Supplementary online-only material

Supplementary methods

Three-dimensional anatomical data were acquired on two 1.5 Tesla Siemens (Erlangen, Germany) magnetic resonance imaging scanners using T1-weighted sequences with the following parameters: MAGNETOM Sonata: field of view = 256×256 , 176 sagittal slices, slice thickness = 1 mm, voxel dimension = $0.977 \text{ mm} \times 0.977 \text{ mm} \times 1 \text{ mm}$, repetition time = 1,880 ms, echo time = 3.93 ms, flip angle = 15° ; MAGNETOM Aera: field of view = 256×256 , 160 sagittal slices, slice thickness = 1 mm, voxel dimension = $1 \text{ mm} \times 1 \text{ mm}$, repetition time = 2,060 ms, echo time = 5.99 ms, flip angle = 15° .

Supplementary methods table

Supplementary Table 1. Regions of interest (ROIs) in the brain's motor system.

	-	
ROI name	ROI abbreviation	
Left precentral gyrus	IPrcGy	
Right precentral gyrus	rPrcGy	
Left medial (segment of) precentral gyrus	IMedPrcGy	
Right medial (segment of) precentral gyrus	rMedPrcGy	
Left cerebrum and motor (supplementary motor area)	ICbr+Mot	
Right cerebrum and motor (supplementary motor area)	rCbr+Mot	
Left basal cerebrum and forebrain	lBasCbr+FobBr	
Right basal cerebrum and forebrain	rBasCbr+FobBr	
Left Caudate	lCau	
Right Caudate	rCau	
Left Pallidum	IPal	
Right Pallidum	rPal	
Left Putamen	IPut	
Right Putamen	rPut	
Left thalamus proper	IThaPro	
Right thalamus proper	rThaPro	
Left exterior cerebellum	IExtCbe	
Right exterior cerebellum	rExtCbe	
Left cerebellar vermal lobules I-V	ICbeLoCbe1-5	
Right cerebellar vermal lobules I-V	rCbeLoCbe1-5	
Left cerebellar vermal lobules VI-VII	ICbeLoCbe6-7	
Right cerebellar vermal lobules VI-VII	rCbeLoCbe6-7	
Left cerebellar vermal lobules VIII-X	ICbeLoCbe8-10	
Right cerebellar vermal lobules VIII-X	rCbeLoCbe8-10	
Left brainstem	IBst	
Right brainstem	rBst	

The 26 ROIs were taken from the <u>Neuromorphometrics</u> atlas, which is shipped with the CAT12 toolbox. Anatomical labelling of the ROIs and ROI abbreviations are adopted from the CAT12 toolbox (terms in brackets have been added for intuitive understanding).

Supplementary results table

Supplementary Table 2. Relationship of motor symptoms severity with clinical characteristics.

		Correlation statistics Dyskinesia (AIMS)	Correlation statistics Parkinsonism (SAS)
	-		
Age at disease manifestation (years)	25.2 ± 8.5	<i>r</i> _s = 0.300; <i>p</i> = 0.089	<i>r</i> _s = 0.198; <i>p</i> = 0.269
Disease duration (years)	13.5 ± 10.8	$r_s = 0.712; p < 0.001$	<i>r</i> s = 0.253; <i>p</i> = 0.115
Times of being inpatient	6.8 ± 7.6	$r_s = 0.538; p = 0.002$	<i>r</i> _s = 0.284; <i>p</i> = 0.121
Concomittant antipsychotic dose*	662.5 ± 848.3	$r_{\rm s}$ = -0.088; p = 0.615	<i>r</i> s = 0.003; <i>p</i> = 0.986
Psychopathology (BPRS)	40.1 ± 11.0	$r_{\rm s}$ = -0.138; p = 0.431	<i>r</i> s = -0.103; <i>p</i> = 0.557

Spearman rank correlations showed that severity of dyskinesia and parkinsonism is not linked to early disease manifestation, high concomitant antipsychotic dose, or severity of psychopathological symptoms. Dyskinesia severity was positively associated with disease duration and times of being inpatient, i.e., indicators of chronification of disease. Values are reported as mean \pm standard deviation and correlation statistics as both the Spearman rank correlation coefficient r_s and the 2-sided significance value p. Significant correlation are presented in italics.

AIMS = Abnormal Involuntary Movement Scale¹; BPRS = Brief Psychiatric Rating Scale²; SAS = Simpson Angus Scale³

*Doses equivalents to 100 mg chlorpromazine were calculated according to Leucht et al.⁴.

References

- 1. Guy W, Ban TA, Wilson WH. An international survey of tardive dyskinesia. *Prog Neuropsychopharmacol Biol Psychiatry*. 1985;9(4):401-5. doi:10.1016/0278-5846(85)90193-9
- 2. Overall JE, Gorham DR. The Brief Psychiatric Rating Scale. Psychological Reports. 1962;10(3):799-812. doi:10.2466/pr0.1962.10.3.799
- 3. Simpson GM, Angus JW. A rating scale for extrapyramidal side effects. *Acta Psychiatr Scand Suppl.* 1970;212:11-9. doi:10.1111/j.1600-0447.1970.tb02066.x
- 4. Leucht S, Samara M, Heres S, Davis JM. Dose Equivalents for Antipsychotic Drugs: The DDD Method. *Schizophr Bull*. Jul 2016;42 Suppl 1(Suppl 1):S90-4. doi:10.1093/schbul/sbv167