Supplementary Materials

Transition state theory-inspired neural network for estimating the viscosity of deep eutectic solvents

Liu-Ying Yu^{†1,2}, Gao-Peng Ren^{†1}, Xiao-Jing Hou^{1,2}, Ke-Jun Wu^{*1,2,3} and Yu-Chen He^{*4}

¹Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

 ²Institute of Zhejiang University-Quzhou, Quzhou 324000, China
 ³School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K.
 ⁴State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China

 †: These authors contributed equally to this work
 *Corresponding author: Ke-Jun Wu, K.Wu@zju.edu.cn

> This PDF file includes: Page S1 to S66 Supporting Figures S1 to S12 Supporting Tables S1 to S7

Table of contents

1 Comparison with traditional machine learning methods	S3
1.1 NN	S3
1.2 Random forest	S3
1.3 Gradient boosting	S7
1.4 LightGBM	S9
1.5 Summary	S12
2 Further validation of the TSTiNet model	S14
2.1 Relationship between viscosity and temperature	S14
2.2 Relationship between viscosity and molar fraction	S16
2.3 Relationship between viscosity and types of HBA and HBD	S17
3 Comparison with models reported by different research groups	S20
4 Chemical structure dataset for DESs	S24
5 Measurement methods dataset for DESs	S46

1 Comparison with traditional machine learning methods

In addition to the NN model in the main text, many other machine learning models can be used for quantitative structure-property relationship (QSPR), such as random forest, gradient boosting, and support vector machine. In this note, three tree models (random forest, gradient boosting, and LightGBM) have been applied to our dataset. We will discuss the hyperparameters settings and performance of these models, then compare these models with the TSTiNet model and the NN model.

1.1 NN

Benefit from the good designability, the NN model is the most extensively studied model currently in machine learning. The overall architecture of NN is as same as the MLP in the TSTiNet as the main text shows. We tune the hyperparameters of these MLPs manually, and the search space of the hyperparameters are shown in Table S1.

Hyperparameters	Search space	Result
activation function	ReLU, Tanh, GELU	GELU
number of hidden layers	1, 2, 3	2
number of hidden neurons	32, 48, 64, 128	32
loss function	MSE loss, MAE loss, Huber loss	Huber loss

1.2 Random forest

Random forest has been widely used in classification and regression tasks related to molecular as a QSPR model. It is based on the decision tree model and bagging algorithm,

and its core idea is selecting features randomly to grow each tree (74). The randomness reduces the risk of overfitting, which is the key benefit of the random forest model. To prove the superiority of our proposed TSTiNet model, a random forest model is applied to our dataset as a comparison.

The random forest model is performed in Python 3 with the scikit-learn package (75). The RandomizedSearchCV in the package is used to optimize the hyperparameters in the random forest with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation (cv), and the cv score is a negative mean square error. The hyperparameters selected for optimization are the number of trees in the forest (n_estimators), the maximum depth of the tree (max_depth), the minimum number of samples required to split an internal node (min_samples_split), the minimum number of consider when looking for the best split (max_features). Since the increase of n_estimators will lead to expensive computation, the n_estimators is initially set to 100. The search space and results of the parameters in the random forest model are shown in Table S2.

Hyperparameters	Search space	Result
max_features	20, 30, 40, 50, 60	40
max_depth	50, 75, 100, 125, 150	100
min_samples_split	2, 5, 10, 15, 20	2
min_samples_leaf	1, 2, 5, 10, 15	1
n_estimators	100	100

Table S2. The search space and results of parameters in the random forest model.

As Table S2 shows, the best values of min_samples_split and min_samples_leaf are 2 and 1, respectively, which are the default values of the model. The values of max_depth and max_features are 100 and 40, respectively. After these parameters are determined, we try the difference values of the n estimators and find a minimum value that makes the

model have acceptable results. As shown in Fig. S1, when the n_estimators is less than 130, the mean cv score gets higher as the n_estimators increases; when the n_estimators is more than 130, the mean cv score fluctuates up and down without a significant improvement. Therefore, the value of n_estimators is finally set to 130.

Fig. S1. Dependence of mean cv score on the n_estimators in the random forest model. Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S2 and Fig. S3).

Fig. S2. Correlation between the predicted and reported viscosity values of datasets in the random forest model.

Fig. S3. Relative deviations between the literature and the predicted viscosities in both datasets in the random forest model.

As shown in Fig. S2, the calculated viscosities of DESs using the random forest model display a bad agreement with the corresponding experimental viscosity data. Even in the

training set, the model performs very poorly, especially in the region of large viscosity (as already suggested by Fig. S3). Besides, there are also many points with huge RD, as seen in Fig. S3. Therefore, from the performance of the random forest model, the model is not suitable for the prediction of the viscosity of DESs.

1.3 Gradient boosting

Gradient boosting is a popular machine learning algorithm that has been proved successful across many domains. Unlike random forest that implements ensemble through deep independent trees, gradient boosting builds many weak estimators to fit the negative gradient of the loss function (76). Xu et al. (38) have applied the gradient boosting method to predict the thermophysical properties of DESs. And they get R²=0.9773 on logarithm viscosity prediction, proving that the gradient boosting method may be a suitable method for viscosity prediction. Therefore, we implement a gradient boosting regressor to predict the viscosity of DESs as a comparison.

The gradient boosting model is performed in Python 3 with the scikit-learn package. The RandomizedSearchCV in the package is used to optimize the hyperparameters in the gradient boosting with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation, and the cv score is a negative mean square error. The hyperparameters selected for optimization are the number of boosting stages to perform (n_estimators), the fraction of samples to be used for fitting the individual base learners (subsample), maximum depth of the individual regression estimators (max_depth), and learning rate. The search space and results of the parameters in the gradient boosting model are shown in Table S3.

Hyperparameters	Hyperparameters Search space	

subsample	0.25, 0.5, 0.75, 1	0.25
max_depth	4, 8, 10, 12, 14, 16	8
learning_rate	0.01, 0.03, 0.05, 0.07, 0.1	0.07
n_estimators	400, 800, 1200, 1600, 2000	1600

Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S4 and Fig. S5).

Fig. S4. Correlation between the predicted and reported viscosity values of datasets in the gradient boosting model.

Fig. S5. Relative deviations between the literature and the predicted viscosities in both datasets in the gradient boosting model.

As shown in Fig. S4, the calculated viscosities of DESs using the gradient boosting model display a better agreement with the corresponding experimental viscosity data than the random forest model. Whereas the model gives excellent performance on the training set, some massive deviation points appear in the test set (as Fig. S5 shows). This result indicates that the model probably has an overfitting problem. Similar to the NN model, the gradient boosting model is not constrained by the equation, making it easily overfitting on the training set. Furthermore, the uneven distribution of the datasets makes it has some considerable deviation points in the region of high viscosity. Therefore, given the extensive viscosity range of DESs and the uneven distribution of viscosity data points, the gradient boosting model cannot provide a good solution.

1.4 LightGBM

With the popularity of the gradient boosting method, some new gradient boosting implementation models have been proposed (such as XGBoost, LightGBM (77)). These models improve the implementation algorithm of gradient boosting, which dramatically S9

improves its accuracy and training speed. Among these models, whereas XGBoost has good performance on different tasks, it requires large memory and long calculation time. To address these drawbacks, LightGBM has been proposed. It has comparable performance, faster calculation, and minor memory usage than XGBoost. Furthermore, LightGBM has been widely used in many winning solutions of machine learning competitions. To explore the performance of the most advanced model on our dataset, we implement a LightGBM model to predict the viscosity of DESs as a comparison.

The LightGBM model is performed in Python 3 with the LightGBM package (https://github.com/microsoft/LightGBM). The package provides the interface in sckit-learn package, and we use this interface to implement the LightGBM model. The RandomizedSearchCV in the scikit-learn package is used to optimize the hyperparameters in the LightGBM model with default settings, except for the number of parameter settings that are sampled is set to 50. The training set and validation set are concatenated as new training set for cross-validation, and the cv score is a negative mean square error. The hyperparameters selected for optimization are subsample, max_depth, learning_rate, n_estimators, maximum tree leaves for base learners (num_leaves), frequency of subsample (subsample frequency), subsample ratio of columns when constructing each tree (colsample_bytree). The search space and results of the parameters in the LightGBM model are shown in Table S4.

Hyperparameters	Search space	Result
subsample	0.75, 0.78, 0.8, 0.82, 0.85	0.82
subsample_freq	2, 4, 6	6
colsample_bytree	0.25, 0.30, 0.35, 0.40, 0.45	0.35
max_depth	8, 10, 12, 14	10
learning_rate	0.1, 0.05, 0.01	0.1
n_estimators	1000, 2000, 3000, 4000	4000
num_leaves	5, 10, 15, 20, 25	10

Table S4. The search space and results of parameters in the LightGBM model.

There is a trade-off between learning_rate and n_estimators. To get better performance, different setups of the values of these two parameters are examined. And we find that when n_estimators = 40000 and learning_rate = 0.01, the model gets the best performance. Under the above model settings, the performance of the model is evaluated on the test set and the new training set (see Fig. S6 and Fig. S7).

Fig. S6. Correlation between the predicted and reported viscosity values of datasets in the LightGBM model.

Fig. S7. Relative deviations between the literature and the predicted viscosities in both datasets in the LightGBM model.

As shown in Fig. S6, the calculated viscosities of DESs using the LightGBM model display a good agreement with the corresponding experimental viscosity data overall. However, as shown in the partial enlargement, the performance of LightGBM is highly variable and there are some big deviation points in the datasets. Fig. S7 also supports this result, and there are even some data points with the absolute value of RD greater than 100%. Although the number of big deviation points of the LightGBM model are significantly less than the gradient boosting model, the MRD of the LightGBM model is enormous (more than 200%). Therefore, the reliability of the LightGBM model is greatly reduced. And it cannot provide better performance than the TSTiNet model.

1.5 Summary

In addition to the NN model, we implement three decision tree models as comparisons with the TSTiNet model. These three decision tree models (random forest, gradient boosting and LightGBM) are very popular as machine learning methods. The performances of these three models are shown in Table S5. And the metrics we selected are AARD, MRD and R^2 .

