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Figure S1: (a) The PAIRWISE SLICE ALIGNMENT PROBLEM aims to find a mapping Π = [πij ]
between spots in one slice and spots in another slice while preserving the gene expression and
the spatial distances of mapped spots. (b) The CENTER SLICE INTEGRATION PROBLEM aims
to infer a “center" slice consisting of a low rank expression matrix X = WH and a collection
Π(1), . . . ,Π(t) of mappings from the spots of the center slice to the spots of each input slice.

S1.1 Finding optimal rotation for spatial coordinates

In this section, we seek to find a rotation and translation that of the spatial coordinates of one
slice that minimizes the distances to the spatial coordinates of the other slice given a mapping.
The problem of finding rotation and translation that minimizes the distances between matched set
of points is a well know problem in several research fields [15, 8]. In 2d the problem is often
called called Procrustes analysis, a more general linear algebra problem is called the Orthogonal
Procrustes problem, and the vector weighted version is called Wahba’s problem [15]. In chem-
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istry/biology the solution to the 3d problem is called the Kabsch algorithm [8]. The 2d solution
is based on finding the rotation angle while the general case (which also works in 2d) looks for a
rotation matrix, thus it also supports reflection.

Our problem is a variation of this problem since we have a probabilistic alignment between the
spots given by the mapping Π.

Problem S1. Given ST slices with spatial coordinates Z ∈ R2×n and W ∈ R2×n′
and a mapping

Π ∈ Γ(g, g′), find a vector t ∈ R2 and a rotation matrix R ∈ R2×2:

Q(t, R) =
∑
i,j

πij ∥z·i −Rw·j − t∥2. (S1)

We first show that we can assume that no translation is needed (t = 0) by centering the spatial
coordinates Z and W . Assuming R is fixed, we can find the optimal translation by taking the
derivative of Q w.r.t. t and comparing to zero:

∂Q

∂t
= −2

∑
i,j

πij(z·i −Rw·j − t)

= −2
∑
i

z·i
∑
j

πij + 2
∑
j

w·j
∑
i

πij + 2t
∑
i,j

πij

= −2
∑
i

z·igi + 2
∑
j

w·jg
′
j + 2t = 0

We have t̂ = Zg −Wg′. By replacing the spatial coordinates z·i with z·i − Zg and the spatial
coordinates w·j with w·j −Wg′ we get Q =

∑
i,j πij ∥z·i −Rw·j∥2. Therefore, centering both

spatial coordinates removes the need to find a translation and we are only left with finding the
optimal rotation.

We rewrite the objective Q in matrix notation:

Q =
∑
i,j

πij ∥z·i −Rw·j∥2

=
∑
i,j

πij(z
T
·i z·i + wT

·jR
TRw·j − zT·iRw·j − wT

·jR
T z·i)

= −2
∑
i,j

πij(z
T
·iRw·j) + α

= −2Tr(ZTRWΠT ) + α

= −2Tr(RWΠTZT ) + α

where α us a constant independent of R.
We find the optimal rotation R that minimizes Q using SVD similar to the solution to Wahbs’s

problem [11]. Let UΣV T be the SVD decomposition of WΠTZT . Form the cyclic property of the
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trace operator, we have that

Q = −2Tr(RUΣV T ) + α

= −2Tr(ΣV TRU) + α

Notice that Σ is a positive diagonal matrix and since V , R and U are orthonormal, V TRU is
also an orthonormal matrix. Therefore, the objective Q is minimized when the trace of V TRU is
maximal which is attained when V TRU = I . We have R = V UT . We note that R may also do
reflection in addition to rotation when det(R) = −1.

An alternative derivation for the 2d case is done similar to Procrustes analysis. We write the
rotation matrix as a function of the rotation angle θ:

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Taking the derivative of Q with respect to θ and comparing to zero gives:

∂Q

∂θ
= −2Tr

(∂R(θ)

∂θ
WΠTZT

)
= −2Tr

((− sin(θ) − cos(θ)
cos(θ) − sin(θ)

)
WΠTZT

)
= 0

Dividing by cos(θ) and extracting θ we have:

θ̂ = arctan
(Tr((

0 −1
1 0

)
WΠTZT

)
Tr(WΠTZT )

)
Note that with this derivation, we allow a rotation of the coordinates but not reflection.

S1.2 Block Coordinate Descent algorithm for CENTER SLICE INTEGRATION PROB-
LEM

To solve the CENTER SLICE INTEGRATION PROBLEM, we propose a Block Coordinate Descent
algorithm (Algorithm 1):
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Algorithm 1: Block Coordinate Descent algorithm for CENTER SLICE INTEGRATION PROBLEM

1 Initialize W,H and set r ←∞
2 repeat
3 r′ ← r
4 for q ← 1 to t do
5 Solve PAIRWISE SLICE ALIGNMENT PROBLEM:

Π(q) ← argmin
Π∈Γ(g,g(q))

F (Π ; WH,D,X(q), D(q), c, α)

6 end
7 Solve CENTER MAPPING NMF PROBLEM: W,H ← argmin

W≥0,H≥0

∑
q λq

∑
i,j c(WH·i, x

(q)
·j )π

(q)
ij

8 r ← R(W,H,Π(1), . . .Π(t))

