Supporting Information

Smartphone-Based SARS-CoV-2 and Variants Detection System using Colorimetric DNAzyme Reaction triggered by Loop-Mediated Isothermal Amplification (LAMP) with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

Jayeon Song,^{†,¶} Baekdong Cha,^{‡,¶} Jeong Moon,^{†,#} Hyowon Jang,[†] Sunjoo Kim,^{&,∥} Jieun Jang,[∥] Dongeun Yong,[§] Hyung-Jun Kwon,⁺ In-Chul Lee,⁺ Eun-Kyung Lim,^{†,}^{*} Juyeon Jung,[†] Hyun Gyu Park,[#] and Taejoon Kang^{†,*}

[†]Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

[‡]School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Republic of Korea

[#]Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

[&]Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea

Gyeongnam Center for Disease Control and Prevention, 300 Jungang-daero, Uichang-gu, Changwon-si, Gyeongsangnamdo 51154, Republic of Korea

[§]Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

⁺Functional Biomaterial Research Center, KRIBB, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea

*Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

[¶]These authors contributed equally to this work.

Contact Information Email: kangtaejoon@kribb.re.kr

Movie S1. (a) Movie of smartphone application for SARS-CoV-2 detection using DAMPR assay system. Diagnostic result considered is positive. (b) Movie of smartphone application for SARS-CoV-2 omicron variant detection using v-DAMPR assay system. Diagnostic result considered is positive.

Figure S1. (a) Real-time fluorescence curves during detection of SARS-CoV-2 genes and control (no gene, black) using RT-LAMP reactions with DNA (red) and PS-DNA (blue) primers. (b) Absorbance spectra after detection of SARS-CoV-2 genes and control (no gene, black) by RT-LAMP and DNAzyme reactions with DNA (red) and PS-DNA (blue) primers. (c) Real-time fluorescence curves during detection of SARS-CoV-2 genes and control (no gene, black and gray) using RT-LAMP reactions with 4 (red) and 6 (blue) primers. (d) Absorbance spectra after detection of SARS-CoV-2 genes and control (no gene, black and gray) using RT-LAMP reactions with 4 (red) and 6 (blue) primers. (d) Absorbance spectra after detection of SARS-CoV-2 genes and control (no gene, black and gray) by RT-LAMP and DNAzyme reactions with 4 (red) and 6 (blue) primers.

Figure S2. (a,c,e) Sequences of gRNAs (blue) for double-checking of (a) ORF1, (c) N, and (e) S gene LAMP products. Greens are DNAzyme and complementary sequences in LAMP products. (b,d,f) Plots of Abs_{416} as a function of gRNA (n = 3, error bar = standard deviation). Data were obtained after CRISPR reactions with gRNA 1, 2, and 3 (blue), and without gRNA (black) in the presence of LAMP products.

Figure S3. (a) Plots of Abs₄₁₆ as a function of temperature (n = 3, error bar = standard deviation). Left plot was obtained after detection of SARS-CoV-2 genes by RT-LAMP and DNAzyme reactions at 25 or 37 °C. Right plot was obtained after double-checking of SARS-CoV-2 genes by CRISPR reaction at 25 or 37 °C. (b) Plots of Abs₄₁₆ as a function of time (n = 3, error bar = standard deviation). Left plot was obtained after detection of SARS-CoV-2 genes by RT-LAMP and DNAzyme reactions for various times. Right plot was obtained after double-checking of SARS-CoV-2 genes by CRISPR reaction for various times. (c) Plots of Abs₄₁₆ as a function of hemin (left) and ABTS (right) concentrations (n = 3, error bar = standard deviation). Plots were obtained after detection of SARS-CoV-2 genes by RT-LAMP and DNAzyme reactions with various concentrations of hemin and ABTS. (d) Plot of Abs₄₁₆ as a function of RNP to target gene (n = 3, error bar = standard deviation). Plot was obtained after detection of SARS-CoV-2 genes by RT-LAMP and DNAzyme reactions with various concentrations of hemin and ABTS. (d) Plot of Abs₄₁₆ as a function of RNP.

Figure S4. Absorbance spectra corresponding to Figure 2b.

