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Reviewer’s Assessment of the Suitibility of Research

Comment Reviewer #1 Response Reviewer #2 Response

1. Is the manuscript technically

sound, and do the data support

the conclusions?

Yes Partly (I have responded below)

2. Has the statistical analysis

been performed appropriately

and rigorously?

Yes Yes

3. Have the authors made all

data underlying the findings in

their manuscript fully available?

Yes Yes

4. Is the manuscript presented in

an intelligible fashion and

written in standard English?

Yes Yes
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Reviewer Comments to the Author

Reviewer #1:

The author showed an interesting problem together with rigorous mathematical arguments.

The manuscript also has an interesting application.

Thank you. I appreciate the compliment and hopefully have addressed remaining questions concerning the

methods, results and writing.

Main points

The paper sets forth the task of examining distributional implications of Lik-

ert response surveys. The latter are widely used accross many social disciplines

such as marketing, opinion polls, economic disciplines and health surveys among

many others. Being discrete categorical metrics, they can not only lose signifi-

cant information from the real-world mappings beliefs, but also generate signif-

icant biases into the statistical analysis. The manuscript sets forth the task of

showing through probabilistic arguments when do Likert scales do what they are

supposed to do and when things can go wrong (strong polarization and beliefs).

Such problems practically disappear when beliefs are Normal beliefs in Likert

scaled surveys. The Normal fit works pretty well under many circumstances.

The manuscript recommends using Likert-scaled surveys to allow minimal bias

and information loss

Author Response

I appreciate that the reviewer has accurately and succinctly synopsized the main results of my research.
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Recommendation

I think the topic is very important for many scientific studies that researchers

know about how to work better using Normal Likert scaled surveys. I think it

would be useful to include some recent literature that have takcled to model

customer preferences from a different perspective to avoid the shortcomings of

loss of information and biases using Likert scales. An example of paper is one

on an alternative Bayesian modelling of Likert distributions such as Reinoso-

Carvalho et al. (2020). They use discrete scale that in practice in contious by

the use of a Bayesian Logit-Normal distribution. In this sense, there has been an

interesting discussion from the Bayesian perspective and literature dealing with

such problems posed by the Likert scales and it would be interesting that the

author fills that discussion in the introduction and motivation of the manuscript

to make it more complete. Based on what was said above I recommend a revise

and resubmit.

Author Response

Thank you for these suggestions. I was not aware of (Reinoso-Carvalho et al. 2020) which is a relatively

recent publication. But I lean towards Bayesian methods wherever they lend themselves to a specific problem.

I have included several paragraphs in the “Conclusions and Discussion” section that summarize (Reinoso-

Carvalho et al. 2020)s methodology and applications. I show how these ideas can be effectively applied in

the context of my current research paper to address the problems I have raised in interpreting Likert-scaled

datasets.

Reviewer #2:

The paper focuses on minimizing the bias and informativeness of Likert metrics distribution

using the Kullback-Leibler divergence, KLD, from the actual responses empirical distribution

and an assumed distribution of respondent beliefs through the information penalty.
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KLD is a divergence measure, not a distance metric. Thus, the order of the two distributions

matters. KLD(Q, P) is not equal to KLD(P, Q). The use of divergence and distance is

confusing. Moreover, in the setup, it is unclear how the order of the distributions is.

Author Response

Thank you for pointing this out. I have addressed this by replacing the KLD metric with a comparable

Jeffreys distance metric in the current revision of my paper (with recalculations for the tables and graphs).

The Jeffreys distance is a symmetrized modification of the KLD metric, 𝐽(1, 2) = 𝐼(1 ∶ 2) + 𝐼(2 ∶ 1) actually

introduced prior to (Kullback and Leibler 1951) paper, in (Jeffreys and Jeffreys 1946). It is a proper distance

metric that satisfies the triangle inequality. I discuss, at greater length below, the revision of my calculations

around Jeffreys’ distance.

The use of the term “divergence” as statistical distances are called, has varied significantly over time, and

current usage was established in (Amari and Nagaoka 2000). (Kullback and Leibler 1951) actually used

“divergence” to refer to the symmetrized divergence already defined and used in (Jeffreys and Jeffreys 1946),

where (Jeffreys and Jeffreys 1946) referred to this as “the mean information for discrimination … per obser-

vation” while (Lindley 1959) referred to the asymmetric function as the “directed divergence.”