Model	AARD (%)	MRD (%)	R ²
Random forest	16.02	117.69	0.6308
Gradient boosting	8.30	84.66	0.7161
LightGBM	7.29	208.85	0.8353
Plain NN	5.23	82.15	0.7464
TSTiNet	6.85	49.28	0.9805

Table S5. The performance of different machine learning methods.

Table S5 shows that the LightGBM model has the best predictive effect among the decision tree models. Whereas the LightGBM model has a comparable AARD with the TSTiNet model, its MRD and R² are unacceptable. All these three models have larger AARD and MRD and lower R² than the TSTiNet model. And on the whole, the performances of the decision tree models are not as good as the NN model. Meanwhile, due to the poor designability of the decision tree model, it is difficult for them to combine with the equation. Therefore, the decision tree models are not as good and flexible as the neural network in predicting complex thermophysical properties.

2 Further validation of the TSTiNet model

From an industrial and application standpoint, the solvents' viscosity is one of the most critical parameters for solvent selection. The viscosity of mixtures is usually governed by the strength of intermolecular interactions between the constituents. Generally, polar solvents tend to be more viscous than similar non-polar solvents (78) (e.g., nonanoic acid>nonane). Since DESs are formed based on hydrogen bond molecular interactions, it is expected that high viscosities of these solvents would be observed as the hydrogen bonds formed between the molecules, which limit their mobility within the mixture. For instance, glycerol-based DESs such as potassium carbonate: glycerol are reported to have high viscosities in the range of 5500-28104 mPa·s at 298.15 K (79). The viscosities of DESs are relatively high compared to those of common organic solvents. Organic solvents typically have room temperature viscosities ranging from 0.2 to 10 mPa·s (80), whereas DESs display a broad range of room temperature viscosities, from 1.3 to greater than 85000 mPa·s (Supplementary data). This is of great significance as it enables an objective-oriented solvent design process.

2.1 Relationship between viscosity and temperature

The viscosity of the DESs is reported to be very sensitive to temperature (81, 82). A significant decrease in the viscosity of the DESs is observed when increasing the temperature. For the sake of a better overview, the temperature trends of the TSTiNet model to estimate the viscosities of some typical DESs are shown in Fig. S8 and Fig. S9. Because of the wide viscosity range of the investigated DESs, two figures were separately for the high and low viscosity ranges. Fig. S8 shows the viscosity-temperature behaviors of the TSTiNet model for five highly viscous DESs, while Fig. S9 focuses on four low viscosity DESs. The logarithmic decreasing trend of viscosity concerning the increasing temperature is successfully followed by the proposed model at both low and high viscosities of DESs.

Fig. S8. Comparison between the trends of the experimental data and the proposed TSTiNet model for five randomly selected DESs in the high viscosity range. ■, Acetylcholine chloride: D-xylose (1:1); ●, Potassium carbonate: Glycerol (1:7); ▲, Choline chloride: Malonic acid (1:1); ▼, Acetylcholine chloride: D-xylose (1:1) and ◆, Methyltrioctylammonium bromide: Decanoic acid (1:2).

Fig. S9. Comparison between the trends of experimental data and the proposed TSTiNet

model for five randomly chosen DESs in the low viscosity range. ■ , Allyltriphenylphosphonium bromide: Diethylene glycol (1:4); ▲ , Tetrabutylammonium bromide: Tetraethylene glycol (1:4); ▼, Tetrabutylammonium bromide: Ethanolamine (1:6) and ◆, Trioctylphosphine oxide: Phenol (1:2)

2.2 Relationship between viscosity and molar fraction

The effect of the molar fraction on viscosity is highly dependent on the intermolecular interactions among DES components. Fig. S10 shows the impact of changing the molar ratio of DES components on its viscosity. Five different molar ratios (1: 2, 1: 3, 1: 4, 1: 5, 1: 6) of DES composed of choline chloride and ethylene glycol are discussed. As shown in Fig. S10, the viscosity decreases along with increasing the ethylene glycol molar fraction. Increasing the number and strength of hydrogen bonds in the associative mixture will increase viscosity. Therefore, stronger bonds in the mixture lead to the more significant bonded molecules' resistance to moving next to each other. Fig. S10 demonstrates that in the studied DES, choline chloride: ethylene glycol with a ratio of 1:2 may have the most considerable hydrogen bond association strength. As the proportion of ethylene glycol increases, the change in viscosity behavior to temperature tends to be flat. Still, it can be seen that the proposed TSTiNet model can reasonably estimate all the discussed trends and changes in viscosity behavior.

Fig. S10. Comparison of the viscosity behavior of choline chloride (HBA) with different ethylene glycol (HBD) ratios. ■, Choline chloride: Ethylene glycol (1:6); ●, Choline chloride:
Ethylene glycol (1:5); ▲, Choline chloride: Ethylene glycol (1:4); ▼, Choline chloride:
Ethylene glycol (1:3) and ◆, Choline chloride: Ethylene glycol (1:2).

2.3 Relationship between viscosity and types of HBA and HBD

It is known that the viscosity of DESs varies widely depending on the type of HBA and HBD. To study the proposed model's predictive ability more comprehensively, the influence of the component types of DESs on the viscosity is studied in Fig. S11 and Fig. S12. It can be seen that the model gives a reliable consistency between the experimental value and the estimated viscosity of DESs. Fig. S11 shows the effect of changing the HBD molecular type of a fixed HBA on the viscosity of DESs. In this figure, the choline chloride's viscosity-temperature behavior as HBA is compared, and four different HBDs, i.e., ethylene glycol, phenol, levulinic acid and urea, are compared. The molar ratio of HBA and HBD is 1: 2. As we know, the intermolecular interaction is the dominant force in the viscosity of a mixture. Therefore, the size of HBD, the number of hydrogen bonds between HBD and HBA, and

the strength of hydrogen bonds are significant factors that should be considered when studying the viscosity behavior. It can be seen that the changing trend of viscosity is urea>levulinic acid>phenol>ethylene glycol. Fig. S12 shows the effect of changing the HBA molecule type of the fixed HBD on the viscosity of DESs. In this figure, the viscosity-temperature behavior of decanoic acid as HBD is compared, and three different HBAs, i.e., lidocaine, tetraoctylammonium chloride, and tetraoctylammonium bromide, are compared. The molar ratio of HBA to HBD is 1:2. It can be seen that the changing trend of viscosity is tetraoctylammonium bromide> tetraoctylammonium chloride> lidocaine. For the same cation and HBD, it is observed that the viscosity of bromide anion is higher than that of chloride anion (e.g., tetraoctylammonium bromide> tetraoctylammonium chloride). These trends are also consistent with the trends observed in the viscosity of ILs (82).

Fig. S11. Comparison of the viscosity behavior of choline chloride(HBA) with the different
HBDs. ■, Choline chloride: Ethylene glycol (1:2); ●, Choline chloride: Phenol (1:2); ▲,
Choline chloride: Levulinic acid (1:2) and ▼, Choline chloride: Urea (1:2).

Fig. S12. Comparison of the viscosity behavior of decanoic acid (HBD) with the different
HBAs. ■, Lidocaine: Decanoic acid(1:2); ●, Tetraoctylammonium chloride: Decanoic acid
(1:2) and ▲, Tetraoctylammonium bromide: Decanoic acid (1:2).

3 Comparison with models reported by different research groups

Since the model proposed by Bakhtyari et al. is a global viscosity model covering extensive database, a detailed deviation comparison has been conducted.

Table S6. Comparison of the individual RD% values for DES by the TSTiNet model andthe Bakhtyari et al. model.

ЦВЛ	нвр	HBA:HBD	т	ղ _m lit/	۸DD%a	DD%p
ΠDΑ	TIDD	mole ratio	I	mPa∙s		112 /0
			303.15	304.69	6.83	η_{ref}
			313.15	153.71	5.05	4.55
Acotylcholino	124		323.15	83.06	9.56	11.54
chloride	triazole	1:1	333.15	46.48	7.66	23.26
chionae	thazoic		343.15	27.73	4.10	35.19
			363.15	14.51	15.77	26.21
			373.15	8.37	5.99	61.10
Acetylc	holine chlorid	e/1,2,4-triazole		AARD%	7.85	26.98
			303.15	233.69	0.41	η_{ref}
			313.15	120.91	8.16	7.09
Acetylcholine		1:1.5	323.15	59.05	1.22	31.42
chloride	Imidazole		333.15	35.29	0.51	40.32
chionae			343.15	18.67	21.60	78.11
			353.15	16.53	6.66	40.93
			363.15	11.69	5.88	44.64
			303.15	103.33	4.30	η_{ref}
			313.15	52.18	1.52	16.52
Acetylcholine		1:2	323.15	31.63	11.98	20.89
chloride	Imidazole		333.15	21.49	22.69	18.12
omorido			343.15	11.37	6.02	54.94
			353.15	6.84	6.62	85.53
			363.15	4.17	25.21	126.23
			303.15	335.98	16.36	η_{ref}
Acetylcholine chloride		1:3	313.15	189.19	2.77	5.01
	Imidazole		323.15	98.80	0.26	5.91
			333.15	57.92	0.54	12.50
			343.15	35.77	3.82	19.82