Figure S5. (a) Real-time fluorescence curves during detection of SARS-CoV-2 genes (ORF1, N, and S) using RT-LAMP reactions. The concentrations of genes were varied from 1 fM to 1 nM. (b) Plot of C_t value as a function of logarithmic concentration of SARS-CoV-2 genes (ORF1, N, and S) (n = 3, error bar = standard deviation). (c) Plot of Abs₄₁₆ as a function of viral gene (SARS-CoV-2, H1N1, H3N2, H5N2, H1N2, H3H8, and RSV A) (n = 3, error bar = standard deviation). Plot was obtained after detection of viral genes (1 pM) using RT-LAMP and DNAzyme reactions. Photograph is of well plate after RT-LAMP and DNAzyme reactions.

Figure S6. (a) Plot of Abs₄₁₆ as a function of SARS-CoV-2 lysate concentration (n = 3, error bar = standard deviation). Blue data were obtained after detection of SARS-CoV-2 lysates by RT-LAMP and DNAzyme reactions. Red data were obtained after double-checking of SARS-CoV-2 lysates using Cas9/gRNA complexes. Photographs are well plates after RT-LAMP and DNAzyme reactions (ON) and CRISPR reaction (OFF). Left wells are control samples. (b) Photograph of well plate after detection of SARS-CoV-2 lysate-spiked human nasopharyngeal aspirates (1, 2, and 3) and sputum (4 and 5) samples (10² PFU/mL) by using RT-LAMP and DNAzyme reactions (ON). Photograph of the same well plate after double-checking of samples by using CRISPR reaction (OFF).

Figure S7. (a) Real-time fluorescence curves during detection of SARS-CoV-2 lysates (10^4 PFU/mL) and control (no lysates, black and gray) using RT-LAMP reactions before (blue) and after (red) RNA extraction. (b) Plot of Abs₄₁₆ as a function of RNA extraction (n = 3, error bar = standard deviation). Data were obtained after detection of SARS-CoV-2 lysates (10^4 PFU/mL) by RT-LAMP and DNAzyme reactions before and after RNA extraction.

Figure S8. (a,b) User manuals of smartphone application for SARS-CoV-2 detection by DAMPR assay system. Exampled diagnostic result is (a) negative and (b) false-positive.

Figure S9. (a-c) User manuals of smartphone application for SARS-CoV-2 variants detection by v-DAMPR assay system. Exampled diagnostic result is (a) variant (D614G), (b) delta-specific variant (T478K), and (c) omicron-specific variant (A67V).

	Performance test				Practic	Practical applicability test				
Method	Detection	Sensitivity	Quantification	Multiplexing	Reaction time	Image sensing	Clinical test	Variant detection	POCT device	
DAMPR assay	- DNAzyme reaction (Colorimetric detection for naked eye)	10, 9, 13 copies for ORF1, N, and S genes	0	0	50 min	Machine- learning based image processing	O 206 samples (147 positive and 59 negative)	0	0	This work
Antibody- conjugated Au NP assay	- Au NPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 - Salt control condition	-	X	x	Synthesis time (140 min) + Detection time (3 min)	x	O 94 samples (45 positive and 49 negative)	х	x	[S1]
CRISPR- Cas12a powered visual biosensor	 Two types of Au NPs with linker DNA Centrifuge Salt control condition 	1 сору	0	×	Synthesis time + 90 min	RGB analysis	O 50 samples (20 positive and 30 negative)	х	0	[S2]
Conventional PCR assisted single- component assembly	 Two types of Au NPs with linker DNA Complex HP design 	1 сору	x	x	Synthesis time + 120 min	Naked eye	9 samples (3 positive, 3 low positive, and 3 negative samples)	x	х	[S3]
Antisense Oligonucleotide Capped Plasmonic Nanoparticles	- Au NP synthesis with ASO	8.3 copies	Х	X	Synthesis time	Naked eye	х	x	Х	[S4]
RT-RPA- Coupled CRISPR- Cas12a Colorimetric Assay	- Au NP synthesis with DNA	1 сору	x	x	Over 13 h	Naked eye	x	x	x	[S5]

Figure S10. Comparison of DAMPR assay with the previous colorimetric SARS-CoV-2 detection methods.