9 until r′ − r < ϵ;

The problem of finding the optimal W and H given the current mappings Π(1), . . . ,Π(t) re-
duces to a new problem we call the CENTER MAPPING NMF PROBLEM:

CENTER MAPPING NMF PROBLEM. Given t expression matrices X(1) ∈ Rp×n1
+ , . . . , X(t) ∈

Rp×nt
+ , t mapping matrices Π(1) ∈ Γ(g, g(1)), . . .Π(t) ∈ Γ(g, g(t)) , an expression cost function c,

a distribution λ ∈ Rt
+ and parameters 0 ≤ α ≤ 1, m ∈ N find two low rank matrices W ∈ Rp×m

+

and H ∈ Rm×n
+ such that X = WH minimizing the following objective:

S(W,H) =
∑
q

λq

∑
i,j

c(WH·i, x
(q)
·j )π

(q)
ij (S2)

Solving the CENTER MAPPING NMF PROBLEM is motivated by finding a low rank expression
matrix X = WH that maximizes the likelihood of the following generative model when g = 1

n1n
and λ = 1

t1t:

• The random variables of the number of transcripts x
(q)
lj of a gene l in spot j in slice q are

independent given WH,Π(1), . . . ,Π(t).

• The number of transcripts x(q)lj of a gene l in spot j in slice q given that it was generated from

spot i in the consensus slice has a distribution x
(q)
lj |WH,π

(q)
ij ∼ Poisson(nπ(q)

ij [WH]li).

• Therefore, the total number x(q)lj of transcripts of a gene l in spot j in slice q is x(q)lj |WH,Π(q) ∼
Poisson(n

∑
i π

(q)
ij [WH]li).
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The negative log likelihood of the model is

− log(Pr(X(1), . . . , X(t) ; W,H,Π(1), . . . ,Π(t))) =
∑
q

∑
j

∑
l

[∑
i

n[WH]liπ
(q)
ij − x

(q)
lj log(n

∑
i

π
(q)
ij [WH]li)

]
+ β

≤
∑
q

∑
j

∑
l

[∑
i

n[WH]liπ
(q)
ij −

∑
i

nπ
(q)
ij x

(q)
lj log([WH]li)

]
+ β

= nS(W,H) + β′

where β and β′ are constants independent of W and H . The second transition follows from Jensen’s
inequality. Therefore, minimizing S(W,H) with respect to W,H maximizes the likelihood of this
probabilistic model.

As stated in the following theorem, the CENTER MAPPING NMF PROBLEM is equivalent to
the problem of finding a weighted NMF [4] of the matrix X̄ =

∑
q λqX

(q)Π(q)T diag(1g ), where
diag(1g ) is an n× n matrix with 1

gi
on the diagonal and zero for all other entries.

Theorem 1. Let X̄ =
∑

q λqX
(q)Π(q)T diag(1g ). We have,

S(W,H) =
∑
i

gic(WH·i, x̄·i) + τ

where c(u, v) = ∥u− v∥2 or c(u, v) = gKL(v||u) =
∑

l vl log
vl
ul
− vl + ul or c(u, v) =

KL(v||u) =
∑

l vl log
vl
ul

, and τ is a constant that does not depend on W,H .

Proof. Denote by X = WH . We first prove the theorem for the Euclidean distance c(u, v) =

∥u− v∥2. We write the objective function explicitly and simplify it using
∑

j Π
(q)
ij = gi and∑

q λq = 1.

S(W,H) =
∑
q

λq

∑
i

∑
j

∥∥∥x·i − x
(q)
·j

∥∥∥2 π(q)
ij

=
∑
q

λq

∑
i

∑
j

x·i
Tx·iπ

(q)
ij − 2x·i

Tx
(q)
·j π

(q)
ij + β

=
∑
i

x·i
Tx·i

∑
j

π
(q)
ij

∑
q

λq − 2
∑
i

∑
j

x·i
T
∑
q

λqx
(q)
·j π

(q)
ij + β

=
∑
i

gix·i
Tx·i − 2Tr(XT

∑
q

λqX
(q)Π(q)T ) + β

= Tr(XTX diag(g))− 2Tr(XT
∑
q

λqX
(q)Π(q)T diag(

1

g
) diag(g)) + β

= Tr
(
(XTX − 2XT X̄

)
diag(g)) + β

=
∑
i

gi ∥x·i − x̄·i∥2 + β′
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where β and β′ are constants that do not depend on W,H .
Next, we prove the theorem for the generalized KL divergence c(u, v) = gKL(v||u) =∑

l vl log
vl
ul
− vl + ul. Again, we write the objective function explicitly and simplify it:

S(W,H) =
∑
q

λq

∑
i

∑
j

[∑
l

xli − x
(q)
lj − x

(q)
lj log(xli) + x

(q)
lj log(x

(q)
lj )

]
π
(q)
ij

=
∑
q

λq

∑
i

∑
j

[∑
l

xli − x
(q)
lj log(xli)

]
π
(q)
ij + γ

=
∑
i

∑
l

[
xli

∑
j

π
(q)
ij

∑
q

λq − log(xli)
∑
j

∑
q

λqx
(q)
lj π

(q)
ij

]
+ γ

=
∑
i

gi
∑
l

[
xli − x̄li log(xli)

]
+ γ

=
∑
i

gigKL(x̄·i||x·i) + γ′

where γ and γ′ are constants that do not depend on W,H . This derivation also shows the Theorem
holds for the KL divergence c(u, v) = KL(v||u) =

∑
l vl log

vl
ul

.