			353.15	25.74	2.27	14.57
			363.15	17.68	1.18	19.18
Acetylcholine chloride/Imidazole			AARD%	7.14	35.65	
			298.15	1266.00	3.75	η_{ref}
			303.15	818.60	5.04	1.79
			308.15	544.60	4.77	4.38
			313.15	374.60	4.03	6.78
Betaine	DL-Lactic	1.2	318.15	260.50	1.13	10.99
Detaine	acid	1.2	323.15	190.20	0.17	12.52
			328.15	141.60	1.34	14.23
			333.15	107.50	3.13	15.86
			338.15	83.70	4.33	16.50
			343.15	65.90	6.18	17.60
			293.15	386.60	3.44	7.73
			298.15	245.30	1.12	η_{ref}
			303.15	167.70	1.64	3.67
			308.15	120.40	3.17	5.07
Betaine	DL-Lactic acid	1:5	313.15	86.10	1.10	9.40
			318.15	65.50	2.30	9.30
			323.15	50.60	2.60	9.50
			328.15	39.60	2.07	10.07
			333.15	31.10	0.01	11.89
			338.15	25.10	1.01	12.15
			343.15	20.60	1.85	11.89
E	Betaine/DL-La	ictic acid		AARD%	2.58	10.07
			295.15	55.00	2.59	16.66
			297.15	48.00	1.59	13.75
			299.15	41.00	8.71	8.55
	12-		301.15	34.00	10.33	0.14
Choline chloride	Butanediol	1:19	303.15	31.00	9.25	η _{ref}
	Butanoulor		305.15	26.00	0.18	8.82
			307.15	22.00	9.96	17.66
			309.15	19.00	18.59	24.93
			311.15	17.00	23.80	28.31
			295.15	70.00	9.43	12.63
Choline chloride	1,2-	1.7	297.15	62.00	8.01	11.12
	Butanediol	1.7	299.15	55.00	6.27	9.46
			301.15	48.00	2.51	5.99

			303.15	41.00	4.04	η_{ref}
			305.15	36.00	8.41	3.75
			307.15	31.00	3.30	10.02
			309.15	29.00	4.38	7.65
			311.15	26.00	1.04	10.15
			295.15	60.00	9.87	10.96
			297.15	53.00	7.78	9.05
			299.15	48.00	7.56	9.14
	12-		301.15	38.00	6.45	4.14
Choline chloride	Butanediol	1:5.67	303.15	36.00	2.84	η_{ref}
	Datanealor		305.15	29.00	17.27	13.21
			307.15	26.00	3.93	15.44
			309.15	22.00	5.44	25.01
			311.15	19.00	13.70	32.93
			295.15	53.00	13.10	13.74
			297.15	45.00	7.06	8.18
			299.15	41.00	6.98	8.67
	12-		301.15	36.00	3.01	5.48
Choline chloride	Butanediol	1:9	303.15	31.00	3.51	η_{ref}
	Butanoulor		305.15	26.00	13.82	8.89
			307.15	22.00	24.45	17.80
			309.15	19.00	1.76	25.15
		311.15	17.00	6.31	28.60	
Choline chloride/1,2-Butanediol		AARD%	7.98	13.31		

^athe TSTiNet model; ^bthe Bakhtyari et al. model.

Table S7. Comparison of the individual AARD% values for DES by the TSTiNet model, the Bakhtyari et al. model, the Lewis and Squires model, the Haghbakhsh and Raeissi model, and the Dutt et al. model.

		AARD%								
DES	TSTiNet model	Bakhtyari et al. model	Lewis and Squires model	Haghbakhsh and Raeissi model	Dutt et al. model					
Acetylcholine chloride/1,2,4- triazole	7.85	26.98	248.40	5.10	53.10					

Acetylcholine	7 1/	35.65	235 73	12.40	40.77	
chloride/Imidazole	7.14	55.05	200.70	12.40		
Betaine/DL-Lactic	2 58	10.07	208.05	23.05	75.60	
acid	2.00	10.07	230.33	20.00	75.00	
Choline						
chloride/1,2-	7.98	13.31	32.05	11.68	12.40	
Butanediol						

4 Chemical structure dataset for DESs

NO.	HBA	CAS register number	Molecular formula	Molecular Structure	Molecular Weight	HBD	CAS register number	Molecular formula	Molecular Structure	Molecular Weight
1	Zinc chloride	7646-85-7	ZnCl ₂	Cl ⁻ Zn ²⁺ Cl ⁻	136.3	Choline chloride	67-48-1	C ₅ H ₁₄ CINO		139.62
2	Chromic chloride hexahydrate	10060-12-5	Cl ₃ CrH ₁₂ O ₆	H_2O H_2O CI ⁻ H_2O $CI^{-Cr^{3+}}$ H_2O H_2O H_2O	266.45	Choline chloride	67-48-1	C₅H ₁₄ CINO	HO N ⁺	139.62
3	Acetylcholine chloride	60-31-1	$C_7H_{16}CINO_2$		181.66	1,2,4-Triazole	288-88-0	C ₂ H ₃ N ₃	T N	69.07
4	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	D-fructose	57-48-7	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
5	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	D-glucose	50-99-7	C ₆ H ₁₂ O ₆	HO HOH OH	180.16
6	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	D-mannose	3458-28-4	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
7	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	D-ribose	50-69-1	C ₅ H ₁₀ O ₅	ОН ОН ОН	150.13 (569)

8	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	D-xylose	31178-70-8	$C_5H_{10}O_5$	о ОН ОН ОН	150.13
9	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	Imidazole	288-32-4	$C_3H_4N_2$		68.08
10	Acetylcholine chloride	60-31-1	C7H16CINO2		181.66	Levulinic acid	123-76-2	$C_5H_8O_3$	HO	116.11
11	Allyltriphenyl- phosphonium bromide	1560-54-9	$C_{21}H_{20}BrP$	Br P+	383.26	Diethylene glycol	111-46-6	$C_4H_{10}O_3$	но∽∽о∽он	106.12
12	Allyltriphenylphos phonium bromide	1560-54-9	$C_{21}H_{20}BrP$	Br P+	383.26	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	но∼0∽0~ОН	150.17
13	Ammonium thiocyanate	1762-95-4	NH₄SCN	NH4 ⁺ N	76.12	Acetamide	60-35-5	C₂H₅NO	NH ₂	59.07
14	Ammonium thiocyanate	1762-95-4	NH₄SCN	NH4 ⁺ N	76.12	Caprolactam	105-60-2	C ₆ H ₁₁ NO	0=	113.16
15	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI ⁻	215.72	Levulinic acid	123-76-2	C₅H ₈ O₃	HO	116.11

16	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI:	215.72	D-fructose	57-48-7	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
17	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI:	215.72	D-glucose	50-99-7	C ₆ H ₁₂ O ₆	он он но он он он он	180.16
18	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI-	215.72	D-mannose	3458-28-4	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
19	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI-	215.72	D-ribose	50-69-1	C ₅ H ₁₀ O ₅	ОН ОН ОН	150.13
20	Benzyldimethyl(2- hydroxyethyl) ammonium chloride	7221-40-1	C ₁₁ H ₁₈ CINO	CI-	215.72	D-xylose	31178-70-8	C ₅ H ₁₀ O ₅	он он он он	150.13
21	Benzyltriethyl- ammonium chloride	56-37-1	C ₁₃ H ₂₂ CIN		227.77	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
22	Benzyltrimethyla mmonium chloride	56-93-9,	C ₁₀ H ₁₆ CIN		185.69	Acetic acid	64-19-7	СН₃СООН	ОН	60.05

23	Benzyltrimethyla mmonium chloride	56-93-9,	$C_{10}H_{16}CIN$	185.69	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН	92.09
24	Benzyltrimethyla mmonium chloride	56-93-9,	C ₁₀ H ₁₆ CIN	185.69	Levulinic acid	123-76-2	C₅H ₈ O₃	HO	116.11
25	Benzyltriphenylph osphonium chloride	1100-88-5	C ₂₅ H ₂₂ CIP	388.87	Ethylene glycol	107-21-1	$C_2H_6O_2$	НООН	62.07
26	Benzyltriphenylph osphonium chloride	1100-88-5	C ₂₅ H ₂₂ CIP	388.87	Glycerol	56-81-5	C₃H₀O₃	ОН	92.09
27	Benzyltripropylam monium chloride	5197-87-5	C ₁₆ H ₂₈ CIN	269.85	DL-Lactic acid	598-82-3	C ₃ H ₆ O ₃	ОН	90.08
28	Benzyltripropylam monium chloride	5197-87-5	C ₁₆ H ₂₈ CIN	269.85	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	ноон	62.07
29	Benzyltripropylam monium chloride	5197-87-5	C ₁₆ H ₂₈ CIN	269.85	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН	92.09

30	Benzyltripropylam monium chloride	5197-87-5	C ₁₆ H ₂₈ CIN	269.85	Phenol	108-95-2	C ₆ H ₆ O	ОН	94.11
31	Betaine	107-43-7	$C_5H_{11}NO_2$	117.15	DL-lactic acid	598-82-3	$C_3H_6O_3$	ОНОНО	90.08
32	Betaine	107-43-7	$C_5H_{11}NO_2$	117.15	Levulinic acid	123-76-2	$C_5H_8O_3$	HO	116.11
33	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	139.62	1,2-Butanediol	584-03-2	$C_4H_{10}O_2$	ОН	90.12
34	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	139.62	1,2-Propanediol	57-55-6	$C_3H_8O_2$	ОН	76.09
35	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	139.62	1,3-Propanediol	504-63-2	$C_3H_8O_2$	но он	76.09
36	Choline chloride	. 67-48-1.	C ₅ H ₁₄ CINO	139.62	1,4-Butanediol	110-63-4	$C_4H_{10}O_2$	но	90.12
37	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	139.62	2,2,2- Trifluoroacetam ide	354-38-1	C ₂ H ₂ F ₃ NO	H ₂ N F F	113.04
38	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	2,3-Butanediol	513-85-9	C ₄ H ₁₀ O ₂	OH OH OH	90.12

39	Choline chloride	. 67-48-1.	C₅H ₁₄ CINO	139.62	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
40	Choline chloride	. 67-48-1.	C₅H ₁₄ CINO	139.62	D-fructose	57-48-7	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
41	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	D-glucose	50-99-7	C ₆ H ₁₂ O ₆	HO OH OH OH OH	180.16
42	Choline chloride	. 67-48-1.	C₅H ₁₄ CINO	139.62	DL-lactic acid	598-82-3	C ₃ H ₆ O ₃	ОНОНО	90.08
43	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	DL-Xylitol	87-99-0	$C_5H_{12}O_5$	ОН НО ОН ОН	152.15
44	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	D-mannose	3458-28-4	C ₆ H ₁₂ O ₆	HO OH OH HO OH OH	180.16
45	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	D-ribose	50-69-1	$C_5H_{10}O_5$	ОН ОН ОН	150.13
46	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	D-xylose	31178-70-8	C ₅ H ₁₀ O ₅	ОН ОН ОН	150.13
47	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	139.62	Ethanolamine	141-43-5	C ₂ H ₇ NO	H ₂ N OH	61.08