<conventional method=""></conventional>	Method	Detection	Multiplexing	CRISPR System	Double- checking the amplified LAMP products	Clinical test	Variant detection	Reference
Viral RNA RT-LAMP CRISPR Signal ON	DAMPR assay	DNAzyme reaction (Colorimetric detection for naked eye)	O (ORF1, N, S genes)	Cas9 (cis-cleavage)	0	206 clinical samples	D614G T478K A67V	This work
—	RT-LAMP +CRISPR	Reporter probe (Fluorescence detection)	X (N, E genes)	Cas12a (trans-cleavage)	х	100 clinical samples	х	[S6]
<dampr assay=""> Viral RNA RT-LAMP CRISPR</dampr>	RT-LAMP +CRISPR	Reporter probe (Fluorescence detection)	X (ORF1, N, E genes)	Cas12a (trans-cleavage)	х	10 clinical samples	х	[S7]
Signal ON Signal OFF	RT-LAMP +CRISPR	Reporter probe (Fluorescence detection+ Blue light detection for naked eye)	X (S gene)	Cas12a (trans-cleavage)	×	26 clinical samples	Х	[S8]
Variant detection	DETECTR, RT–LAMP +CRISPR	Reporter probe (Fluorescence detection)	X (N, E genes)	Cas12a (trans-cleavage)	х	6 clinical samples	x	[S9]
	iSCAN	LFA	X (N, E genes)	Cas12a (trans-cleavage)	х	24 clinical samples	х	[S10]

Figure S11. Comparison of DAMPR assay with the previously integrated assays of LAMP and CRISPR-Cas systems.

Target	Name	Sequence $(5' \rightarrow 3')^a$		
	ORF1 FP	GCA CCG TAG CTG GTG TCT CTA		
	ORF1 BP	CAA ATG TTA AAA ACA CTA TTA GCA TA		
	ORF1 LF ^b	ACA GTT TTT AAC ATG TTG		
ORF1 gene	ORF1 LB	AGC CAT GCC TAA CAT GCT		
	ORF1 FIP	AGG TGA GGG TTT TCT ACA TCA CTA TCC CAA CCC GCC CTA CCC ATT GGA ACA AGC AAA TTC TAT GG		
	ORF1 BIP	ATG GGT TGG GAT TAT CCT AAC CCA ACC CGC CCT ACC CAT GTG TGC GAG CAA GAA CAA GTG		
	N FP	GCC AAA AGG CTT CTA CGC A		
	N BP	TTT GGC CTT GTT GTT GTT GG		
	N LF	GAA TTT CTT GAA CTG TTG		
N gene	N LB	GGC GGT GAT GCT GCT CTT		
	N FIP	TCC CCT ACT GCT GCC TGG AGT TTT CCC AAC CCG CCC TAC CCC GGC AGT CAA GCC TCT TC		
	N BIP	TCC TGC TAG AAT GGC TGG CAA TTT TCC CAA CCC GCC CTA CCC TTT TGC TCT CAA GCT GGT TCA		
	S FP	CAT TCA ACT CAG GAC TTG TTC T		
	S BP	GCA ACA GGG ACT TCT GTG CA		
	S LF	TAA TGT CAA GAA TCT CAA		
S gene	S LB	ATA CTT CTA ACC AGG TTG		
	S FIP	ACT GAC ACC ACC AAA AGA ACA TGC CCA ACC CGC CCT ACC CTG TCC GTG ATC CAC AGA C		
	S BIP	ATA ACA CCA GGA ACA ACC CAA CCC GCC CTA CCC TTA ACA TCC TGA TAA AGA ACA GCA A		

^aGreen color represents G-quadruplex complementary sequences with PS modification.

^bLF and LB primers were used for optimization tests.

 Table S2. gRNA sequences used in this study.

Target	Name	Sequence $(5' \rightarrow 3')$			
	gRNA FIP 1	UCC AAU GGG UAG GGC GGG UU			
	gRNA FIP 2	CUU GUU CCA AUG GGU AGG GC			
	gRNA FIP 3	UUU GCU UGU UCC AAU GGG UA			
ORFI gene	gRNA BIP 1	ACA CAU GGG UAG GGC GGG UU			
	gRNA BIP 2	CUC GCA CAC AUG GGU AGG GC			
	gRNA BIP 3	CUU GCU CGC ACA CAU GGG UA			
	gRNA FIP 1	CUG CCG GGG UAG GGC GGG UU			
	gRNA FIP 2	CUU GAC UGC CGG GGU AGG GC			
N	gRNA FIP 3	GAG GCU UGA CUG CCG GGG UA			
N gene	gRNA BIP 1	GCA AAA GGG UAG GGC GGG UU			
	gRNA BIP 2	UGA GAG CAA AAG GGU AGG GC			
	gRNA BIP 3	AGC UUG AGA GCA AAA GGG UA			
	gRNA FIP 1	CGG ACA GGG UAG GGC GGG UU			
	gRNA FIP 2	GAU CAC GGA CAG GGU AGG GC			
C	gRNA FIP 3	UGU GGA UCA CGG ACA GGG UA			
S gene	gRNA BIP 1	GUU AAG GGA UGU UAA GGG UA			
	gRNA BIP 2	CAG GAU GUU AAG GGU AGG GC			
	gRNA BIP 3	UUA UCA GGA UGU UAA GGG UA			
S gene D614G	D614G gRNA	UUA UCA GGG UGU UAA GGG UA			
с. т .(50).	T478K gRNA	CGG UAG CAA ACC UUG GGG UA			
S gene 14/8K	S' gRNA	CGG UAG CAC ACC UUG GGG UA			
	A67V gRNA	GUU CCA UGU UAU ACA GGG UA			
S gene A67V	S'' gRNA	GUU CCA UGC UAU ACA GGG UA			