As a result of Theorem 1, we can solve the CENTER MAPPING NMF PROBLEM using an
algorithm for weighted NMF such as the iterative update scheme of [4]. When the distribution g of
the spots in the center slice is a uniform distribution, i.e. g = 1

n1n, the CENTER MAPPING NMF

PROBLEM reduces to a traditional NMF [9] of the matrix X̄ = n
∑

q λqX
(q)Π(q)T .

We initialize W,H in Algorithm 1 by running NMF on one of the input slices. We stop the
iterations of Algorithm 1 when the improvement in the objective function is less than ϵ = 10−3.
We observed in both our simulated and real data experiments that the algorithm converges to a
stationary point with no change in the objective function within a few iterations. Algorithm 1
outputs the low dimensional representations matrices W,H , the low rank expression matrix X =

WH , the mappings Π(1), . . . ,Π(t) and the full rank expression matrix X̄ = n
∑

q λqX
(q)Π(q)T .

S1.3 Initial alignment based on spatial coordinates only

We noticed that in some cases, the conditional gradient procedure used to solve the optimal trans-
port (OT) problems gets stuck in a local minima close to an initial uniform alignment solution
πij = 1

nn′ that assigns all pairs of spots the same value (Supplementary Figure S18). To address
this issue, we provide an option in the PASTE software for the user to input an alignment Π that
will be used as an initial solution to the OT solver. We found that a heuristic for initializing the
OT solver based on an alignment found using the only the spatial coordinates improves the perfor-
mance of PASTE for some datasets. In this heuristic, we solve an optimization problem that seeks
to find a rotation of the spatial coordinates in one slice that minimizes the Wasserstein OT between

7



the spots of the two slices where the distance is measured according to the spatial distances be-
tween the spots. We run PASTE with and without this initialization and take mapping that gives
the minimum objective function value.

Similar to Supplementary Section S1.1, we assume without loss of generality that we are given
centered spatial coordinates Z ∈ R2×n and W ∈ R2×n′

such that Zg = (0, 0)T and Wg′ =
(0, 0)T .

Problem S2. Given ST slices with centered spatial coordinates Z ∈ R2×n and W ∈ R2×n′
,find a

mapping Π ∈ Γ(g, g′) and a rotation matrix R ∈ R2×2:∑
i,j

πij ∥z·i −Rw·j∥2. (S3)

Alvarez-Melis et al. proposed an alternating optimization procedure to solve a more general
version of Problem S2 [2]. Namely, given a fixed rotation R, the problem boils to a standard
Wasserstein OT problem, while given a fixed transportation matrix Π, the problem becomes a gen-
eralized Procrustes problem (Supplementary Section S1.1). Although Alvarez-Melis et al. show
this Problem S2 is equivalent to Gromov OT, we found that using this formulation is easier to
optimize empirically.

S1.4 Generating simulated spatial transcriptomics data

We generated simulated ST data by resampling from real ST using the following procedure.

1. Let µ = 1
n

∑
li xli be the empirical mean of the total read count and be v = 1

n

∑
i(µ −∑

l xli)
2 the empirical variance of the total read count. We select ki total read counts ac-

cording to ki ∼ NegativeBinomial(r, p), where r = # of successes and p = probability of
success (the same parameterization as Numpy’s function). Next, we let r = µ2

v−µ and p = µ
v ,

such that the E(ki) = µ, var(ki) = v respectively.

2. Generate an expression profile x′·i for spot i according to x′·i ∼ Multinomial(ki,
x·i+δ1p∑
l xli+δp),

where δ is a small pseudocount.

3. Generate rotated coordinates v·i = z·iΘ, where Θ is a rotation matrix with an angle θ. Then,
coordinates z′·i = y·ĵ are mapped to the closest spot on the array grid ĵ = argminj ∥v·i − y·j∥.
If the grid spot y·ĵ was already mapped to a previous tissue spot, spot i is discarded.

We note that due to step 3, the simulation procedure does not simply rotate the coordinates using a
linear transformation. Since we restrict spot locations in our simulation to a specified grid, some of
the spots of the real tissue used for simulation move their location to the closest grid spot and some
get dropped. This procedure produces spot pairs that may be closer or farther on the simulated ST
slice than they had been in the real data. In addition to the spatial variation introduced by step 3,
the pseudocount parameter δ serves as a noise factor for the gene expression data. Intuitively, with
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higher values of δ, the simulated counts become more uniform across the genes and thus are less
informative. We denote by i ∼ j a spot i in the original slice and a spot j in the simulated slice
that are mapped to one another.