48	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N ⁺	139.62	Ethylene glycol	107-21-1	$C_2H_6O_2$	НООН	62.07
49	Choline chloride	. 67-48-1	C₅H ₁₄ CINO		139.62	Glutaric acid	110-94-1	C ₅ H ₈ O ₄	ностори	132.11
50	Choline chloride	. 67-48-1.	C ₅ H ₁₄ CINO		139.62	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
51	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N ⁺	139.62	Glycolic acid	79-14-1	$C_2H_4O_3$	ноон	76.05
52	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N [*]	139.62	Hexafluoroisopr opanol	920-66-1	C ₃ H ₂ F ₆ O	OH F F F F F F	168.04
53	Choline chloride	. 67-48-1.	C ₅ H ₁₄ CINO	HO N ⁺	139.62	Levulinic acid	123-76-2	C₅H ₈ O ₃	HO	116.11
54	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	HO N ⁺	139.62	Malonic acid	141-82-2	C ₃ H ₄ O ₄	но он	104.06
55	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N ⁺	139.62	P-chlorophenol	106-48-9	C ₆ H₅CIO	CI	128.56
56	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N ⁺	139.62	P-cresol	106-44-5	C ₇ H ₈ O	ОН	108.14

57	Choline chloride	. 67-48-1	C ₅ H ₁₄ CINO	HO N ^t	139.62	Phenol	108-95-2	C ₆ H ₆ O	OH	94.11
58	Choline chloride	. 67-48-1	C₅H ₁₄ CINO	HO N ⁺	139.62	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	H0~0~0~0H	150.17
59	Choline chloride	. 67-48-1	C₅H ₁₄ CINO		139.62	Urea	57-13-6	CH₄N₂O	H ₂ N NH ₂	60.06
60	Decyltrimethylam monium bromide	2082-84-0	$C_{13}H_{30}BrN$	Br ⁻ N ⁺	280.29	Hexafluoroisopr opanol	920-66-1	C ₃ H ₂ F ₆ O	OH F F F F F	168.04
61	Dodecyltrimethyla mmonium bromide	1119-94-4	C ₁₅ H ₃₄ BrN	BrN*	308.34	Hexafluoroisopr opanol	920-66-1	C ₃ H ₂ F ₆ O	OH F F F F F	168.04
62	L-carnitine	541-15-1	C ₇ H ₁₅ NO ₃		161.20	Hexafluoroisopr opanol	920-66-1	$C_3H_2F_6O$	OH F F F F F F	168.04
63	Methyltrioctylam monium bromide	35675-80-0	$C_{25}H_{54}BrN$	N ⁺ Br	448.61	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
64	Methyltrioctylam monium chloride	5137-55-3	$C_{25}H_{54}CIN$	N ^{CI.}	404.16	Ethylparaben	120-47-8	C ₉ H ₁₀ O ₃	HO	166.17
65	Methyltrioctylam monium chloride	5137-55-3	C ₂₅ H ₅₄ CIN	N ^{CI.}	404.16	Oleic acid	112-80-1	C ₁₈ H ₃₄ O ₂	С	282.46

66	Methyltriphenylph osphonium bromide	1779-49-3	C ₁₉ H ₁₈ BrP	Br P ⁺⁻	357.22	1,2-Propanediol	57-55-6	C ₃ H ₈ O ₂	ОН	76.09
67	Methyltriphenylph osphonium bromide	1779-49-3	С ₁₉ Н ₁₈ ВгР	Br P ⁺⁻	357.22	2,2,2- Trifluoroacetam ide	354-38-1	C2H2F3N O	H ₂ N F F	113.04
68	Methyltriphenylph osphonium bromide	1779-49-3	C ₁₉ H ₁₈ BrP	Br P ⁺⁻	357.22	Acetic acid	64-19-7	СН₃СООН	ОН	60.05
69	Methyltriphenylph osphonium bromide	1779-49-3	C ₁₉ H ₁₈ BrP	Br P ⁺⁻	357.22	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но	62.07
70	Methyltriphenylph osphonium bromide	1779-49-3	C ₁₉ H ₁₈ BrP	Br P ⁺⁻	357.22	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
71	Methyltriphenylph osphonium bromide	1779-49-3	C ₁₉ H ₁₈ BrP	Br P ⁺⁻	357.22	Levulinic acid	123-76-2	C ₅ H ₈ O ₃		116.11

72	N,N- diethylethanol- ammonium chloride	13989-32-7	C ₆ H ₁₆ CINO	NH⁺ CrOH	153.65	Ethylene glycol	107-21-1	$C_2H_6O_2$	но ОН	62.07
73	N,N- diethylethanol- ammonium chloride	13989-32-7	C ₆ H ₁₆ CINO	NH ⁺ CI ⁻ OH	153.65	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН	92.09
74	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N [*] Br [*]	322.37	1,2-Propanediol	57-55-6	C ₃ H ₈ O ₂	ОН	76.09
75	Tetrabutyl- ammonium bromide	1643-19-2	$C_{16}H_{36}BrN$	N ⁺ Br ⁻	322.37	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
76	Tetrabutyl- ammonium bromide	1643-19-2	$C_{16}H_{36}BrN$	N ⁺ Br ⁻	322.37	Ethanolamine	141-43-5	C ₂ H ₇ NO	H ₂ N OH	61.08
77	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N ⁺ Br ⁻	322.37	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но	62.07
78	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N ⁺ Br ⁻	322.37	Levulinic acid	123-76-2	C₅H ₈ O ₃	HO	116.11
79	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N ⁺ Br ⁻	322.37	Polyethylene glycol	25322-68-3	C _{2n} H _{4n+2} O _n +1	ноон	697.61
80	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N ⁺ Br ⁻	322.37	Tetraethylene glycol	112-60-7	C ₈ H ₁₈ O ₅	H0~0~0~0~0H	194.23

81	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N ⁺ Br ⁻	322.37	Tetrazole	288-94-8	CH ₂ N ₄		70.05
82	Tetrabutyl- ammonium bromide	1643-19-2	C ₁₆ H ₃₆ BrN	N [*] Br	322.37	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	Н0∕~0∕~ОН	150.17
83	Tetrabutylammoni um chloride	1112-67-0	$C_{16}H_{36}CIN$	N ⁺ Cl ⁻	277.92	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
84	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN	N ⁺ Cl ⁻	277.92	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но ОН	62.07
85	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN		277.92	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН	92.09
86	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN		277.92	L-arginine	74-79-3	C ₆ H ₁₄ N ₄ O ₂	H ₂ N H O H NH ₂ OH	174.20
87	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN	N ⁺ Cl ⁻	277.92	L-aspartic acid	56-84-8	C ₄ H ₇ NO ₄	HO O NH ₂ OH	133.10
88	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN	N ⁺ Cl ⁻	277.92	Levulinic acid	123-76-2	C₅H ₈ O ₃	HO	116.11
89	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN	N ⁺ Cl ⁻	277.92	L-glutamic acid	56-86-0	C₅H ₉ NO₄	HO NH ₂	147.13

90	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN		277.92	Phenylacetic acid	103-82-2	C ₈ H ₈ O ₂	OH	136.15
91	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN		277.92	Propionic acid	79-09-4	C₃H₅O₂	ОН	74.08
92	Tetrabutyl- ammonium chloride	1112-67-0	C ₁₆ H ₃₆ CIN		277.92	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	H0~0~0~0H	150.17
93	Tetrabutyl- phosphonium bromide	3115-68-2	C ₁₆ H ₃₆ BrP	P ⁺ Br ⁻	339.33	Levulinic acid	123-76-2	$C_5H_8O_3$	но	116.11
94	Tetradecyl- trimethylammoniu m bromide	1119-97-7	C ₁₇ H ₃₈ BrN	Br I	336.39	Hexafluoroisopr opanol	920-66-1	C ₃ H ₂ F ₆ O	OH F F F F F F	168.04
95	Tetraethyl- ammonium bromide	71-91-0	C ₈ H ₂₀ NBr	N ⁺ Br	210.16	Ethylene glycol	107-21-1	$C_2H_6O_2$	но ОН	62.07
96	Tetraethyl- ammonium bromide	71-91-0	$C_8H_{20}NBr$	N ⁺ Br	210.16	Levulinic acid	123-76-2	$C_5H_8O_3$	HO	116.11
97	Tetraethyl- ammonium bromide	71-91-0	$C_8H_{20}NBr$	N ⁺ Br	210.16	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	H0~0~0~0H	150.17
98	Tetraethyl- ammonium chloride	56-34-8	C ₈ H ₂₀ CIN	N ⁺ CI ⁻	165.7	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
99	Tetraethyl- ammonium chloride	56-34-8	C ₈ H ₂₀ CIN	N ⁺ CI ⁻	165.7	Glycolic acid	79-14-1	C ₂ H ₄ O ₃	ноон	76.05