Method		Target gene	LOD (copies/µL)	Time (min)	Ref.
qRT-PCR		RdRP, E, N	1.25	60 - 70	[S11]
RT-RCA		RdRP	2.2	90	[S12]
	RT-LAMP	RdRP, S	10	60	[S13]
	opvCRISPR	S	5	45	[S8]
	IFAST RT- LAMP	ORF1, N	470	30	[S 14]
RT-LAMP	One-tube colorimetric RT-LAMP	RdRP, NSP2	200	60	[\$15]
	RT- Proofman- LAMP	ORF1ab, N	100	50	[S16]
	Cas13a/RT- LAMP	N1, N2, N3	2.5	60	[S17]
	SPOT	N, E	0.44, 1.09	30	[S18]
NEAR		RdRP	20	< 20	[S19]
RT-RPA		Ν	7.74	< 30	[S20]
SHERLOCK		ORF1ab, S, N	, N 2.1 9		[S21]
DETECTR		E, N	10	40	[\$9]
DAMPR		ORF1, N, S	10, 9, 13	50	This work

Table S3. Comparison of this work with previous reported SARS-CoV-2 assays.

Sample	Precision (LDA/RF/GBC)	Recall (LDA/RF/GBC)	F1 score (LDA/RF/GBC)	Support (LDA/RF/GBC)
Control	0.89/1.00/0.95	0.82/0.97/0.92	0.85/0.98/0.93	30/30/30
1 aM	0.76/0.97/0.90	0.8./0.97/0.90	0.79/0.97/0.90	30/30/30
10 aM	0.91/0.97/0.97	0.97/1.00/1.00	0.94/0.98/0.98	30/30/30
100 aM	0.97/1.00/1.00	0.93/1.00/1.00	0.95/1.00/1.00	30/30/30
1 fM	1.00/1.00/1.00	0.97/1.00/1.00	0.98/1.00/1.00	30/30/30
10 fM	1.00/1.00/1.00	1.00/1.00/1.00	1.00/1.00/1.00	30/30/30
100 fM	1.00/1.00/1.00	1.00/1.00/1.00	1.00/1.00/1.00	30/30/30
1 pM	1.00/1.00/1.00	1.00/1.00/1.00	1.00/1.00/1.00	30/30/30
10 pM	1.00/1.00/1.00	1.00/1.00/1.00	1.00/1.00/1.00	30/30/30
100 pM	1.00/1.00/1.00	1.00/1.00/1.00	1.00/1.00/1.00	30/30/30
1 nM	0.97/1.00/1.00	1.00/1.00/1.00	0.98/1.00/1.00	30/30/30
10 nM	1.00/1.00/1.00	1.00/1.00/1.00	0.98/1.00/1.00	30/30/30
Average	0.96/0.99/0.98	0.96/0.99/0.99	0.96/0.99/0.98	360/360/360

Table S4. Evaluation of LDA, RF, and GBC classifiers for DAMPR assay system in terms of

 precision, recall, and f1 score.

LDA (%)	RF (%)	GBC (%)
95.84	99.38	98.75

Table S5. Accuracy of LDA, RF, and GBC classifiers for DAMPR assay system.

