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Detailed methods

IBSS-ss algorithm

SuSiE-RSS uses the IBSS-ss algorithm, which is essentially the IBSS algorithm [1]
modified for sufficient statistics or summary statistics. When applied to sufficient
statistics, the IBSS-ss algorithm returns the same results as the IBSS algorithm applied
to the individual-level data. Here we describe the IBSS-ss algorithm in detail.

The single effect regression (SER) model with summary statistics

The single effect regression (SER) model is defined in [1] (see also [2]) as a multiple
regression model in which exactly one variable has a non-zero effect on the outcome. It
is a special case of the SuSiE model when L = 1. Posterior computations with the SER
model form the basis for the SuSiE model fitting algorithm, IBSS, hence form the basis
for IBSS-ss. We show here that posterior quantities under the SER model can be
computed using summary statistics XᵀX and Xᵀy.

Formally, the SER model can be written as

y = Xb+ e (28)

e ∼ NN (0, σ2IN ) (29)

b = γb (30)

γ ∼ Multinomial(1,π) (31)

b ∼ N (0, σ2
0). (32)

Here, y = (y1, . . . , yN )ᵀ ∈ RN denotes the phenotypes of N individuals, X ∈ RN×J
denotes their corresponding genotypes at J genetic variants (SNPs), b = (b1, . . . , bJ)ᵀ

denotes a vector of regression coefficients, e is an N -vector of error terms, σ2 > 0 is the
residual variance parameter, and IN is the N ×N identity matrix. To simplify the
presentation, we assume y and the columns of X are centered to have mean zero, which
avoids the need for an intercept term [3]. N (µ, σ2) denotes the univariate normal
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distribution with mean µ and variance σ2, Nr(µ,Σ) denotes the r-variate normal
distribution with mean µ and variance Σ, and Multinomial(n,p) denotes the
multinomial distribution with n trials and category probabilities p = (p1, . . . , pJ ). Thus,
γ = (γ1, . . . , γJ ) ∈ {0, 1}J is a binary vector of length J in which exactly one element is
1 and the rest are 0, and so b is a vector with exactly one non-zero element (except for
the special case when b = 0). The scalar b gives the value of the one non-zero element in
b (the “single effect”). The prior inclusion probabilities, π = (π1, . . . , πJ), which we
assume are fixed and known, give the prior probability that each genetic variant has the
non-zero effect. The prior variance of the single effect, σ2

0 , and the residual variance, σ2,
are hyperparameters that can be pre-specified or, more commonly, estimated.

Given settings of the hyperparameters σ2, σ2
0 , the posterior distribution of b under

the SER model is worked out in [1]. We summarize it here, with a focus on performing
computations using summary statistics XᵀX and Xᵀy.

Proposition 1. Consider the SER model (28–32) with known σ2
0 and σ2. The

posterior distribution of b = γb can be expressed in terms of univariate least-squares
estimates of bj , b̂j := xᵀ

jy/x
ᵀ
jxj , and their variances, s2j := σ2/xᵀ

jxj . Specifically, the
posterior distribution of γ is

γ |X,y, σ2, σ2
0 ∼ Multinomial(1,α) (33)

and the posterior distribution of b given γ is

b |X,y, σ2, σ2
0 , γj = 1 ∼ N (µ1j , σ

2
1j), (34)

where

σ2
1j :=

1

1/σ2
0 + 1/s2j

(35)

µ1j := σ2
1j b̂j/s

2
j (36)

αj :=
πjBFj∑J

j′=1 πj′BFj′
(37)

BFj := BF(xj ,y;σ2, σ2
0)

:=
p(y | xj , σ2, σ2

0)

p(y | xj ;σ2, b = 0)

=

√
s2j

σ2
0 + s2j

× exp

(
b̂2j
2s2j
× σ2

0

σ2
0 + s2j

)
. (38)

Note that the αj ’s are the PIPs (2) under the SER model; PIPj = αj , j = 1, . . . , J .