S1.5 Spatial Transcriptomic Data Processing

For each ST slice, we remove spots (genes respectively) that do not contain enough transcript reads
across all genes (spots respectively). We choose a relatively conservative gene filtering strategy,
removing only genes that have low total counts across all spots since we did not want to bias
PASTE by selecting an informative set of genes such as highly variable genes. We also tried to
be conservative in removing spots in order to retain spatial structure. For example, the maximum
number of spots removed from a slice in the DLPFC dataset was 127 spots, corresponding to 3%
of the spots, however the median number of removed spots across all slices was only 26 (out of
4000 spots). We report in Table S1 the minimum number of reads to retain spots/genes and the
remaining number of spots/genes in each slices after preprocessing.

Dataset Min reads per spot Min reads per gene Remaining spots Remaining genes

Breast cancer [13] 100 15 251–264 7453–7998
SCC [7] 100 15 588–709 7369–12241

DFLPC [12] 100 100 3431–4786 9256–12381

Table S1: The minimum number of reads required to retain spots/genes in each dataset and the
number of spots/genes remaining in each slice after preprocessing. Spots and genes that had less
than these total number of reads in a slice were removed. The remaining spots and genes in each
dataset are also reported.

S2 Supplementary results and analyses

S2.1 Supplementary results for simulated data

S2.1.1 Comparison of PASTE to Scanorama on ST alignment simulation

We compared PASTE to an scRNA-seq integration method Scanorama [6] on simulated spatial
transcriptomics data. Scanorama integrates gene expression information by resolving noise and
batch effects between two or more datasets. Scanorama is not designed to output a matching be-
tween cells from RNAseq data, though it does relies on inferring nearest neighbors between cells in
the given data sets. To directly compare Scanorama with PASTE in PAIRWISE SLICE ALIGNMENT,
we calculated an alignment between spots of the different slices by finding a mapping that mini-
mizes the Wasserstein optimal transport distance, where the transportation cost between the spots
is taken as the Euclidean distance between the spots in the integrated gene expression datasets from
Scanorama.
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To compare to CENTER SLICE INTEGRATION, we ran Scanorama on the three simulated gene
expression matrices of the ST slices to obtain X̃(q), a batch corrected expression matrix for each
slice q. Next, we compared the average difference between the true center expression matrix X
and the corrected expression matrices X̃(q) from Scanorama to the difference between the true
expression matrix X and the integrated slice computed by PASTE; in both cases the difference
between the matrices was computed using the KL divergence.
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Figure S2: Distribution of the proportion of nonzero transcript counts per spot for the original
four slices of breast cancer dataset [13] compared to simulated slices with varying pseudocount.
Each simulated slice has n = 254, 251, 264, 262 spots for Slice A, B, C, D respectively. The boxes
correspond to the 25%, 50% and 75% quantiles and the whiskers correspond to the 1.5 interquantile
range.
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c

Patient 2 Patient 5 Patient 9 Patient 10

Slices A, B 1.968 1.88 1.934 2.019

Slices B, C 1.986 1 2.102 1.742

SCC Pairwise

d SCC Center

Patient 2 Patient 5 Patient 9 Patient 10

Center, Slice A 1 1 1 1

Center, Slice B 1.968 1.88 1.934 2.019

Center, Slice C 1.956 1.88 2.031 1.758

a

Slice A Slice B Slice C Slice D

Mixed 1.862 1.872 1.856 1.877

Gene Exp Only 1.862 1.872 1.856 1.877

Spatial Only 1.862 1.872 1.856 1.877

Simulation Pairwise

b Simulation Center

Slice A Slice B Slice C Slice D

Center, Slice S1 1.862 1.860 1.867 1.877

Center, Slice S2 1.862 1.872 1.856 1.877

Center, Slice S3 1 1 1 1

Figure S3: Sparsity of the mappings Π calculated in pairwise and center alignment by PASTE. We
report the average number of nonzero values per row. a) We report the sparsity of Π between a
given breast cancer Slice A - D and its respective simulated slice via pairwise alignment. b) For
each breast cancer Slice A-D, we simulate 3 slices (S1 - S3) and infer a center slice. Next, we
report the sparsity of Π between the center slice and each slice S1 - S3. c) We report the sparsity
of Π between each consecutive slices for each patient in the SCC dataset. d) We report the sparsity
of Π between the inferred center slice and each original slice for each patient in the SCC dataset.
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a Original
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b Rotation π/6 

c Rotation π/3 
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d Rotation 2π/3 
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Figure S4: Spatial organization of spots used in center slice alignment simulation of slice B from
the breast cancer dataset [13]. (a) Original spatial organization of spots in slice B of breast cancer
dataset. (b) - (d) Simulated spatial structures obtained by rotating (a) by π

6 ,
π
3 ,

2π
3 respectively.
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Figure S5: PASTE results on center slice integration of simulated ST slices based on four slices of
breast cancer dataset [13].
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Figure S6: PASTE results on center slice integration of simulated ST slices compared to Scanorama
and PASTE based on four slices of breast cancer dataset [13]. Each value is averaged over 10
simulations.
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S2.2 Supplementary results for SCC data

a Patient 2 b Patient 5

c Patient 9 d Patient 10
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Figure S7: Stacked 3D slices alignment results on SCC data. slices are color coded according to
published cluster labels from [7]. The spatial coordinates of slices were aligned using mappings
calculated by PASTE with Procrustes analysis (Section S1.1). The the x, y coordinates are in
0.1mm scale while the scale of z coordinate was changed for illustrative purposes.
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a Patient 2, Slice A b Patient 9, Slice A
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Figure S8: Histogram of spatial entropies. Given the cluster assignments for a slice, we calculated
the spatial entropy for 1000 random permutations of cluster labels on the spots. This distribution
was used to calculate a spatial entropy z-score for the real slice. (a) Histogram of spatial entropies
for patient 2, slice A. (b) Histogram of spatial for patient 9, slice A.