Number	Sample type –	ORF1	Ν	S
1	NPS ^a	11.73	13.2	12.7
2	NPS	27.4	28.3	30.22
3	NPS	33.33	26.4	30.48
4	NPS	14.2	14.3	15.2
5	NPS	35.08	33.81	33.6
6	NPS	N/A	N/A	N/A
7	NPS	N/A	N/A	N/A
8	NPS	29.4	30.2	29.95
9	NPS	8.3	8.9	8.7
10	NPS	11.9	13.1	12.8
11	NPS	12.6	10.81	10.94
12	NPS	N/A	N/A	N/A
13	NPS	22.5	20.6	21.31
14	NPS	28.7	31.1	26.3
15	NPS	7.56	8.3	8.5
16	NPS	22.1	20.09	22.3
17	NPS	24.7	25.2	23.2
18	NPS	N/A	N/A	N/A
19	NPS	N/A	N/A	N/A
20	NPS	N/A	N/A	N/A
21	NPS	21.8	22.4	20.9
22	NPS	26.4	25.7	24.3
23	NPS	38.85	37.7	37.83

Table S6. Diagnostic results of 136 clinical samples by qRT-PCR.

			Ct value	
Number	Sample type –	ORF1	Ν	S
24	NPS	N/A	N/A	N/A
25	NPS	N/A	N/A	N/A
26	NPS	N/A	N/A	N/A
27	NPS	N/A	N/A	N/A
28	NPS	20.4	23.4	21.2
29	NPS	N/A	N/A	N/A
30	NPS	N/A	N/A	N/A
31	NPS	N/A	N/A	N/A
32	NPS	17.3	17.8	15.97
33	NPS	N/A	N/A	N/A
34	NPS	N/A	N/A	N/A
35	NPS	N/A	N/A	N/A
36	NPS	30.17	35.8	34.1
37	NPS	22.5	23.1	24.3
38	NPS	31.3	32.1	30.2
39	NPS	24.58	28.3	25.26
40	NPS	N/A	N/A	N/A
41	NPS	25.2	23.8	24.8
42	NPS	23.1	22.8	21.9
43	NPS	N/A	N/A	N/A
44	NPS	26.19	33.01	27.26
45	NPS	N/A	N/A	N/A
46	NPS	26.47	30.1	26.5
47	NPS	N/A	N/A	N/A

			Ct value	
Number	Sample type –	ORF1	Ν	S
48	NPS	32.2	31.2	27.07
49	NPS	30.2	29.4	28.3
50	NPS	27.3	22.5	29.2
51	NPS	25.3	28.31	27.3
52	NPS	27.9	28.3	21.88
53	NPS	N/A	N/A	N/A
54	NPS	18.4	18.4	15.33
55	NPS	N/A	N/A	N/A
56	NPS	N/A	N/A	N/A
57	NPS	25.11	26.3	26.1
58	NPS	29.95	29.16	28.73
59	NPS	N/A	N/A	N/A
60	NPS	N/A	N/A	N/A
61	NPS	N/A	N/A	N/A
62	NPS	26.3	25.4	25.2
63	NPS	N/A	N/A	N/A
64	NPS	N/A	N/A	N/A
65	NPS	12.52	13.84	11.63
66	NPS	N/A	N/A	N/A
67	NPS	25.3	28.31	24.3
68	NPS	N/A	N/A	N/A
69	NPS	25.26	25.34	26.53
70	NPS	24.85	26.16	24.35
71	NPS	25.1	23.6	26.3

			Ct value	
Number	Sample type –	ORF1	Ν	S
72	NPS	17.3	17.5	16.1
73	NPS	25.1	28.9	25.3
74	NPS	N/A	N/A	N/A
75	NPS	10.57	11.3	11.73
76	NPS	25.2	29.1	24.3
77	NPS	N/A	N/A	N/A
78	NPS	N/A	N/A	N/A
79	NPS	N/A	N/A	N/A
80	NPS	N/A	N/A	N/A
81	NPS	11.13	14.2	12.88
82	NPS	N/A	N/A	N/A
83	NPS	N/A	N/A	N/A
84	NPS	28.73	33.1	29.27
85	NPS	33.2	34.2	31.1
86	NPS	N/A	N/A	N/A
87	NPS	N/A	N/A	N/A
88	NPS	N/A	N/A	N/A
89	NPS	24.88	28.1	23.07
90	NPS	N/A	N/A	N/A
91	NPS	N/A	N/A	N/A
92	NPS	22.7	21.3	21.8
93	NPS	N/A	N/A	N/A
94	NPS	33.2	30.22	28.84
95	NPS	N/A	N/A	N/A