Although calling KLD a “distance” is not technically wrong (it is a statistical distance in the normal usage of

the term) I do think there is merit in the reviewers suggestion to use a symmetric measure for this research,

as there may be a question about the ordering of the distributions in calculations. I have recalculated and

restated all of the graphs, tables and results in this new revision in terms of Jeffreys divergence.

I was curious myself whether there was asymmetry in KLD versus the symmetric Jeffreys divergence for my

research dataset. I took my Airline Customer Satisfaction dataset and merged the 15 columns if Likert-scaled

responses into a single variable, and compared these each to a 𝑁𝑜𝑟𝑚𝑎𝑙(3, 1), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(3) and 𝐵𝑒𝑡𝑎(.5, .5)
random variable. Summaries of linear regressions of the Jeffreys distances against KLD show little difference

between Jeffreys divergence and KLD for this dataset.

##

## Call:

## lm(formula = KL_div_norm ~ j_div_norm, data = dist)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -1.027e-16 -6.050e-19 4.000e-21 5.620e-19 6.204e-17

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.000e+00 1.430e-19 0.000e+00 1

## j_div_norm 1.000e+00 5.425e-19 1.843e+18 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.781e-18 on 6186 degrees of freedom

## Multiple R-squared: 1, Adjusted R-squared: 1

## F-statistic: 3.398e+36 on 1 and 6186 DF, p-value: < 2.2e-16
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Figure 1: Comparing Jeffreys divergence to KLD for Airline Customer Statisfaction Dataset

##

## Call:

## lm(formula = KL_div_pois ~ j_div_pois, data = dist)

##

## Residuals:
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## Min 1Q Median 3Q Max

## -7.43e-17 -4.50e-18 -1.00e-18 2.10e-18 7.65e-15

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.355e-16 3.073e-18 -4.409e+01 <2e-16 ***

## j_div_pois 1.000e+00 9.909e-18 1.009e+17 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.763e-17 on 6186 degrees of freedom

## Multiple R-squared: 1, Adjusted R-squared: 1

## F-statistic: 1.018e+34 on 1 and 6186 DF, p-value: < 2.2e-16
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Figure 2: Comparing Jeffreys divergence to KLD for Airline Customer Statisfaction Dataset

##

## Call:

## lm(formula = KL_div_beta ~ j_div_beta, data = dist)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -8.635e-14 1.000e-18 1.400e-17 2.800e-17 1.130e-15

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.619e-15 3.576e-17 -7.325e+01 <2e-16 ***

## j_div_beta 1.000e+00 7.289e-17 1.372e+16 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.098e-15 on 6186 degrees of freedom

## Multiple R-squared: 1, Adjusted R-squared: 1

## F-statistic: 1.882e+32 on 1 and 6186 DF, p-value: < 2.2e-16
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Figure 3: Comparing Jeffreys divergence to KLD for Airline Customer Statisfaction Dataset

The assumed distributions used in the paper are standard for the beliefs. However, in real

applications, the implementation of much more complex distributions is appropriate and

natural. For example, a mixture of distributions, zero-inflated distributions, among others.

Author Response
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I agree with the reviewer’s assertion “… assumed distributions used in the paper are standard for the beliefs”

and indeed the fact that such assumptions may be inappropriate for a given dataset is one of the main

motivations of this research. Mixture and zero-inflated distributions of the observations (versus theoretical

assumptions) are, indeed quite common, if not the norm in Likert-scaled datasets. They come about because

of, among other things, tribalism (mixture distributions) and belief polarization (zero-inflated distributions).

Though they may exist, I haven’t seen a study that interprets Likert-scaled observations with anything but a

Gaussian assumption (not that these don’t exist; I just haven’t come across one). One reason for this may be

that a major portion of survey research is conducted by researchers who rely (blindly perhaps) on accessible

statistical software. Indeed, complex causal chains are commonly addressed via structural equation model

or regression model software that rely on an underlying assumptions of Gaussian data.