S2.2.1 Effect of Downsampled SCC data on Spatial Coherence

We evaluated the effect of the read depth on the spatial coherence of clustering of the SCC ST
data and the alignment accuracy of PASTE. We performed downsampling of the raw counts for
ST slices of SCC Patient 2 with various fractions of the total read count and clustered the lower
coverage expression. Specifically, we resampled the gene expression profile x′·i of spot i generating
a fraction r ∈ [0, 1] out of the total read count ki by sampling from a multinomial distribution. That
is, x′·i ∼ Multinomial(kir, x·i+1δ∑

l xli+pδ ), where ki is the total read count of spot i, δ = 0.1 is a small
pseudocount, and r ∈ [0, 1] is the fraction of total reads sampled. We cluster all downsampled
spot counts across all slices using the same analysis pipeline as in [7]. Given the cluster labels of
the spots, we calculate the spatial coherence score for each slice and align adjacent downsampled
slices using PASTE to calculate the proportion of aligned spots that are mapped to the same cluster
across slices.

We observe that lower sequencing depth results in lower spatial coherence scores of clusters
(Figure S9a). This is consistent with our observation that patients 5, 9, and 11, which have less than
half the read depth of patient 2, have lower spatial coherence scores using the published clusters
for these patients (Figure 3f). Moreover, this result supports our hypothesis that the lower spatial
coherence scores of the other three patients are in part due to their lower read depth. Additionally,
we see that higher spatial coherence score results in higher cluster mapping accuracy in pairwise
alignment of adjacent slices by PASTE (Figure S9b). This is also consistent with our analysis of
the spatial coherence scores of the published clusters that showed that higher spatial coherence
scores in patient 2 are associated with higher mapping accuracy.
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Figure S9: Results of downsampling slices from patient 2 from the SCC data with varying fractions
of total reads. (a) The spatial coherence score as a function of the proportion of reads sampled.
Error bars show the 95% confidence interval of the mean over 5 samples. “Original” are the clusters
from [7] (b) The average spatial coherence and average proportion of spots mapped to the same
cluster from PASTE ’s alignment. The average is computed across the five samples from each slice.

S2.2.2 Squamous cell carcinomia (SCC) Visium Data

We evaluated PASTE on an additional SCC patient from [7] that has two slices of ST data obtained
using the newer, higher-resolution Visium platform [1]. The dataset has a higher number of spots
per slice (722 and 674) and a higher number of transcripts per spot (16847 median) compared to
the earlier ST platform used in patients 2, 5, 9, and 10. Consistent with the ST analysis of the first
four patients, we find that the center slice inferred by PASTE gives more spatially coherent clusters
than the clusters obtained on individual slices (Supplementary Figure S10).
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Figure S10: Center slice integration results on SCC Visium data [7]. (a) Spatial coherence com-
parison between center slice and real slices for patient 4. (b) Distribution of cluster-labeled spots
in the inferred center slice of patient computed by PASTE. (c) Distribution of cluster-labeled spots
in slice A of patient 4. (d) Distribution of cluster-labeled spots in slice B of patient 4.

S2.3 PASTE alignment of ST data from spinal cord

We applied PASTE to analyze an ST dataset from the human spinal cord [10]. These tissue slices
have a fairly symmetric spatial organization, and thus this dataset is a good test of PASTE’s ability
to handle spatial symmetry. We performed three pairwise alignments with PASTE: (1) Alignment
of the first slice (Slice A) to the second slice (Slice B); (2) Alignment of Slice A to a horizontal
flip of Slice B; (3) alignment of Slice A to a vertical flip to Slice B (Supplementary Figure S11).
To distinguish between the symmetrical alignments, we artificially relabled spot annotations of the
two sides of symmetrical regions (e.g. vent horn and dors horn) and used these annotations to
calculate the alignment accuracy between slices (Supplementary Figure S11). We did not observe
changes in the accuracy between the original slice pairs and the flipped ones, showing that PASTE
is robust to samples with natural, but imperfect, spatial symmetry (Supplementary Figure S12). In
addition, we observe that running PASTE without spatial information (α = 0) gives substantially
lower accuracy (Supplementary Figure S12). This shows that spatial information is very useful
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to correctly align symmetrical tissues, and that restricting to transcriptional information alone may
result in incorrect alignments as spots may be equally likely to be mapped to either side of an axis
of symmetry.