	Sample type –	Ct value		
Number		ORF1	Ν	S
96	NPS	N/A	N/A	N/A
97	NPS	11.56	13.8	11.9
98	NPS	32.7	30.1	33.1
99	NPS	22.1	21.2	25.3
100	NPS	31.43	32.1	32.7
101	NPS	N/A	N/A	N/A
102	NPS	N/A	N/A	N/A
103	NPS	N/A	N/A	N/A
104	NPS	26.8	26.9	27.56
105	NPS	11.69	12.5	12.27
106	NPS	N/A	N/A	N/A
107	NPS	N/A	N/A	N/A
108	NPS	33.7	34.5	33.8
109	NPS	N/A	N/A	N/A
110	NPS	10.14	11.3	11.57
111	NPS	N/A	N/A	N/A
112	NPS	13.35	19.05	13.69
113	NPS	26.8	25.4	26.2
114	NPS	25.2	28.3	25.1
115	NPS	29.19	28.12	29.06
116	NPS	N/A	N/A	N/A
117	NPS	N/A	N/A	N/A
118	NPS	N/A	N/A	N/A
119	NPS	32.7	33.4	31.3

Number	Sample type –	Ct value		
		ORF1	Ν	S
120	NPS	N/A	N/A	N/A
121	NPS	10.59	13.1	12.4
122	NPS	N/A	N/A	N/A
123	NPS	N/A	N/A	N/A
124	NPS	N/A	N/A	N/A
125	NPS	9.37	11.3	10.1
126	NPS	27.15	28.31	29.95
127	Sputum	13.8	14.5	8.7
128	Sputum	33.51	32.92	12.8
129	Sputum	20.3	21.7	20.1
130	Sputum	33.25	34.1	33.2
131	Sputum	14.3	13.8	13.5
132	Sputum	19.8	18.1	20.6
133	Sputum	31.9	32.8	24.8
134	Sputum	32.7	32.58	32.4
135	Sputum	33.11	33.45	15.65
136	Sputum	17.3	19.2	20.1

^aNasopharyngeal swab

^bNot available

Number	T 7 • 4		C _t v	alue
	Variant	Sample type –	RdRP	Ε
1	Delta	NPS	9.81	10.64
2	Delta	NPS	13.81	13.98
3	Delta	NPS	13.38	13.41
4	Delta	NPS	13.65	13.92
5	Delta	NPS	12.89	12.88
6	Delta	NPS	12.32	12.53
7	Delta	NPS	13.83	13.65
8	Delta	NPS	10.28	10.53
9	Delta	NPS	10.35	10.54
10	Delta	NPS	10.42	10.13
11	WT	NPS	9.37	11.37
12	WT	NPS	10.14	11.57
13	WT	NPS	10.57	11.73
14	WT	NPS	10.59	12.03
15	WT	NPS	11.13	12.88
16	WT	NPS	11.56	11.90
17	WT	NPS	11.69	12.27
18	WT	NPS	12.40	12.19
19	WT	NPS	12.52	11.63
20	WT	NPS	13.35	13.69
21	Delta	NPS ^a	24.28	22.19
22	Delta	NPS	18.11	15.34
23	Delta	NPS	17.48	18.23

Table S7. Diagnostic results of 80 clinical samples by qRT-PCR.

Number	.		Ct value		
	Variant	Sample type –	RdRP	Е	
24	Delta	NPS	16.17	15.50	
25	Delta	NPS	18.26	19.25	
26	Delta	NPS	16.85	17.54	
27	Delta	NPS	18.21	16.67	
28	Delta	NPS	21.06	21.23	
29	Delta	NPS	13.72	15.13	
30	Delta	NPS	15.43	15.41	
31	Delta	NPS	13.86	14.42	
32	Delta	NPS	15.62	16.37	
33	Delta	NPS	27.48	24.73	
34	Delta	NPS	15.06	15.17	
35	Delta	NPS	19.65	16.41	
36	Delta	NPS	25.24	25.27	
37	Delta	NPS	19.21	19.56	
38	Delta	NPS	23.79	20.82	
39	Delta	NPS	22.02	20.11	
40	Delta	NPS	18.37	16.37	
41	Delta	NPS	16.83	18.02	
42	Delta	NPS	28.82	30.81	
43	Delta	NPS	20.04	21.40	
44	Delta	NPS	21.29	20.14	
45	Delta	NPS	19.15	19.00	
46	Delta	NPS	14.25	15.10	
47	Delta	NPS	13.73	14.02	