Polarized responses are quite common in research on political and social issues in North America, and thus

the problem addressed is an important one. They may be modeled as zero-inflated Gaussian or Poisson

distributions, though too often no accommodations are made at all for the analysis for the zero-inflated data.

Survey bias towards boundary-inflated responses among polled Americans, and midpoint-inflated responses

among Asians have been repeatedly documented and called out as a challenge to survey based research (e.g.,

see (Lee et al. 2002), (Grandy 1996) and (Wang et al. 2008)) with the Pew Research Center (Gao 2016)

describing such bias as a major challenge to democracy and a consistent problem in their surveys.

How should we interpret Likert-scaled data when we have strong evidence that its distribution is zero-inflated,

or otherwise highly non-Gaussian? (Reinoso-Carvalho et al. 2020) have successfully applied a Bayesian multi-

response version of the multivariate logit-normal regression model to interpret complex sensory data. I think

(Reinoso-Carvalho et al. 2020)’s methodology offers a generalized, though more complex and computationally

intensive, method for extracting relevant information from Likert datasets that are highly non-Gaussian.

Cross-sensory response research in (Reinoso-Carvalho et al. 2020), specifically studies in the human taste

response to music, has pioneered Bayesian alternatives to frequentist analysis of Likert-scaled data. In

(Reinoso-Carvalho et al. 2020) a sample of 1611 participants tasted one sample of chocolate while listening

to a song that evoked a specific combination of cross-modal and emotional consequences. The researchers ad-

dressed difficulties in interpreting frequentist statistical tests using discrete, categorical responses by applying

a Bayesian model to quantify the information content of a response. The approach used in (Reinoso-Carvalho

et al. 2020) is well suited to sentiment analysis problems that have long been analyzed using structural equa-

tion models and frequentest Neyman-Pearson hypothesis tests (Westland 2019), (Sarstedt and Ringle 2020).

Data collected for (Reinoso-Carvalho et al. 2020) study showed strong non-symmetric behavior among the

bounded scales, with large numbers of respondents selecting extreme values close to the boundaries, which
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contradicted the assumptions of traditional multivariate regression approaches to analysis, because residuals

could not be Gaussian distributed were responses at the boundaries of the response space.

In order to overcome this problem (Reinoso-Carvalho et al. 2020) remapped each outcome 𝑗 for each in-

dividual 𝑖 into a unit (0, 1) range. They then used Bayesian, multi-response, multivariate, logit-normal

distribution with outcome-specific intercepts and slopes, and common covariance structure across outcome

measures, following the methodology in (Lesaffre, Rizopoulos, and Tsonaka 2007). The logit-normal distri-

bution can take a variety of shapes, e.g., U-shapes and J-shapes. More importantly, they are designed to

specifically address the zero-inflated data distributions that arise in particularly polarized survey responses.

A Bayesian multi-response version of the multivariate logit-normal regression model was used in (Reinoso-

Carvalho et al. 2020). Outcome-specific intercepts and slopes were needed since the association of each

co-variate with each of the responses could significantly differ. They also take advantage of the inherent

high-correlation of responses due to individual consistency in responses, and to social and cultural clustering

of beliefs (and responses) in survey data, through joint modeling of all the outcomes, allowing the borrowing

of information between responses.

Their Bayesian multi-response version of the multivariate logit-normal regression model provides a flexible,

scalable and adaptive model where reliance on the central limit theorem can be questionable. Additionally,

where available, they provide a natural form to incorporate any prior information available, either from prior

studies or from expert opinion. The transformations specified in (Reinoso-Carvalho et al. 2020) result in

a model error term (representing features not captured by the data) which is multi-Normal, allowing for

analysis with available statistical software.

Under the complexity issue, the Hessian matrix is singular, which leads to the impossibility

of measuring the information penalty. Therefore, in this situation, the solution requires the

application of different methods.

Author Response

It is important not to confuse the theoretical and observed Fisher Information matrices. Fisher information

measures the amount of information that an observable random variable carries about an unknown parameter

of a distribution that models that random variable. Formally, it is the variance of the score, or the expected

value of the observed information. It always exists because it is based on actual measurements. It can be

derived as the Hessian of the relative entropy.
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It is essential to differentiate between the theoretical and observed Fisher Information matrices. The negative

Hessian evaluated at the MLE corresponds to the observed Fisher information matrix evaluated at the MLE.