Proposition 1 shows that, given σ2 and σ2
0 , the posterior for b under the SER model

can be computed from the least-squares estimates b̂j and variances s2j . These, in turn,
can be computed from XᵀX and Xᵀy. We define SER-ss as the function that returns
the posterior distribution of b under the SER model given these statistics:

SER-ss(XᵀX,Xᵀy;σ2, σ2
0) := (α,µ1,σ

2
1), (39)

where µ1 := (µ11, . . . , µ1J)ᵀ, σ2
1 := (σ2

11, . . . , σ
2
1J) and α := (α1, . . . , αJ).

Remark 1. Although we write the posterior SER-ss as a function of XᵀX, it actually
only depends on the diagonal elements of this matrix.
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Algorithm 1 Iterative Bayesian stepwise selection using sufficient or summary statistics
(IBSS-ss)

Require: Sufficient statistics XᵀX,Xᵀy and, optionally, yᵀy, N (for estimating σ2).
Alternatively, require summary data that can be used to recover these sufficient
statistics, either exactly or approximately. For example, if X,y are standardized,
XᵀX,Xᵀy can be recovered from R̂, ẑ, N .

Require: Number of effects, L; initial estimates of hyperparameters σ2,σ2
0 .

Require: Initial estimates of the posterior mean single effects, b̄l, for l = 1, . . . , L.
1: repeat
2: ρ̄←Xᵀy −XᵀX

∑L
l=1 b̄l . Compute expected residuals.

3: for l in 1, . . . , L do
4: ρ̄l ← ρ̄+XᵀXb̄l . Disregard lth single effect in residuals.
5: σ2

0l ← argmaxσ2
0
`SER-ss(σ

2, σ2
0 ;XᵀX, ρ̄) . Update σ2

0l (optional).

6: (αl,µ1l,σ
2
1l)← SER-ss(XᵀX, ρ̄l;σ

2, σ2
0l) . Fit SER to residuals.

7: b̄l ← αl ◦ µ1l . “ ◦ ” denotes element-wise multiplication.
8: b̄2l ← αl ◦ (µ1l ◦ µ1l + σ2

1l) . Compute posterior second moments.
9: ρ̄← ρ̄l −XᵀXb̄l . Update expected residuals.

10: end for
11: σ2 ← 1

NERSS-ss(XᵀX,Xᵀy,yᵀy, b̄1, . . . , b̄l, b̄21, . . . , b̄
2
L) . Optional; see 41.

12: until convergence criterion is satisfied
return α1,µ11,σ

2
11, . . . ,αL,µ1L,σ

2
1L.

Likewise, the likelihood for σ2
0 , σ

2 under the SER model can be computed using only
the sufficient statistics since it can be expressed as a weighted sum of the BFs:

`SER(σ2, σ2
0 ;X,y) := p(y |X, σ2, σ2

0)

= p(y |X, σ2, b = 0)
∑J
j=1 πjBFj

= NN (y; 0, σ2IN )
∑J
j=1 πjBFj

:= `SER-ss(σ
2, σ2

0 ;XᵀX,Xᵀy). (40)

Following [1], we compute the maximum-likelihood estimate of σ2
0 by maximizing this

likelihood via numerical optimization.

The IBSS-ss algorithm

The IBSS-ss algorithm is given in Algorithm 1. Additional notation used in Algorithm 1
includes: b̄l, the expected value of bl with respect to the approximate posterior
distribution, q(b); and b̄2l = (b̄2l1, . . . ,

¯b2lJ)ᵀ, the vector of posterior second moments

b̄2lj := Eq[b2lj ]. A key change in implementation is that the original IBSS algorithm keeps

track of the posterior mean residuals r̄ := Eq[Xᵀy − b] = Xᵀy −
∑L
l=1 b̄l, whereas

IBSS-ss updates ρ̄ := Xᵀr̄. See [1] for development and justification for the IBSS
algorithm, and details of implementation, including preprocessing steps, and calculation
of the credible sets.

