21 22	505	Imaging 2016;9(9) doi: 10.1161/CIRCIMAGING.116.004657.					
23 24	506	31. Sarkola T, Slorach C, Hui W, et al. Transcutaneous very-high resolution ultrasound					
25 26 27	507	for the quantification of carotid arterial intima-media thickness in children -					
28 29	508	feasibility and comparison with conventional high resolution vascular ultrasound					
30 31	509	imaging. Atherosclerosis 2012;224(1):102-7. doi:					
32 33 34	510	10.1016/j.atherosclerosis.2012.06.054.					
35 36	511	32. Koklu E, Akcakus M, Kurtoglu S, et al. Aortic intima-media thickness and lipid					
37 38	512	profile in macrosomic newborns. <i>Eur J Pediatr</i> 2007;166(4):333-8. doi:					
39 40	513	10.1007/s00431-006-0243-8.					
41 42 43 44 45	514						
46 47							
48 49							
50 51							
52 53							
54 55							
56							
57 58							
58 59							
60							

This figure shows the distribution of CIMT values in our sample, overall (n=200) and by GDM exposure (Non-GDM: n=99; GDM: n=101). The black line represents the kernel density estimate. Abbreviations: CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus.


599x326mm (72 x 72 DPI)

This figure shows the distribution of CIMT in the offspring of women without GDM (Non-GDM; n=99) and the offspring of women with GDM who were assigned to no intervention (GDM, non-I; n=48) or to a lifestyle and psychosocial intervention (GDM, I; n=53) as part of their participation in the MySweetHeart Trial. The line inside the box represents the median value of the distribution, while the lower and upper boundaries of the box represent the first (Q1) and third quartiles (Q3), respectively. The interquartile range (IQR) corresponds to Q3 – Q1. The whiskers extend from either side of the box up to 1.5*IQR (i.e., Q1-1.5*IQR and Q3+1.5*IQR).

378x275mm (144 x 144 DPI)

SUPPLEMENTARY MATERIAL

Gestational diabetes mellitus and offspring's carotid intima-media thickness at birth: MySweetHeart

Cohort Study

Adina Mihaela Epure^{1,2}, Stefano Di Bernardo³, Yvan Mivelaz³, Sandrine Estoppey Younes², Arnaud Chiolero^{1,4,5}, Nicole Sekarski³, on behalf of *MySweetHeart* Research Group

¹Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland;

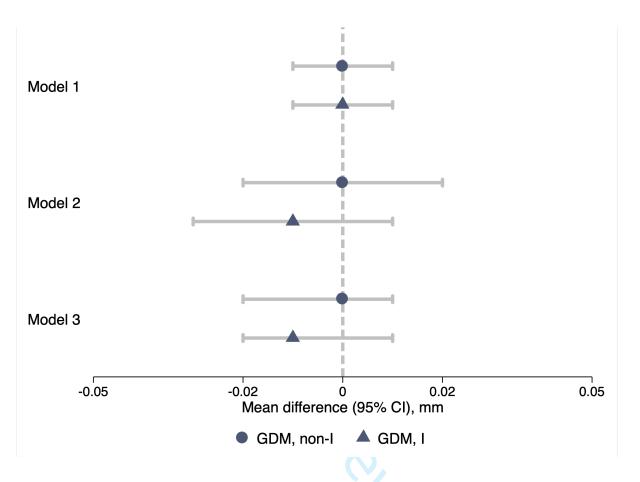
²Department of Epidemiology and Health Services, Center for Primary Care and Public Health (UNISANTÉ), University of Lausanne, Lausanne, Switzerland;

³Paediatric Cardiology Unit, Woman-Mother-Child Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland;

⁴Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland;

⁵School of Global and Population Health, McGill University, Montréal, Canada

¶ These authors contributed equally to this work.


Page 31 of 32

BMJ Open

	Mean (sd), mm	Model 1 (n=200)		Model 2 (n=165)		Model 3 (n=165)	
		Mean difference (95% CI), mm	p	Mean difference (95% CI), mm	p	Mean difference (95% CI), mm	p
Non-GDM	0.30 (0.04)	ref	ref	ref	ref	ref	ref
GDM, non-I	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.94	0.00 (-0.02 to 0.02)	0.93	0.00 (-0.02 to 0.01)	0.9
GDM, I	0.30 (0.04)	0.00 (-0.01 to 0.01)	0.98	-0.01 (-0.03 to 0.01)	0.19	-0.01 (-0.02 to 0.01)	0.2
		bacco smoking; offspring family				-	
						-	
	Clivit) was continuo	us. The exposure variable was ca	-				as N
variable (I.e.,							
	r results were obtain	ed when Model 1 was run in the s	sample (i	n=165) with data on outcome, e	xposure,	and all covariates included in M	lode
GDM). Simila		ed when Model 1 was run in the s % Cl: -0.01 to 0.01; p=0.99); GD					
GDM). Simila and 3 (GDM,	non-I: 0.00 mm (95		M, I: -0.0	01 mm (95% CI: -0.02 to 0.01;	p=0.29))	. Abbreviations: CI, confidence	intei

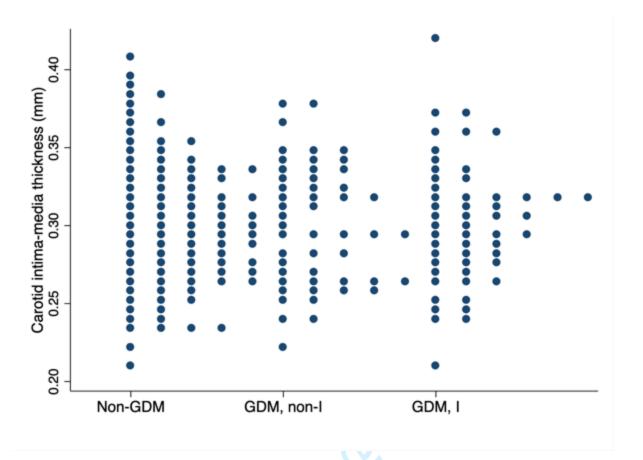

Table S1 The relationship of GDM and assignment or not to a lifestyle and psychosocial intervention with offspring's CIMT at birth.

Fig. S1 Illustration of the relationship of GDM and assignment or not to a lifestyle and psychosocial intervention with offspring's CIMT through a forest plot.

Figure legend The circles represent mean differences in CIMT between offspring of women with GDM assigned to no intervention (*GDM, non-I*) and offspring of women without GDM (*Non-GDM*). The triangles represent mean differences in CIMT between offspring of women with GDM assigned to a lifestyle and psychosocial intervention (*GDM, I*) and offspring of women without GDM (*Non-GDM*). The horizontal lines represent the 95% CIs. The plot was constructed using regression estimates and models presented in Table S1. Model specification: Model 1 is unadjusted, while Models 2 and 3 are adjusted for various factors as described in the methods and footnote of Table S1. Abbreviations: CI, confidence interval; CIMT, carotid intima-media thickness; GDM, gestational diabetes; I, intervention.

Fig. S2 Dot plot of CIMT at birth by gestational diabetes mellitus (GDM) and assignment to a lifestyle and psychosocial intervention (I).

Figure legend This figure shows the distribution of CIMT in the offspring of women without GDM (*Non-GDM*) and the offspring of women with GDM who were assigned to no intervention (*GDM, non-I*) or to a lifestyle and psychosocial intervention (*GDM, I*) as part of their participation in the *MySweetHeart* Trial. Abbreviations: CIMT, carotid intima-media thickness; GDM, gestational diabetes mellitus; I, intervention.