100	Tetraethyl- ammonium chloride	56-34-8	C ₈ H ₂₀ CIN	N ⁺ CI ⁻	165.7	Levulinic acid	123-76-2	C₅H ₈ O ₃	HO	116.11
101	Tetraethyl- ammonium chloride	56-34-8	C ₈ H ₂₀ CIN	N ⁺ Cl ⁻	165.7	Octanoic acid	124-07-2	C8H16O2	ОН	144.21
102	Tetraethyl- ammonium p- toluenesulfonate	733-44-8	C ₁₅ H ₂₇ NO ₃ S		322.37	1,2-Propanediol	57-55-6	C ₃ H ₈ O ₂	ОН	76.09
103	Tetraethyl- ammonium p- toluenesulfonate	733-44-8	C ₁₅ H ₂₇ NO ₃ S		322.37	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но	62.07
104	Tetraethyl- ammonium p- toluenesulfonate	733-44-8	C ₁₅ H ₂₇ NO ₃ S		322.37	Polyethylene glycol	25322-68-3	C _{2n} H _{4n+2} O _n +1	НООН	697.61
105	Tetraethyl- ammonium p- toluenesulfonate	733-44-8	C ₁₅ H ₂₇ NO ₃ S		322.37	Tetraethylene glycol	112-60-7	C ₈ H ₁₈ O ₅	но~о~о~о~он	194.23
106	Tetraheptylammo nium chloride	10247-90-2	C ₂₈ H ₆₀ CIN		446.24	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
107	Tetraheptyl- ammonium chloride	10247-90-2	C ₂₈ H ₆₀ CIN	N ⁺ CI	446.24	lbuprofen	15687-27-1	C ₁₃ H ₁₈ O ₂	ОН	206.28
108	Tetraheptylammo nium chloride	10247-90-2	C ₂₈ H ₆₀ CIN		446.24	Oleic acid	112-80-1	C ₁₈ H ₃₄ O ₂	С	282.46

109	Tetrahexyl- ammonium bromide	4328-13-6.	$C_{24}H_{52}BrN$	N* Br'	434.58	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	НОСОН	62.07
110	Tetrahexyl- ammonium bromide	4328-13-6.	$C_{24}H_{52}BrN$	N ⁺ Br	434.58	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН	92.09
111	Tetramethylamm onium chloride	75-57-0	C₄H ₁₂ NCI		109.60	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
112	Tetraoctylammoni um bromide	14866-33-2	C ₃₂ H ₆₈ BrN	N ⁺ Br	546.79	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
113	Tetraoctylammoni um chloride	3125-07-3	C ₃₂ H ₆₈ CIN	N ⁺ Br	502.34	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
114	Tetrapropylammo nium bromide	1941-30-6	C ₁₂ H ₂₈ N.Br	N* Br	266.26	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но ОН	62.07
115	Tetrapropylammo nium bromide	1941-30-6	C ₁₂ H ₂₈ N.Br	N* Br	266.26	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
116	Tetrapropylammo nium bromide	1941-30-6	$C_{12}H_{28}N.Br$	N* Br	266.26	Levulinic acid	123-76-2	$C_5H_8O_3$	HO	116.11
117	Tetrapropylammo nium bromide	1941-30-6	C ₁₂ H ₂₈ N.Br	N* Br	266.26	Triethylene glycol	112-27-6	C ₆ H ₁₄ O ₄	H0~_0~_0H	150.17

118	Tetrapropylammo nium chloride	5810-42-4	C ₁₂ H ₂₈ CIN		221.81	Acetic acid	64-19-7	СН₃СООН	ОН	60.05
119	Tetrapropylammo nium chloride	5810-42-4	C ₁₂ H ₂₈ CIN		221.81	Ethanolamine	141-43-5	C ₂ H ₇ NO	H ₂ N OH	61.08
120	Tetrapropylammo nium chloride	5810-42-4	C ₁₂ H ₂₈ CIN		221.81	Levulinic acid	123-76-2	C ₅ H ₈ O ₃	HO	116.11
121	Triethylmethylam monium chloride	10052-47-8	C7H18CIN	CI ⁻	151.68	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
122	Triethylmethylam monium chloride	10052-47-8	C7H18CIN	CI ⁻	151.68	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но	62.07
123	Triethylmethylam monium chloride	10052-47-8	C7H18CIN	Cl ⁻	151.68	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
124	Triethylmethylam monium chloride	10052-47-8	C7H18CIN	Cl ⁻	151.68	DL-lactic acid	598-82-3	C ₃ H ₆ O ₃	ОН	90.08
125	Triethylmethylam monium chloride	10052-47-8	C7H18CIN	Cl ⁻	151.68	Levulinic acid	123-76-2	C₅H ₈ O ₃	HO	116.11

126	Potassium carbonate	584-08-7	K ₂ CO ₃	0 -0 K ⁺	138.21	Ethylene glycol	107-21-1	C ₂ H ₆ O ₂	но	62.07
127	Potassium carbonate	584-08-7	K ₂ CO ₃	о -0 О- К ⁺ К ⁺	138.21	Glycerol	56-81-5	C ₃ H ₈ O ₃	ОН НООН	92.09
128	Sodium dodecanoate	629-25-4	C ₁₂ H ₂₃ O ₂ Na	Na ⁺ O O ⁻	222.30	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
129	Zinc chloride	7646-85-7	ZnCl ₂	Cl ⁻ Zn ²⁺ Cl ⁻	136.3	Acetamide	60-35-5	C₂H₅NO	NH ₂	59.07
130	Zinc chloride	7646-85-7	ZnCl ₂	Cl ⁻ Zn ²⁺ Cl ⁻	136.3	Urea	57-13-6	CH ₄ N ₂ O	H ₂ N NH ₂	60.06
131	Acetamide	60-35-5	C₂H₅NO	O NH ₂	59.07	Guanidine isothiocyanate	593-84-0	C₂H ₆ N₄S	H ₂ N NH ₂ NH SH	118.16
132	Atropine	51-55-8	C ₁₇ H ₂₃ NO ₃	-O-V-OH	289.37	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
133	Atropine	51-55-8	C ₁₇ H ₂₃ NO ₃	-O-V-OH	289.37	Dodecanoic acid	143-07-7	C ₁₂ H ₂₄ O ₂	Он	200.32
134	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26	Dodecanoic acid	143-07-7	C ₁₂ H ₂₄ O ₂	ОН	200.32
135	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	1-Naphthol	90-15-3	C ₁₀ H ₈ O	OH	144.17

136	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	1-Tetradecanol	112-72-1	C ₁₄ H ₃₀ O	~~~~он	214.39
137	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
138	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Benzoic acid	65-85-0	C ₇ H ₆ O ₂	ОН	122.12
139	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	Сон	172.26
140	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Dodecanoic acid	143-07-7	C ₁₂ H ₂₄ O ₂	о он	200.32
141	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	lbuprofen	15687-27-1	C ₁₃ H ₁₈ O ₂	U OH	206.28
142	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	L-lactic acid	79-33-4	C ₃ H ₆ O ₃	но ОН	90.08

143	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Octanoic acid	124-07-2	C ₈ H ₁₆ O ₂	ОН	144.21
144	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Phenylacetic acid	103-82-2	C ₈ H ₈ O ₂	ОН	136.15
145	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Pyruvic acid	127-17-3	C₃H₄O₃		88.06
146	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22
147	Imidazole	288-32-4	$C_3H_4N_2$	T. N	68.08	Acetic acid	64-19-7	CH₃COOH	ОН	60.05
148	Lidocaine	137-58-6	C ₁₄ H ₂₂ N ₂ O		234.34	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
149	Lidocaine	137-58-6	$C_{14}H_{22}N_2O$	H N	234.34	DL-menthol	89-78-1	C ₁₀ H ₂₀ O	ОН	156.27
150	Lidocaine	137-58-6	C ₁₄ H ₂₂ N ₂ O	H N O	234.34	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22

151	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	D-camphor	464-49-3	C ₁₀ H ₁₆ O	<i>X</i>	152.23
152	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	OH	156.27	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
153	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Dodecanoic acid	143-07-7	C ₁₂ H ₂₄ O ₂	Он	200.32
154	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Hexadecanoic acid	57-10-3	C ₁₆ H ₃₂ O ₂	Он	256.43
155	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	OH	156.27	L-borneol	464-45-9	C ₁₀ H ₁₈ O	OH	154.25
156	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Octadecanoic acid	57-11-4	C ₁₈ H ₃₆ O ₂	ОН	284.48
157	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Octanoic acid	124-07-2	C ₈ H ₁₆ O ₂	ОН	144.21

158	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Tetradecanoic acid	544-63-8	C ₁₄ H ₂₈ O ₂	~~~~~~	228.37
159	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22
160	L-menthol	2216-51-5	C ₁₀ H ₂₀ O	ОН	156.27	Trans-sobrerol	42370-41-2	C ₁₀ H ₁₈ O ₂	OH	170.25
161	L-proline	147-85-3	$C_5H_9NO_2$	O NH OH	115.13	DL-lactic acid	598-82-3	$C_3H_6O_3$	OH OH OH	90.08
162	L-proline	147-85-3	$C_5H_9NO_2$	O NH OH	115.13	Levulinic acid	123-76-2	$C_5H_8O_3$	HO	116.11
163	Nonanoic acid	112-05-0	$C_9H_{18}O_2$	∽∽∽∽ ^O ⊢OH	158.24	Dodecanoic acid	143-07-7	$C_{12}H_{24}O_2$	о О ОН	200.32
164	Octanoic acid	124-07-2	$C_8H_{16}O_2$	ОН	144.21	Dodecanoic acid	143-07-7	$C_{12}H_{24}O_2$	о ОН	200.32
165	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	1,2-Decanediol	1119-86-4	$C_{10}H_{22}O_2$	ОН	174.28
166	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	10-Undecylenic acid	112-38-9	C ₁₁ H ₂₀ O ₂	S OH OH	184.28

167	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Coumarin	91-64-5	$C_9H_6O_2$		146.14
168	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	D-camphor	464-49-3	C ₁₀ H ₁₆ O	A Contraction of the second se	152.23
169	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Decanoic acid	334-48-5	$C_{10}H_{20}O_2$	Он	172.26
170	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	DL-camphor	21368-68-3	C ₁₀ H ₁₆ O	0 A	152.23
171	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Dodecanoic acid	143-07-7	C ₁₂ H ₂₄ O ₂	Он	200.32
172	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Hexadecanoic acid	57-10-3	C ₁₆ H ₃₂ O ₂	ОН	256.43
173	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	L-borneol	464-45-9	C ₁₀ H ₁₈ O	OH	154.25
174	Thymol	89-83-8	C ₁₀ H ₁₄ O	ОН	150.22	Octadecanoic acid	57-11-4	C ₁₈ H ₃₆ O ₂	Он	284.48