Number	Variant San		C _t value		
		Sample type –	RdRP	Е	
48	Delta	NPS	16.80	16.39	
49	Delta	NPS	11.59	11.89	
50	Delta	NPS	25.20	26.27	
51	Delta	NPS	14.09	13.58	
52	Delta	NPS	18.56	18.80	
53	Delta	NPS	17.74	17.48	
54	Delta	NPS	22.14	21.08	
55	Delta	NPS	30.75	29.74	
56	Delta	NPS	31.73	32.31	
57	Delta	NPS	17.02	16.25	
58	Delta	NPS	16.27	16.30	
59	Delta	NPS	22.67	23.32	
60	Delta	NPS	30.15	26.68	
61	Delta	NPS	28.11	29.87	
62	Delta	NPS	17.45	18.31	
63	Delta	NPS	13.32	16.47	
64	Delta	NPS	18.55	20.15	
65	Delta	NPS	20.10	16.98	
66	Delta	NPS	30.72	32.54	
67	Delta	NPS	25.73	23.69	
68	Delta	NPS	15.13	13.89	
69	Delta	NPS	29.36	28.64	
70	Delta	NPS	18.36	16.58	
71	Omicron	NPS	22.08	20.77	

Number	Variant	Sample type –	Ct value	
			RdRP	Ε
72	Omicron	NPS	16.77	16.95
73	Omicron	NPS	14.81	14.68
74	Omicron	NPS	16.89	15.21
75	Omicron	NPS	29.34	29.24
76	Omicron	NPS	14.85	15.37
77	Omicron	NPS	15.24	15.96
78	Omicron	NPS	23.45	21.7
79	Omicron	NPS	17.3	18.16
80	Omicron	NPS	23.98	24.67

References

[S1] Ventura, B. della; Cennamo, M.; Minopoli, A.; Campanile, R.; Censi, S. B.; Terracciano, D.; Portella, G.; Velotta, R. Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. *ACS Sens.* 2020, 5, 3043-3048.

[S2] Ma, L.; Yin, L.; Li, X.; Chen, S.; Peng, L.; Liu, G.; Ye, S.; Zhang, W.; Man, S. A Smartphone-Based Visual Biosensor for CRISPR-Cas Powered SARS-CoV-2 Diagnostics. *Biosens. Bioelectron.* 2022, 195, 113646.

[S3] Karami, A.; Hasani, M.; Azizi Jalilian, F.; Ezati, R. Conventional PCR Assisted Single-Component Assembly of Spherical Nucleic Acids for Simple Colorimetric Detection of SARS-CoV-2. *Sens. Actuat. B* **2021**, 328 128971.

[S4] Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617-7627.

[S5] Zhang, W. S.; Pan, J.; Li, F.; Zhu, M.; Xu, M.; Zhu, H.; Yu, Y.; Su, G. Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection. *Anal. Chem.* **2021**, 93, 4126-4133.

[S6] Pang, B.; Xu, J.; Liu, Y.; Peng, H.; Feng, W.; Cao, Y.; Wu, J.; Xiao, H.; Pabbaraju, K.; Tipples, G.; Joyce, M. A.; Saffran, H. A.; Tyrrell, D. L.; Zhang, H.; Le, X. C. Isothermal Amplification and Ambient Visualization in a Single Tube for the Detection of SARS-CoV-2 Using Loop-Mediated Amplification and CRISPR Technology. *Anal. Chem.* **2020**, 92, 16204-16212.

[S7] Chen, Y.; Shi, Y.; Chen, Y.; Yang, Z.; Wu, H.; Zhou, Z.; Li, J.; Ping, J.; He, L.; Shen, H.; Chen, Z.; Wu, J.; Yu, Y.; Zhang, Y.; Chen, H. Contamination-Free Visual Detection of SARS-CoV-2 with CRISPR/Cas12a: A Promising Method in the Point-of-Care Detection. *Biosens. Bioelectron.* 2020, 169, 112642.

[S8] Wang, R.; Qian, C.; Pang, Y.; Li, M.; Yang, Y.; Ma, H.; Zhao, M.; Qian, F.; Yu, H.; Liu, Z.; Ni, T.; Zheng, Y.; Wang, Y. OpvCRISPR: One-Pot Visual RT-LAMP-CRISPR Platform for SARS-Cov-2 Detection. *Biosens. Bioelectron.* **2021**, 172, 112766.