It is incorrect to say that the observed Fisher information can be found by inverting the (negative) Hessian.

The inverse of the (negative) Hessian is an estimator of the asymptotic theoretical covariance matrix, and

the square roots of the diagonal elements are estimators of the standard errors. The theoretical Fisher

information matrix is based on the Fisher information metric theorem which proves that KL-divergence is

directly related to the Fisher information metric, with the Fisher Information Matrix being the Hessian of

Kullback–Leibler divergence (KLD) between two (ideal) distributions.

Formally, let 𝑙(𝜃) be a log-likelihood function and theoretical Fisher information matrix 𝐼(𝜃) be a symmetrical

(𝑝 × 𝑝) matrix containing the entries 𝐼(𝜃) = - 𝜕2
𝜕𝜃𝑖𝜕𝜃𝑗

𝑙(𝜃) for 1 ≤ 𝑖, 𝑗 ≤ 𝑝

The Hessian is defined as 𝐻(𝜃) = 𝜕2
𝜕𝜃𝑖𝜕𝜃𝑗

𝑙(𝜃) for 1 ≤ 𝑖, 𝑗 ≤ 𝑝 and is the matrix of second derivatives of the

likelihood function with respect to the parameters. It follows that if you minimize the negative log-likelihood,

the returned Hessian is the equivalent of the observed Fisher information matrix whereas in the case that

you maximize the log-likelihood, then the negative Hessian is the observed information matrix.

The observed Fisher information matrix is 𝐼( ̂𝜃𝑀𝐿) the information matrix evaluated at the maximum like-

lihood estimates (MLE). The second derivative of the log-likelihood evaluated at the maximum likelihood

estimates (MLE) is the observed Fisher information (Pawitan 2001) . This is exactly what the optimization

algorithms used in this research, like optim in R, return: the Hessian evaluated at the MLE. When the

negative log-likelihood is minimized, the negative Hessian is returned. The estimated standard errors of the

MLE are the square roots of the diagonal elements of the inverse of the observed Fisher information matrix.

That is, the square roots of the diagonal elements of the inverse of the Hessian (or the negative Hessian) are

the estimated standard errors.

The inverse of the Fisher information matrix is an estimator of the asymptotic covariance matrix 𝑉 𝑎𝑟( ̂𝜃𝑀𝐿) =
[𝐼( ̂𝜃𝑀𝐿)]−1 and the standard errors are then the square roots of the diagonal elements of the covariance

matrix.

The main reason to be concerned with singularities in computing Fisher Information has to do with the

asymptotics – a singularity implies that the usual √(𝑛)( ̂𝜃 − 𝜃) 𝐷−→ 𝑁[0, 𝐼( ̂𝜃) − 1] is not valid. Alternative

formulations are provided in (Rotnitzky et al. 2000) and give the generalized asymptotic distributions,

dependent on a parameter 𝑠 and its parity (odd/even), where 2𝑠 + 1 is the number of derivatives of the

likelihood. (Rotnitzky et al. 2000) provides a unified theory for deriving the asymptotic distribution of the

MLE and of the likelihood ratio test statistic when the information matrix has rank one less than full and
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the likelihood is differentiable up to a specific order. This is important since the likelihood ratio test uses

the asymptotic distribution.

It is unclear how is designed the strategy to set optimally the hyper-parameters of the ideal

belief distribution.

Author Response

I was not too sure to which part of the paper the reviewer was specifically referring, but I believe it was

to the illustrative examples in section 2. My intention is to show what biases and information losses can

possibly be introduced into the standard methods of interpreting

Section 2 was intended to be illustrative, and the parameter settings were designed to illustrate potentially

extreme situations that could occur in the data. It wasn’t really my intention to explore a parameter space,

as say one might do in optimization or machine learning. Instead, the Airline database provides a real world

benchmark for parameters that highlights the situations most likely to be encountered in practice.

I have made this clear in the current revision of my paper.

The empirical application is outstanding and informative, from which the minimal information

loss found is under Normal beliefs in Likert scaled surveys.

Author Response

Thank you for the kind words. I hope that this revision clears up any remaining questions the reviewers may

have.
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