175	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Octanoic acid	124-07-2	C ₈ H ₁₆ O ₂	ОН	144.21
176	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Tetradecanoic acid	544-63-8	C ₁₄ H ₂₈ O ₂	~~~~Он	228.37
177	Thymol	89-83-8	C ₁₀ H ₁₄ O	OH	150.22	Trioctyl- phosphine oxide	78-50-2	C ₂₄ H ₅₁ OP	0,P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	386.63
178	Triethanolamine	102-71-6	C ₆ H ₁₅ NO ₃	ОН НО N ОН	149.19	2- Methoxyphenol	90-05-1	C ₇ H ₈ O ₂	OH	124.14
179	Triethanolamine	102-71-6	$C_6H_{15}NO_3$	ОН НО ОН	149.19	3- Methoxyphenol	150-19-6	C7H8O2	OH	124.14
180	Triethanolamine	102-71-6	$C_6H_{15}NO_3$	он но N он	149.19	4- Methoxyphenol	150-76-5	C ₇ H ₈ O ₂	ОН	124.14
181	Trioctylphosphine oxide	78-50-2	C ₂₄ H ₅₁ OP	0, >>>>>P	386.63	Decanoic acid	334-48-5	C ₁₀ H ₂₀ O ₂	ОН	172.26
182	Trioctylphosphine oxide	78-50-2	C ₂₄ H ₅₁ OP	0, P	386.63	Dodecanoic acid	143-07-7	$C_{12}H_{24}O_2$	ОН	200.32
183	Trioctylphosphine oxide	78-50-2	C ₂₄ H ₅₁ OP	0,P	386.63	Phenol	108-95-2	C ₆ H ₆ O	ОН	94.11

5 Measurement methods	s dataset for DESs
-----------------------	--------------------

Ref. *	DES	Measurement apparatus	Uncertainty	Source	Purity	Purification method
	preparation					
	method					
1	Heating	Brookfield DV-E	N/A	Sigma-Aldrich	N/A	N/A
	method	viscometer				
2	Heating	Brookfield R/S Plus	The uncertainty in	Merck Chemicals	Choline chloride,	The studied DES
	method	Rheometer	the viscosity and		ethylene glycol,	components were
			the temperature		triethylene glycol, urea	dried in a vacuum
			measurements are		and malonic acid, >98	oven overnight.
			3-5% of the		wt%.	
			measured value			
			and ±0.01 K,			
			respectively.			
3	Heating	Pinkevitch method	Uncertainty of	Shanghai Aladdin	Acetylcholine chloride,	The obtained DESs
	method		viscosity is ±0.2%.	Chemical Company	99.0 wt%; Imidazole, 99.0	were further dried
					wt%; 1,2,4-Triazole, 99.5	under vacuum at
					wt%.	353 K for 48 h
						before use.
4	Heating	SVM 3000 Anton Paar	The repeatability of	Sigma Aldrich	Cholinium chloride,	Cholinium chloride,
	method	rotational Stabinger	the dynamic		acetylcholinium chloride	acetylcholinium
		viscometer-densimeter	viscosity		and benzyldimethyl(2-	chloride and

			measurements in		hydroxyethyl) ammonium	benzyldimethyl(2-
			this equipment is		chloride, >98wt%; D-(+)-	hydroxyethyl)
			±0.35%.		Xylose, D-(+)-Mannose,	ammonium chloride
					D-(-)-Fructose, D-(+)-	were dried under
					Glucose and D-(-)-	vacuum prior to
					Ribose, ≥99.0 wt%.	use.
5	Heating	Pinkevitch method	The relative	Aladdin Chemical	Choline chloride, >98.5	without further
	method		standard	Company	wt%; Levulinic acid,	purification
			uncertainty of		acetylcholine chloride,	
			viscosity was 0.2%.		tetraethylammonium	
					bromide,	
					Tetrabutylammonium	
					bromide, >99 wt%;	
					Tetrabutylammonium	
					chloride, >97 wt%;	
					Tetraethylammonium	
					chloride, trimethyl	
					hydrochloride, >98 wt%.	
6	Heating	digital rolling ball micro-	The viscosity meter	R&M Chemicals	Allyltriphenyl	without further
	method	viscometer(Anton Par,	has a measuring		phosphonium bromide,	purification
		model Lovis-2000M/ME)	uncertainty of		diethylene glycol and	
			±5×10 ⁻³ mPa.s and		triethylene glycol, >99	

			temperature of		wt%.	
			±0.02 K.			
7	Heating	Pinkevitch method	Uncertainty of	N/A	KSCN, >99wt% ;	KSCN, NH4SCN
	method		viscosity is ±0.2%.		NH4SCN, >98.5wt% ;	and urea were fully
					Acetamide, >98.5wt% ;	dried under vacuum
					Caprolactam, >99wt%;	at 105 °C to
					Urea, >99wt%.	constant weight
						before use.
8	Grinding	SM 3000 Anton Paar	The highest relative	Sigma-Aldrich	Choline chloride,≥98 wt%;	The DES were
	method	rotational Stabinger	standard		Benzylcholine	dried under
		viscometer-densimeter	uncertainty		chloride,≥97 wt%;	vacuum(1 Pa) at
			registered for the		Tetrabutylammonium	room temperature
			dynamic viscosity		chloride, ≥97 wt%;	for at least 3 days.
			measurements was		Levulinic acid, 98 wt%.	
			2×10⁻⁵Pa⋅s,			
			respectively.			
9	Heating	Bohlin CVO 100	N/A	Sigma-Aldrich,	N/A	All chemicals were
	method	rheometer		Shanghai Shenbo		analytical grade
				Chemical Company,		reagents and were
				VWR, Merck,		used as received.
				Shanghai Lingfeng		
				chemical reagent		

				company,	Simopharm					
				chemical	reagent					
				company	and Aladdin					
				company						
10	Heating	Anton Paar Automated	The uncertainty in	Aladdin	Chemicals	Choline	chloride,	>98	without	further
	method	micro viscometer	viscosity	Co., Ltd,	Shanghai,	wt%;	C	Choline	purification	
			measurements was	China		bromide,	>98	wt%;		
			estimated to be less			Tetrameth	hylammon	ium		
			than ±1%.			chloride,	>98	wt%;		
						Tetraethy	lammoniu	m		
						chloride,	>98	wt%;		
						Tetraethy	lammoniu	m		
						bromide,	>98 wt%;	Tetra-		
						propylam	monium			
						chloride,	>97	wt%;		
						Tetraprop	yl-ammor	nium		
						bromide,	>98	wt%;		
						Tetrabuty	lammoniu	m		
						chloride,	>97	wt%;		
						Tetrabuty	lammoniu	m		
						bromide,	>98	wt%;		
						Benzyltrin	nethyl-			
	1		1	1		1			1	

					ammonium chloride, >98	
					wt%; Trioctylmethyl-	
					ammonium chloride, >97	
					wt%; Triethylene	
					glycol, >98 wt%;	
					Tetraethylene glycol, >98	
					wt%; Phenylpropionic	
					acid, >99 wt%; Malonic	
					acid, >98 wt%; Glutaric	
					acid, >98 wt%; Lactic	
					acid, 98 wt%; sorbitol, >98	
					wt%; xylitol, >99 wt%.	
11	Heating	Brookfield R/S plus	(3-5)% of measured	Merck Chemicals	All the chemicals used	N/A
	method	Rheometer	value	(Darmstadt, Germany)	were of high	
					purity(>99wt%).	
12	Heating	Anton Paar Lovis 2000	Temperature is kept	Sigma-Aldrich and	Benzyltripropylammonium	All initial
	method	ME	constant through a	Merck	Chloride, ≥97.0 wt%;	components except
			built-in Peltier		Ethylene Glycol, ≥99.0	lactic acid were
			device with an		wt%; Lactic Acid, ≥90.0	kept in vacuum and
			accuracy of 0.02 K.		wt%; Glycerol Anhydrous,	dried for 48 h prior
					≥99.5 wt%; Phenol, ≥99.0	to synthesis.
					wt%.	

13	Heating	A microviscosimeter	N/A	Sigma-Aldrich,	Levulinic acid, 99 wt%;	without further
	method	Lovis 2000/ME		Labkem, Acros and	DL-lactic acid, 90 wt%;	purification
		connected to the Anton		Panreac	Citric acid, 99 wt%;	
		Paar DSA-5000M			Betaine, 98 wt%; L-	
		densimeter			proline, 98 wt%.	
14	Heating	Anton Paar Physica MCR	N/A	Sigma-Aldrich	Imidazole, >99 wt%;	without further
	method	301 rheometer			Choline chloride, >99	purification
					wt%; Betaine, >99 wt%;	
					Tetraethylammonium	
					chloride, >96 wt%; Acetic	
					acid, 99.7 wt%;	
					Urea, >98 wt%; Levulinic	
					acid, >97 wt%; Glycerol,	
					99 wt%; Ethylene	
					glycol, >99 wt%; Decanoic	
					acid, >98 wt%.	
15	Heating	Anton Paar Lovis	The uncertainty	Acros Organics	Choline chloride, >99	Choline chloride,
	method	2000ME	is nearer to 2%.		wt%; Ethylene	which is a very
		microviscometer(Graz,			glycol, >99.8 wt%; 1,2-	hygroscopic
		Austria)			Propanediol, >99 wt%;	compound, was
					1,3-Propanediol, >98	dried in a Schlenk
					wt%;	line under a high