[S9] Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C.-Y.; Guevara, H.; Wadford, D. A.; Chen, J. S.; Chiu, C. Y. CRISPR–Cas12-Based Detection of SARS-CoV-2. *Nat. Biotechnol.* **2020**, 38, 870-874. [S10] Ali, Z.; Aman, R.; Mahas, A.; Rao, G. S.; Tehseen, M.; Marsic, T.; Salunke, R.; Subudhi, A. K.; Hala, S. M.; Hamdan, S. M.; Pain, A.; Alofi, F. S.; Alsomali, A.; Hashem, A. M.; Khogeer, A.; Almontashiri, N. A. M.; Abedalthagafi, M.; Hassan, N.; Mahfouz, M. M. ISCAN: An RT-LAMP-Coupled CRISPR-Cas12 Module for Rapid, Sensitive Detection of SARS-CoV-2. *Virus Research* 2020, 288, 198129.

[S11] Farfour, E.; Lesprit, P.; Visseaux, B.; Pascreau, T.; Jolly, E.; Houhou, N.; Mazaux, L.; Asso-Bonnet, M.; Vasse, M. The Allplex 2019-NCoV (Seegene) Assay: Which Performances Are for SARS-CoV-2 Infection Diagnosis? *Eur. J. Clin. Microbiol. Infect. Dis.* **2020**, 39, 1997-2000.

[S12] Tian, B.; Gao, F.; Fock, J.; Dufva, M.; Hansen, M. F. Homogeneous Circle-to-Circle Amplification for Real-Time Optomagnetic Detection of SARS-CoV-2 RdRp Coding Sequence. *Biosens. Bioelectron.* **2020**, 165, 112356.

[S13] Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun,
Y.; Yao, H.; Li, N.; Zhao, H.; Feng, Y.; Liu, S.; Zhang, Q.; Liu, D.; Yuan, J. Rapid and Visual
Detection of 2019 Novel Coronavirus (SARS-CoV-2) by a Reverse Transcription LoopMediated Isothermal Amplification Assay. *Clin. Microbiol. Infect.* 2020, 26, 773-779.

[S14] Rodriguez-Mateos, P.; Ngamsom, B.; Walter, C.; Dyer, C. E.; Gitaka, J.; Iles, A.; Pamme, N. A Lab-on-a-Chip Platform for Integrated Extraction and Detection of SARS-CoV-2 RNA in Resource-Limited Settings. *Anal. Chim. Acta.* **2021**, 1177, 338758.

[S15] He, Y.; Xie, T.; Tong, Y. Rapid and Highly Sensitive One-Tube Colorimetric RT-LAMP Assay for Visual Detection of SARS-CoV-2 RNA. *Biosens. Bioelectron.* **2021**, 187, 113300.

[S16] Ding, S.; Chen, G.; Wei, Y.; Dong, J.; Du, F.; Cui, X.; Huang, X.; Tang, Z. Sequence-Specific and Multiplex Detection of COVID-19 Virus (SARS-CoV-2) Using Proofreading Enzyme-Mediated Probe Cleavage Coupled with Isothermal Amplification. *Biosens. Bioelectron.* **2021**, 178, 113041.

[S17] Crone, M. A.; Priestman, M.; Ciechonska, M.; Jensen, K.; Sharp, D. J.; Anand, A.; Randell, P.; Storch, M.; Freemont, P. S. A Role for Biofoundries in Rapid Development and Validation of Automated SARS-CoV-2 Clinical Diagnostics. *Nat. Commun.* **2020**, 11, 1-11.

[S18] Xun, G.; Lane, S. T.; Petrov, V. A.; Pepa, B. E.; Zhao, H. A Rapid, Accurate, Scalable, and Portable Testing System for COVID-19 Diagnosis. *Nat. Commun.* **2021**, 12, 1-9.

[S19] Zhen, W.; Smith, E.; Manji, R.; Schron, D.; Berry, G. J. Clinical Evaluation of Three Sample-to-Answer Platforms for Detection of SARS-CoV-2. *J. Clin. Microbiol.* **2020**, 58, e00783-20.

[S20] Behrmann, O.; Bachmann, I.; Spiegel, M.; Schramm, M.; Abd El Wahed, A.; Dobler, G.; Dame, G.; Hufert, F. T. Rapid Detection of SARS-CoV-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ). *Clin. Chem.* **2020**, 66, 1047-1054.

[S21] Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat,
P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T.; Athipanyasilp, N.; Eiamthong,
B.; Lakkanasirorat, B.; Phoodokmai, T.; Niljianskul, N.; Pakotiprapha, D.; Chanarat, S.;
Homchan, A.; Tinikul, R.; Kamutira, P. et al. Uttamapinant, C. Clinical Validation of a Cas13Based Assay for the Detection of SARS-CoV-2 RNA. *Nat. Biomed. Eng.* 2020, 4, 1140-1149.