a bSlice A (Original) Slice B (Original)

c Slice B (Flip Horizontal) d Slice B (Flip Vertical)

spatial1

sp
a
ti
a
l2

Cent_Can
Dors_Edge
Dors_Horn
Dors_Horn_other
Dors_Med_White
Lat_Edge
Med_Grey
Med_Lat_White
Undefined
Vent_Edge
Vent_Horn
Vent_Horn_other
Vent_Lat_White
Vent_Med_White

spatial1
sp
a
ti
a
l2

Cent_Can
Dors_Edge
Dors_Horn
Dors_Horn_other
Dors_Med_White
Lat_Edge
Med_Grey
Med_Lat_White
Undefined
Vent_Edge
Vent_Horn
Vent_Horn_other
Vent_Lat_White
Vent_Med_White

spatial1

sp
a
ti
a
l2

Cent_Can
Dors_Edge
Dors_Horn
Dors_Horn_other
Dors_Med_White
Lat_Edge
Med_Grey
Med_Lat_White
Undefined
Vent_Edge
Vent_Horn
Vent_Horn_other
Vent_Lat_White
Vent_Med_White

spatial1

sp
a
ti
a
l2

Cent_Can
Dors_Edge
Dors_Horn
Dors_Horn_other
Dors_Med_White
Lat_Edge
Med_Grey
Med_Lat_White
Undefined
Vent_Edge
Vent_Horn
Vent_Horn_other
Vent_Lat_White
Vent_Med_White

Figure S11: ST datasets from spinal cord with spots labeled according to annotation in [10]. (a-b)
Slices A and B. (c) Slice B flipped horizontally (d) Slice B flipped vertically.
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Figure S12: PASTE performance on the spinal cord ST dataset for different values of the parameter
α. Each bar corresponds to the accuracy of aligning slice A to either the original slice B or slice B
flipped vertically or horizontally.

S2.4 PASTE analysis of HER2 breast cancer ST data

We ran PASTE on an ST dataset from Her2 breast [3], consisting of 6 patients each with 6 ST slices
and 2 patients each with 3 ST slices. In the publication [3], the spots of one ST slices from each
patient were manually annotated by a pathologist based on the H&E image.

We used PASTE to derive an integrated center slice per patient and clustered the spots in the
integrated slice. We compared the ARI of the clusters derived from PASTE ’s integrated slice
and the clusters derived by Anderson et al. [3] using the pathology-annotated labels as a “gold
standard” for each patient. We used the same number of clusters used in [3] and calculated the
ARIs only over spots that were not annotated as undetermined.

We see that the clusters derived by the PASTE integration are largely comparable to the cluster
assignment from Anderson et al. [3], but having higher ARI on 5/8 patients. Both clusterings show
varying levels of agreement with the pathological annotation (Supplementary Table S2). Examin-
ing the cluster assignment from PASTE integration for Patient G, shows that PASTE is able to pre-
serve clusters consisting of a small number of neighboring spots of cancer in situ (Extended Data
Figure 4). Furthermore, the expression of ERBB2 (encoding the HER2-receptor) shows clearer
agreement with pathological annotations of cancer regions in the PASTE center slice than in raw
ST data of a single slice (Supplementary Figure S13).
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Method/Patient A B C D E F G H

Anderson et al. [3] 0.158 0.268 0.061 0.188 0.084 0 .083 0.428 0.369
PASTE center 0.186 0.32 0.052 0.184 0.149 0.147 0.309 0.379

Table S2: ARIs of clusters from Andersson et al. [3] and derived from the PASTE integrated slice
compared to pathological annotation in one slice from 8 breast cancer patients. Bold indicates the
higher ARI for each patient .
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Figure S13: (a) Expression of ERBB2 (HER2-receptor) in a single ST slice of breast cancer patient
G and (b) in the PASTE integrated slice. Circles indicate spots annotated as cancer regions while
squares indicate regions not annotated as cancerous.

S2.5 Supplementary results and analyses for DLPFC data

Sample/Slice A B C D

I 151507 151508 151509 151510
II 151669 151670 151671 151672
III 151673 151674 151675 151676

Table S3: DLPFC sample and slice names from [12].
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Pairwise alignment of consecutive slices

(a) PASTE (b) STUtility

Figure S14: Results of pairwise alignment and inferred coordinates of slices C and D from DLPFC
Sample I using (a) PASTE and (b) STUtility. The slices are placed side by side and the spots are
positioned according to the new coordinates inferred by the alignment of each method. Gray lines
connect the 1000 spot pairs with highest alignment values from each method. PASTE produces
an alignment that is consistent with spatial organization of slices, while STUtility produces an
alignment where one slice is flipped relative to the other slice.
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Figure S15: Stacking four ST slices of the DLPFC samples without alignment.
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Figure S16: Stacking four ST slices of the DLPFC samples after alignment with PASTE
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Figure S17: Stacking four ST slices of the DLPFC samples after alignment with STUtility