					1,4-Butanediol, >99 wt%.	vacuum(10-4 mbar)
						for three days,
						while ethylene
						glycol, 1,2-
						propanediol, 1,3-
						propanediol, and
						1,4-butanediol were
						placed in molecular
						sieves for at least
						one day.
16	Heating	Anton Paar Lovis	The accuracy of	Shanghai Aladdin	1,4-butanediol, 99 wt%;	The water in the
	method	2000ME	viscosity	Industrial Co, Ltd.	2,3-butanediol, 98 wt%;	DESs was swept
			measurement was		1,3-propanediol, 98 wt%;	away by flowing
			better than ±0.02		choline chloride, 98 wt%.	dried nitrogen at
			mPa s.			353.15 K. Finally,
						the DESs were
						stored in closed
						bottles.
17	Heating	Brookfield instrument	N/A	Merck(Germany)	All chemicals are high	N/A
	method				purity, ≥98 wt%.	
18	Heating	NDJ-8S rotational	N/A	Sinopharm Chemical	Choline chloride, 98.0-	Choline chloride
	method	viscometer		Reagent Co, Ltd.	101.0 wt%); urea, ≥99.0	was chosen as

					wt%; ethylene glycol,	HBA and dried
					≥99.0 wt%; glycerol,	under vacuum at 80
					≥99.0 wt%; lactic acid,	°C for 48 h before
					≥99.0 wt%; acetic acid,	use.
					≥99.5 wt% and oxalic	
					acid, ≥99.5 wt%.	
19	Heating	a rotational	(3-5)% of measured	Merck	Choline chloride ,D-	Chemicals were
	method	viscometer(Anton Paar	value	Chemicals(Darmstadt,	fructose anhydrous ,	dried in a vacuum
		Rheolab QC)		Germany)	98wt%.	oven prior to use to
						eliminate moisture
						contamination.
20	Heating	Anton Paar Rheolab Qc.	(3-5)% of measured	Merck	Choline chloride (2-	without further
	method		value	Chemicals(Darmstadt,	hydroxyethyl-	purification
				Germany)	trimethylammonium) and	
					D-glucose	
					anhydrous, >98 wt%.	
21	Heating	MCR 301 rheometer from	N/A	N/A	N/A	N/A
	method	Anton Paar with a				
		thermostated jacket				
22	Heating	automated rolling-ball	The expanded (k =	Sigma-Aldrich	Choline chloride, ≥98	Choline chloride
	method	viscometer (Anton Paar	2) relative		wt%; Ethylene glycol,	was dried for 4 days
		AMVn)	uncertainty of		≥99.8 wt%.	at 313 K with a

			viscosity is 1.5%			high-vacuum
						line(pressure p<10-
						9 bar). Ethylene
						glycol(EG) was
						dried by 3A
						molecular sieve.
23	Heating	N/A	N/A	Scionix Ltd	N/A	N/A
	method					
24	N/A	nonequilibrium periodic	N/A	N/A	N/A	N/A
		perturbation method				
25	Heating	automated SM 3000	The temperature	Sigma-Aldrich	Choline chloride, ≥98	Cholinium chloride
	method and	Anton Paar rotational	uncertainty is ±0.02		wt%; Oxalic, malonic,	was first dried in a
	Grinding	Stabinger viscometer	K. The precision of		adipic, levulinic, glutaric,	high vacuum pump
	method	densimeter	the viscosity		glycolic, succinic, malic,	at 40 °C for at least
			measurements is		tartaric, fumaric, azelaic,	2 days, while the
			±0.5%.		and citric acids, all ≥99	hydrogen bond
					wt%.	donors were used
						without any further
						purification.
26	Heating	Brookfield DV-E	N/A	Sigma-Aldrich	Choline chloride, 99wt%;	Choline chloride
	method	viscometer			Ethylene glycol,1,4-	was recrystallized
					butanediol, and	from absolute

					glycerol, >99wt%.	ethanol, filtered,
						and dried under
						vacuum. Others
						were used as
						received.
27	Heating	Anton Paar SVM	The temperature	Sigma-Aldrich and	Choline chloride, ≥98.0	The choline
	method	3000/G2 Stabinger	uncertainty is 0.02	Merck	wt%;	chloride was kept in
		viscometer	K and the relative		Tetramethylammonium	a vacuum
			uncertainty of the		chloride, ≥98.0 wt%;	desiccator before it
			dynamic viscosity is		Glycerol, ≥99.0 wt%.	was used. All the
			0.35%.			chemicals were
						used without further
						purification.
28	Heating	automated Anton Paar	The uncertainties	Sigma-Aldrich	Choline chloride, ≥98	N/A
	method	microviscometer (model	associated with the		wt%; Glycerol, ≥99.5 wt%.	
		AMVn)	viscosity			
			measurements are			
			≤0.5%.			
29	Heating	Brookfield DV-E	N/A	Sigma-Aldrich	N/A	Choline
	method	viscometer				chloride(ChCl) was
						recrystallized from
						absolute ethanol,

						filtered, and dried
						under vacuum.
30	Heating	Rheometer	N/A	Aladdin Chemistry Co.	N/A	N/A
	method	(DISCOVERY HR-2,		and Sinopharm		
		USA)		Chemical Reagent		
				Co.		
31	Heating	viscometer (Model	The relative	Aladdin Reagent Co.	Choline chloride, 98.0	Choline chloride
	method	DV2T, Brookfield)	uncertainty is within	Ltd., Shanghai, China	wt%; Phenol, 99.0 wt%;	was dried for 48 h at
			1.0%.		P-cresol, 99.0 wt%); P-	313.2 K under
					chlorophenol, 99.0 wt%.	vacuum condition
						beforeuse. Other
						reagents were used
						for the synthesis of
						DESs without
						additional
						purification.
32	Heating	Ubbelohde viscometer	The uncertainty of	Aladdin Chemical Co.,	Choline chloride, o-cresol,	without further
	method		the viscosity was	Ltd. And Beijing	and 2,3-xylenol, >99 wt%;	purification
			less than ±3%.	Chemical Plant	Phenol, 98 wt%.	
33	Heating	automated Anton Paar	The deviation in	Sigma-Aldrich	Choline chloride, ≥99	N/A
	method	microviscometer (model	viscosity was		wt%; Urea, ≥99 wt%.	
		AMVn)	≤0.5%.			

34	Heating	Rheometer(DISCOVER	N/A	Aladdin Chemistry	All reagents used are of	N/A
	method	Y HR-2, USA)		Co., Sinopharm	analytical grade.	
				Chemical Reagent		
				Co., Ltd.		
35	Heating	Anton Paar SVM 3000	The temperature		Tetrabutylammonium	N/A
	method	Stabinger Viscometer	uncertainty is ±0.02		chloride, ≥95 wt%;	
			K and the relative		Tetraheptylammonium	
			uncertainty of the		chloride, 95 wt%;	
			dynamic viscosity is		Methyltrioctylammonium	
			±0.35%.		chloride, 97 wt%;	
					Tetraoctylammonium	
					chloride, 97 wt%;	
					Methyltrioctylammonium	
					bromide, 97 wt%;	
					Tetraoctylammonium	
					bromide, 98 wt%;	
					Decanoic acid, >98 wt%.	
36	Heating	viscometer(DMA 5000M,	N/A	Aladdin Reagent Co.,	N/A	without further
	method	Anton Paar GmbH)		Ltd.(Shanghai, China)		purification
37	Heating	automated falling ball	The overall	Merck	N,N-	The DES was
	method	microviscometer(Anton	uncertainty was		diethylethanolammonium	vacuum dried at
		Paar GmbH, model	estimated to be		chloride, >98 wt%;	343 K, and kept in a

		AMVn)	±1%.		Glycerol, >99.5wt%);	dry box prior to use.
					Ethylene	
					glycol, >99.9wt%.	
38	Heating	Anton Paar Lovis 2000	accuracy up to	Acros Organics,	Choline chloride, 99 wt%;	without further
	method	ME micro viscometer	0.5%	Belgium Loba	Tetrabutylammonium	purification
				Chemie, India Sigma	bromide, 98 wt%;	
				Aldrich, Switzerland	Tetraethylammonium	
				Sigma Aldrich, USA	chloride, 98 wt%;	
				Acros Organics, India	Tetraethylammonium p-	
				WINLAB, UK Sigma	toluene sulfonate, , 97	
				Aldrich, USA	wt%; Methyl triphenyl	
				WINLAB, Belgium	phosphonium bromide,	
				AVONCHEM, UK	98 wt%; Mono-ethylene	
				Loba Chemie, India	glycol, 99 wt%; Tetra-	
					ethylene glycol, 99 wt%;	
					Poly-ethylene glycol, 99	
					wt%; Levulinic acid, 98	
					wt%; Ethanolamine, 99	
					wt%; Acetic acid, 99.7	
					wt%;	
					1,2-propanediol, 99 wt%.	
39	Heating	Brookfield DV-II+ Pro	N/A	J&K Chemical, Ltd.	All reagents were	The prepared DESs

	method	viscometer			obtained with purity more	were dried at
					than 98 wt%.	373.15 K under
						vacuum for 24 h to
						ensure that the
						water content in
						DESs was less than
						0.2 wt%.
40	Heating	Anton Paar Rheolab Qc.	5% of measured	Merck Chemicals	Tetrabutylammonium	Prior to being used,
	method		value	(Darmstadt, Germany)	chloride, glycerol,	these chemicals
					ethylene glycol, and	were treated by
					triethylene glycol, >98	drying in a vacuum
					wt%.	oven to ensure a
						low moisture
						content of less than
						200 ppm.
41	Heating	Ostwald viscometer	The uncertainties	Tianjin Kermel,	Tetrabutylammonium	All the materials
	method	(Dalian Instruments an	were estimated to	Aladdin, Tianjin	chloride, ≥98 wt%;	were purified before
		Meters Co., P.R.China)	be 1%.	Kermel, and Tianjin	Propionic acid, ≥99 wt %;	use according to
				Kcrmel	Ethylene glycol, ≥98 wt %;	crystallization,
					Polyethylene glycol, ≥98	distillation, and
					wt %; Phenylacetic acid,	vacuum drying.
					≥99 wt %.	