The only missing piece to the IBSS-ss algorithm is the expression for the expected
residual sum of squares (ERSS) under the variational approximation to the posterior,
q(b), which is needed to estimate σ2. Again, the expression can be written in terms of
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the sufficient statistics:

ERSS(X,y, b̄1, . . . , b̄L, b̄21, . . . , b̄
2
L])

:= Eq[‖y −Xb‖2]

= ‖y −Xb̄‖2 −
L∑
l=1

b̄lX
ᵀXb̄l +

L∑
l=1

J∑
j=1

(xᵀ
jxj)b̄

2
lj

= yᵀy − 2b̄ᵀXᵀy + b̄ᵀXᵀXb̄−
L∑
l=1

b̄ᵀlX
ᵀXb̄l +

L∑
l=1

J∑
j=1

(xᵀ
jxj)b̄

2
lj

:= ERSS-ss(XᵀX,Xᵀy,yᵀy, b̄1, . . . , b̄L, b̄21, . . . , b̄
2
L). (41)

The second ERSS definition makes explicit that it is a function of the sufficient
statistics.

Computing sufficient statistics, and approximations, from
summary data

Lemma 1 (Computing sufficient statistics). The statistics XᵀX,Xᵀy can be

computed from the the summary data b̂, ŝ,R,yᵀy, N from the following formulae:

ẑj = b̂j/ŝj (42)

σ̂2
j := ‖y − b̂jxj‖2/N =

yᵀy

ẑ2j +N
(43)

xᵀ
jy = σ̂2

j b̂j/ŝ
2
j (44)

dj := xᵀ
jxj = σ̂2

j /ŝ
2
j (45)

Dxx = diag(d1, . . . , dJ) (46)

XᵀX = D1/2
xx RD

1/2
xx . (47)

Proof. Equation 42 is the defintion of the z-score. From the definitions of b̂j and ŝj (see
Equations 4 and 5 in the main text), we have

ẑ2j = N × aj
1− aj

,

in which

aj = b̂2j ×
xᵀ
jxj

yᵀ
j yj

.

From this, the following identity holds:

ẑ2j +N =
N

1− aj
.

Therefore, we have

σ̂2
j := ‖y − b̂jxj‖2/N

= yᵀy × 1− aj
N

=
yᵀy

ẑ2j +N
,

which is (43).
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Now, from the definition of ŝj (equation 5 in the main text), we have

ŝ2j = σ̂2
j /(x

ᵀ
jxj). This yields (44) because xᵀ

jy = xᵀ
jxj b̂j , and (45). The remaining

expressions follow from the definitions of Dxx and R in the main text (equation 7).

Remark 2. The formulae (43–47) are ordered in such a way that to provide a
step-by-step procedure for reconstructing XᵀX,Xᵀy from the summary data
b̂, ŝ,R,yᵀy, N . Thus, given b̂, ŝ,R,yᵀy, N , SuSiE-RSS involves first computing
XᵀX,Xᵀy using (43–47), then applying the IBSS-ss algorithm to XᵀX,Xᵀy,yᵀy, N .

Remark 3. Often, the in-sample LD matrix R is not available, and is replaced with an
estimate R̂. Given b̂, ŝ, R̂,yᵀy, N , SuSiE-RSS involves first computing
Vxx = XᵀX/N,Xᵀy from (43–47), with R̂ replacing R in the formula for XᵀX to
yield NVxx, then applying the IBSS-ss algorithm to NVxx,X

ᵀy, with σ2 = yᵀy/N .
Note that when σ2 is fixed, the IBSS-ss algorithm does not need yᵀy or N .

Remark 4. Simpler formulae for recovering summary statistics XᵀX,Xᵀy when X,y
are standardized are given in the main text (“Special case when X,y are
standardized”).

Dealing with uncentered data

As stated above, y and the columns of X are assumed to be centered, and accordingly
the sufficient statistics should be computed using a centered X,y. If the sufficient
statistics have been computed from an X,y that have not been centered, the sufficient
statistics can be modified after the fact so that they correspond to a centered X and y.
Denoting the unmodified data as X,y and the centered data as
X̃ := X − 1N x̄

ᵀ, ỹ := y − ȳ1N , where x̄ = Xᵀ1N/N is the vector of column means,

ȳ :=
∑N
i=1 yi/N , and 1N is a column vector of ones of length N , the centering

calculations for the sufficient statistics are

X̃ᵀX̃ = XᵀX −N x̄x̄ᵀ

X̃ᵀỹ = Xᵀy −Nȳx̄
ỹᵀỹ = yᵀy −Nȳ2.

Note if X,y are already centered, these operations will leave the summary statistics
unchanged.