S2.5.1 The effect of the alpha parameter on PASTE performance

The α parameter in PASTE adjusts the relative contribution of expression information and spatial
information in the pairwise alignment. We evaluated the effect of the α parameter on PASTE’s
performance on both simulated data and on the DLPFC data. On simulated data, we found that
PASTE’s performance varies only slightly when not extremely close to either α = 0 (expression
only) or α = 1 (spatial only) (Extended Data Figure 2). On the DLPFC data, we found that
PASTE’s performance was also stable over intermediate values of 0 < α < 1, although per-
formance is worse when using a uniform alignment to initialize the optimization (Supplementary
Figure S18). In particular, the OT optimization gets stuck in the local optima close to a uniform
alignment for some values of α. However, when initializing the OT procedure with an informed
non-uniform alignment based on spatial similarity (Supplementary Section S1.3), PASTE perfor-
mance maintains high accuracy across most values of α that are not extremely close to 0 (expression
only).
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Figure S18: Alignment accuracy for consecutive tissue slices of the DLPFC datasets. For every
sample and every pair of consecutive slices we ran PASTE and measured the accuracy of mapping
spots to the same neocortical layers. PASTE was run with varying values of α and the OT was
initialized with either a uniform mapping or a mapping based on spatial distances (Supplementary
Section S1.3). Horizontal lines present reference accuracies: maximal possible accuracy between
the two slices based on the number of spots from each layer (red), the accuracy of the initial
alignment based on spatial data only (green), the accuracy of an alignment which gives all spot
pairs the same uniform mapping (black).

Next, we examined using the value of the objective function (Equation 1) as a proxy for se-
lecting α, reasoning that a lower objective value would correspond to better alignment. A similar
approach was used by SCOT [5], a recent method based for multi-modal integration of single-cell
sequencing datasets. Here, for a fixed value of α, we run PASTE using the standard procedure
where we select the mapping Π that minimizes the objective function over all initializations. We
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observed that the objective function value is correlated with the accuracy of the alignment (Supple-
mentary Figure S19). However, selecting the value of α with the minimum objective value does not
always yield the best accuracy (Supplementary Figure S20). We see that the α value that minimized
the objective function gives close to the best accuracy in 4 out of 9 pairs of slices (Supplementary
Figure S20a). Restricting to values of α in the range [0.1,0.9], the α value that minimized the
objective function gives the best accuracy for PASTE in 7 out of 9 pairs of slices (Supplementary
Figure S20b). This shows that using the value of the objective function can help select a value
for the parameter α and that combining both transcriptional and spatial similarity (0 < α < 1) is
preferable to either of these alone.

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Sample = 0 | Pair = 0 Sample = 0 | Pair = 1 Sample = 0 | Pair = 2

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Sample = 1 | Pair = 0 Sample = 1 | Pair = 1 Sample = 1 | Pair = 2

10
0

10
1

Objective

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Sample = 2 | Pair = 0

10
0

10
1

Objective

Sample = 2 | Pair = 1

10
0

10
1

Objective

Sample = 2 | Pair = 2

Alpha
0.0
1e-05
0.001
0.1
0.5
0.9
0.999
0.99999
1.0

Figure S19: Alignment accuracy for consecutive tissue slices of the DLPFC datasets as a function
of the value of the objective function for different values of α.
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Figure S20: Alignment accuracy for consecutive tissue slices of the DLPFC datasets for the value of
the parameter α that gave the minimum value of the objective function, as shown in Supplementary
Figure S19. (a) Minimum over all values of α. (b) Minimum over α in [0.1,0.9]. Bars are colored
according to value of α. The blue line indicates the best accuracy of PASTE obtained across all
tested values of α.

S2.5.2 The effect of expression normalization and gene sets on PASTE performance

In this section, we examined how different gene normalization schemes, different gene expression
similarity measures and different gene sets affect the performance of PASTE. We evaluated PASTE
on the DLPFC data using using library-size normalized and log transformed transcript counts and
calculating the expression cost function using Euclidean distance. We performed this calculation
using all genes or selecting only the top 2000 highly variable genes (HVG). We compared against
the default mode of PASTE that uses the KL divergence on all the genes. We observe that the
alignment accuracy across the adjacent slice pairs is similar for the different cost functions with a
slight advantage when using the KL divergence which achieves the highest accuracy in 7 out of 9
slice pairs (Extended Data Figure 7).

S2.5.3 PASTE with non uniform spot priors

To demonstrate that PASTE can use other distributions g on spots that encode prior information on
the importance of the spots, we analyzed the DLPFC dataset using a distribution g based on the
estimated number of cells per spot in the data. We estimated the number of cells per spot using
the number of nuclei reported by VistoSeg (spatialLIBD) [14], a cell segmentation procedure that
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identifies individual nuclei in H&E stained images. We then normalized cell counts for each spot to
create a weight distribution g over spots in each slice, and used these distributions to align adjacent
slices with PASTE.

We did not observe dramatic changes in the overall alignment accuracy when using the cell
counts as spots weights vs. using uniform weights over spots (Supplementary Figure S21). More-
over, the small changes in accuracy were attributed to the spots being weighted differently. For
example, while layer 3 spots contributed 0.4-0.62 of the weight in slices of sample II when using
a uniform distribution over spots, the layer 3 spots contributed only 0.33-0.45 of the weight when
using the cell counts (Supplementary Figure S22). This is because in sample II, the white matter,
layers 6 and layer 5 have 3-5.5 nuclei per spots in comparison to ≈ 2 nuclei per spot in layers 4
and 5. As the inner layers and white matter spots tend to have more cells per spot, the weighted
version of PASTE gave more emphasis to alignment of spots from these regions. This phenomena
has some effect when projecting the spatial coordinates using PASTE alignments as the alignment
will tend to better match the spots that contain more cells (Supplementary Figure S23).
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Figure S21: Accuracy of PASTE alignments with a uniform distribution over spots and with a
distribution derived from estimated cell counts per spot.
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a b

Figure S23: Projection of the slices of DLPFC sample II using PASTE alignments with (a) uniform
or (b) cell count distributions. Circles indicate visual differences in alignments. (a) Using the uni-
form distribution leads to slightly better alignments in layer 3. (b) Using the cell count distribution
leads to slightly better alignments of layer 6 and white matter which have higher cell counts.