42	Heating	Anton Paar Rheolab Qc	5% of measured	Sisco Research	Tetrabutylammonium	All chemicals were
	method		value	Lab(Mumbai, India)	chloride, N/A; Glutamic	pretreated by
					acid , aspartic acid ,	drying for a
					arginine, >99.0 wt%.	minimum of 3 h in a
						vacuum oven.
43	Heating	Cannon-Ubbelohde Size	N/A	VWR	Tetraheptylammonium	without further
	method	400 viscometer			chloride, 95 wt%; DL-	purification
					menthol; Decanoic,	
					dodecanoic, and oleic	
					acids, >98 wt%;	
					Ibuprofen, 98 wt%.	
44	Heating	Anton Paar SVM	reproducibility:	Sigma-Aldrich, VWR,	Tetrahexylammonium	without further
	method	3000/G2 Stabinger	temperature 0.03K;	Acros Organics,	bromide, ≥99.0 wt%;	purification
		densimeter- viscosimeter	viscosity 0.35%	Merck and Reidel-de	Ethylene glycol, ≥99.0	
				Haen	wt%; Glycerol, ≥99.0 wt%;	
45	Heating	Anton Paar Rheolab Qc	(3-5)% of measured	Merck	Tetrapropylammonium	N/A
	method		value	Chemicals(Darmstadt,	bromide, ethylene glycol,	
				Germany)	triethylene glycol and	
					glycerol, >98 wt%.	
46	Heating	Anton Paar Rheolab Qc	(3-5)% of measured	Merck	Potassium carbonate,	Prior to use, these
	method		value	Chemicals(Darmstadt,	ethylene glycol and	chemicals were
				Germany)	glycerol, >98 wt%.	treated by drying in

						a vacuum oven to
						assure a low
						moisture content of
						below 200 ppm.
47	Heating	Anton Paar(model SVM	The temperature	Sigma-Aldrich	Dodecanoate sodium salt,	without further
	method	3000) automated	uncertainty is ± 0.01		99-100 wt%; Decanoic	purification
		rotational Stabinger	°C. The relative		acid, >98 wt%.	
		viscometer-densimeter	uncertainty of the			
			dynamic viscosity is			
			±0.25%.			
48	Heating	Anton Paar AMVn falling	The accuracy of	Shanghai Aladdin	Guanidine	without further
	method	ball automated	viscosity	Chemical Company	isothiocyanate(GI) and	purification The
		microviscometer	measurement was		acetamide(AT) were AR	DES was dried
			better than ±0.02		grade with the mass purity	under vacuum at
			mPa.s.		higher than 0.99.	353 K for 24 h prior
						to utilization, with
						the water content
						less than 2.0·10-
						3(mass fraction) in
						all cases.
49	Heating	Anton Paar Lovis 2000	N/A	Sigma-Aldrich	1-Tetradecanol, ≥97.0	N/A
	method	ME rolling ball			wt%; Thymol, ≥99.0 wt%;	

		viscometer			Decanoic acid, ≥98.0	
					wt%; 1-Napthol, ≥99.0	
					wt%; Dodecanoic acid,	
					≥99.0 wt%; Menthol,	
					≥99.0 wt%; Coumarin,	
					≥99.0 wt%; 1,2-	
					Decanediol, ≥98.0 wt%;	
					Lidocaine, N/A; Atropine,	
					≥99.0 wt%.	
50	Heating	Anton Paar(modelSVM	The temperature	Sigma-Aldrich	Octanoic acid,≥98 wt%;	without further
	method	3000) automated	uncertainty is±0.01		Decanoic acid,≥98 wt%;	purification
		rotational Stabinger	°C. The relative		Nonanoic acid,≥98 wt%;	
		viscometer-densimeter	uncertainty of the		Dodecanoic acid,≥98	
			dynamic viscosity is		wt%;	
			±0.25%.			
51	Heating	Anton Paar Lovis 2000	N/A	Sigma-Aldrich	1-Tetradecanol, ≥97 wt%;	N/A
	method	ME rolling ball			DL-menthol, ≥99 wt%.	
		viscometer				
52	Heating	Anton Paar (model SVM	The temperature	Sigma-Aldrich and	DL-Menthol, ≥95 wt%;	For the preparation
	method	3000) automated	uncertainty is ±0.02	Fluka	Pyruvic acid, >98 wt%;	of the dried
		rotational Stabinger	K. The relative		Acetic acid, ≥99.7 wt%;	samples, the DL-
		viscometer-densimeter	uncertainty of the		Dodecanoic acid, >98	menthol-based

			dynamic viscosity is		wt%; Caffeine, 99 wt%;	eutectic mixtures
			±0.35%.		Vanillic acid, ≥97 wt%;	were maintained for
					Tetracycline, >98 wt%;	at least 4 days in a
					tryptophan, ≥98 wt%; L-	Schlenk under high
					Lactic acid solution (81	vacuum(ca.10 ⁻¹ Pa)
					wt% in water).	at room
						temperature.
53	Heating	Kinexus Prot	N/A	Sigma	Menthol, 99wt%;	without further
	method	Rheometer(Kinexus			Ibuprofen, >98wt%;	purification
		Prot, MAL1097376,			Benzoic acid, >99.5wt%;	
		Malvern)			Phenylacetic acid, 99wt%.	
54	Heating	Anton Paar SVM	uncertainty of	Sigma Aldrich	Tetraoctylammonium	N/A
	method	3000/G2 type Stabinger	±0.005 mPa s for		bromide, >96wt%;	
		instrument	the viscosity.		Menthol, ≈99wt%;	
					Lidocaine, ≈99wt%;	
					Thymol, ≈99wt%;	
					Decanoic acid, >98wt%.	
55	Heating	Anton Paar Physica MCR	Temperature	Sigma-Aldrich and	Lidocaine, >99 wt%;	without further
	method	301 rheometer	accuracy is ±0.03 K,	TCI Chemicals	Decanoic acid, >98 wt%;	purification
			and the torque		Thymol, >99 wt%;	
			uncertainty is max		Menthol, >99 wt%;	
			0.5%.			
			1	1		1

56	Heating	automated Anton Paar	The relative	Sigma-Aldrich	DL-Menthol, ≥95 wt%;	All of the mixtures
	method	SVM 3000 Stabinger	uncertainty in the		Octanoic acid, ≥99 wt%.	and pure
		viscosimeter-densimeter	dynamic viscosity			compounds were
			was ±0.35%.			carefully dried
						under vacuum at
						room temperature
						for a minimum of 2
						h in order to remove
						traces of water and
						other volatile
						compounds.
57	Heating	Anton Paar Physica MCR	N/A	Sigma-Aldrich	Lidocaine, >99 wt%;	N/A
	method	301 rheometer			Decanoic acid, >98 wt%.	
58	Heating	SVM 3001 Anton Paar	reproducibility:	N/A	L-menthol, ≥99.5 wt%;	without further
	method	viscometer	temperature 0.03K;		Thymol, >99 wt%; (+)-	purification
			viscosity 0.35%		Camphor, 98 wt%; (-)-	
					Borneol, ≥99 wt%; Trans-	
					sobrerol, 99 wt%.	
59	Heating	automated SVM 3000	temperature	Acros, Sigma, Aldrich	L-Menthol, 99.7 wt%;	without further
	method	Anton Paar rotational	uncertainty:±0.02 K;	and Merck	Thymol, ≥99.5 wt%;	purification
		Stabinger viscometer-	dynamic viscosity		Octanoic acid,≥99 wt%;	
		densimeter	relative		Decanoic acid, 99-100	

			uncertainty:±0.35%.		wt%; Dodecanoic	
					acid,≥99 wt%; Myristic	
					acid, ≈95 wt%; Palmitic	
					acid, ≥98 wt%; Stearic	
					acid, ≥97 wt%.	
60	Heating	a commercial rolling ball	N/A	Sigma-Aldrich	N/A	without further
	method	viscometer(Lovis 2000				purification
		M/ME, Anton Paar,				
		Germany)				
61	Heating	BROOKFIELD LVDV-II+	N/A	Sigma-Aldrich and	Thymol, ≥99 wt%;	N/A
	method	viscometer(Labo-Plus,		Merck.	±Camphor, >95 wt%;	
		Poland)			Decanoic acid, >98 wt%;	
					10-Undecylenic acid, >97	
					wt%.	
62	Heating	SVM 3001 Anton Paar	reproducibility:	Merck and Acros	Thymol, >99 wt%;	N/A
	method	viscometer	temperature 0.03K;	Organic	Trioctylphosphine oxide,	
			viscosity 0.35%		99 wt%; Decanoic acid,	
					99 wt%; Hydrocinnamic	
					acid, 99 wt%;	
63	Heating	Brookfield DVII+Pro	with a precision of	Aladdin Chem. Co and	Monoethanolamine, 99	The as-prepared
	method	rotary viscometer	±0.1 mPa.s.	Alfa Aesar	wt%; Diethanolamine, 99	DESs were then
					wt%; Triethanolamine, 99	dried under vacuum

					wt%; 2-methoxyphenol,	to remove the
					98 wt%; 3-	traces of moisture.
					methoxyphenol, 99 wt%	
					and 4-methoxyphenol, 99	
					wt%.	
64	Heating	microviscosimeter Lovis	The measurement	Scharlau, Sigma-	Adipic acid, 99.5 wt%;	without further
	method	2000/ME connected to	uncertainty is ±0.03	Aldrich, Sigma and	Succinic acid, 99 wt%;	purification
		the Anton Paar DSA-	mPa-s.	Acros Organics	Levulinic acid, 99 wt%;	
		5000M densimeter			Decanoic acid,≥98 wt%;	
					Dodecanoic acid, 99 wt%;	
					Trioctylphosphine oxide,	
					99 wt%;	
65	Evaporating	Bohlin Gemini cone and	N/A	Acros Organics	Trioctylphosphine	Materials were
	method	plate rheometer			oxide, >97 wt%; Phenol,	stored under an
					99.5 wt%.	inert atmosphere
						until used.
66	Heating	interfacial	The relative	Merck	DL-Menthol, ≥95 wt%;	a vacuum at T=60
	method	rheometer(model:	uncertainty of the		Dodecanoic acid, ≥99	C for at least 48 h
		Physica MCR301, Anton-	dynamic viscosity is		wt%; Ethanol, ≥99.9 wt%;	was applied to the
		Paar Make)	±3.3%.		1-Propanol, ≥99 wt%; 1-	DES samples
					Butanol, ≥99 wt%.	

*: The references in this table is corresponding to the Sheet2 in Supplementary Data.