S2.5.4 Integration of multiple slices of Sample III

ARI Num. marker genes Median marker gene rank
Method A B C D A B C D A B C D

No integration 0.25 0.22 0.24 0.21 58 57 49 44 703.5 879 753 772
Maynard et al. <0.4 63 1147

PASTE 0.53 80 427
Scanorama 0.17 0.18 0.17 0.16 84 3380.5

Seurat 0.31 0.23 0.26 0.24 79 1852

Table S4: Comparison of PASTE, Scanorama, and Seurat in clustering spots and identifying marker
genes in four slices (labeled A, B, C, and D) of spatial transcriptomics data from dorsolateral pre-
frontal cortex (sample III) from [12]. The second column gives the Adjusted Rand Index (ARI)
of clusters derived from integrated datasets from each method to the ground truth manual annota-
tion into layers. The third column gives the number of known layer-specific marker genes that are
significantly differentially expressed (FDR < 0.01) in the integrated data from each method. The
fourth column gives the median rank of known marker genes in the differential expression analysis
for each layer subset model. Top performing values in each column are in bold text. For reference,
we also provide results for analyzing each slice separately with no integration and the results re-
ported in [12].
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Figure S24: Clustering results of the RNA expression for each slice of sample III separately.
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Figure S25: Comparison of gene expression clustering and MFGE8 layer 3 marker gene expression
in a single spatial transcriptomics slice (slice B, top) and integrated slices from PASTE, Scanorama
and Seurat (bottom). (a,d,g,e) Clustering results projected onto slice B. (b,e,h,k) Expression of
MFGE8 in slice B and output from each integration method. (c,f,i,l) Distribution of expression of
MFGE8 in each layer of slice B from original expression data and output from each integration
method. WM and Layers 6 to 1 have 625, 614, 621, 247, 924, 224 and 380 spots respectively.
Inner boxplots show the 25%, 50% and 75% quantiles of the distributions. p-values (rounded to
the closest power of 10) for the difference in distribution (two-sided Mann-Whitney U test) between
adjacent layers are indicated. (Panels (a-f) are reproduced from manuscript Figure 6.)31
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(a) MOBP spatial expression in slice B

WM Layer6 Layer5 Layer4 Layer3 Layer2 Layer1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 

co
un

ts

p  1e-5

p = 1.00

p = 0.01

p = 1.00

p = 1.00

p  1e-154
MOBP expression distribution in a single slice

(b) MOBP expression distribution in slice B
MOBP expression in PASTE integrated slice

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
g 

co
un

ts

(c) MOBP spatial expression in PASTE inte-
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Figure S26: MOBP expression in a single slice and PASTE integrated slice. The boundaries be-
tween the layers are marked in green in a and c. WM and Layers 6 to 1 have 625, 614, 621, 247,
924, 224 and 380 spots respectively. Inner boxplots show the 25%, 50% and 75% quantiles of
the distributions. p-values (rounded to the closest power of 10) for the difference in distribution
(two-sided Mann-Whitney U test) between adjacent layers are indicated. MOBP is a known white
matter marker gene.
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(a) PCP4 spatial expression in slice B
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Figure S27: PCP4 expression in a single slice and PASTE integrated slice. The boundaries between
the layers are marked in green in a and c. WM and Layers 6 to 1 have 625, 614, 621, 247, 924,
224 and 380 spots respectively. Inner boxplots show the 25%, 50% and 75% quantiles of the
distributions. p-values (rounded to the closest power of 10) for the difference in distribution (two-
sided Mann-Whitney U test) between adjacent layers are indicated. PCP4 is a known layer 5 marker
gene.
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Figure S28: Number of overlapping significantly differentially expressed marker genes identified
by each pair of methods.

Figure S29: Combined visualization of PASTE output and H&E stained images of DLPFC data
slice B, sample III. (Left) Spots are colored according to clusters obtained by clustering the low
dimensional representation of the integrated center slice by PASTE. (Right) Spots are colored ac-
cording to MFGE8 expression from PASTE center slice integration.
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S2.5.5 The effect of dimensionality reduction on the number of significantly expressed genes

Count matrix Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 WM

A 3086 447 2290 204 980 320 3083
B 3007 412 2391 213 1059 262 3202
C 2221 416 1316 169 1021 308 2491
D 874 214 898 118 749 283 2196

PASTE low rank 9330 8902 9666 8678 9322 9110 10202
PASTE full rank 7767 2388 5674 1760 3919 2797 7099

Table S5: Number of significantly differentially expressed genes (DEGs) for each neocortical layer
in different count matrices. Significance was a assessed with Wilcoxon rank sum test and thresh-
olded at FDR adjusted p-value of <0.01.
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Figure S30: The number of significant DEGs as a function of the number of principle components
used to lower the rank of the count matrix of slice B.
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