Similarly, the sufficient statistics may also be modified post hoc to be as if they were
computed using a column-standardized X; that is, an X in which each column has unit
variance. Denoting the standardized (and centered) matrix as X̂, and assuming X is
centered, the calculations are

X̂ᵀX̂ = N ×D−1/2xx XᵀXD−1/2xx

X̂ᵀy =
√
N ×D−1/2xx Xᵀy

Dxx = diag((XᵀX)11, . . . , (X
ᵀX)JJ).

Note that if X,y are already standardized, these operations will leave the summary
statistics unchanged.

Alternative model-based derivation

We derived SuSiE-RSS by writing down the full-data likelihood in terms of sufficient
statistics, approximating the sufficient statistics, then substituting the approximations
to obtain an approximate likelihood (12). In the main text, we mentioned that, in the
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standardized case, the resulting approximate likelihood can also be obtained from (22).
Here we derive the more general result when X,y are not necessarily standardized.

Recall, the model for individual-level data is

y ∼ NJ(Xb, σ2IN ). (48)

From this, we have

Xᵀy/
√
N ∼ NJ(XᵀX/N ×

√
Nb, σ2XᵀX/N). (49)

If XᵀX is invertible, the density obtained from (49) yields the same likelihood (up to a
constant of proportionality) as the likelihood from the individual-level data (8).
Substituting XᵀX with NVxx yields

Xᵀy/
√
N ∼ NJ(Vxx ×

√
Nb, σ2Vxx). (50)

If Vxx is invertible, the density obtained from (50) yields the same likelihood (up to a
constant of proportionality) as (12).

In the special case where X and y are standardized, these expressions simplify.
Making substitutions Xᵀy/

√
N = z̃ and XᵀX/N = R in (49) results in the simplified

expression
z̃ ∼ NJ(

√
NRb, σ2R). (51)

Finally, substituting R̂ for R and fixing σ2 = 1 gives (22).

Dealing with non-invertible LD matrix

If R̂ is not invertible, the models (20) and (22) do not have a density (with respect to
Lebesgue measure). This complicates defining a likelihood from these models. Various
approaches have been proposed for dealing with this issue. Some of these approaches
are equivalent to using the likelihood (19) that we use here, which exists whether or not

R̂ is invertible, while other approaches are not equivalent. Here we argue that using the
likelihood (19) has the advantage of being simple, and satisfies the desirable property
that inference under the SER model is independent of LD. We call this property
“Irrelevance of null SNPs.”

Note that the issues discussed here remain the same whether one uses models and
likelihoods for the observed z-scores, ẑ, or the PVE-adjusted z-scores, z̃. Therefore, to
simplify presentation we describe the results for the z-scores, noting that one can
substitute for the PVE-adjusted z-scores wherever ẑ appears in the mathematical
expressions below. To further simplify, we use z :=

√
Nb to denote the scaled

parameters, and compare the model

ẑ ∼ NJ(R̂z, R̂) (52)

and the likelihood
`RSS-Z(z) := exp(− 1

2z
ᵀR̂z + zᵀẑ), (53)

which is the same (up to a constant of proportionality) as (19), but with ẑ replacing z̃

and z replacing
√
Nb. If R̂ is invertible, the density of the model (52) yields likelihood

(53). We call (52) the “RSS-Z model” and (53) the “RSS-Z likelihood”. The key point
of this section is to argue that under model (52) the likelihood (53) is the “correct”

likelihood even if R̂ is not invertible.
We assume that although R̂ may not be invertible, it is nonetheless a valid

covariance matrix. That is, it is symmetric and positive semidefinite, which implies that
all its eigenvalues are non-negative. This is guaranteed so long as R̂ is a sample

July 8, 2022 6/16



correlation matrix. However, it may be violated if R̂ is obtained by modifying a sample
correlation matrix, for example by setting small correlations to zero. Any J × J
symmetric positive semidefinite matrix R̂ with rank r ≤ J has an eigenvalue
decomposition of the form

R̂ = QΛQᵀ, (54)

where Λ is an r × r diagonal matrix with the r positive eigenvalues
λ1 ≥ λ2 · · · ≥ λr > 0 along its diagonal, and Q is a J × r matrix whose columns are the
r eigenvectors corresponding to the r non-zero eigenvalues, and QᵀQ = Ir [4].

One can modify R̂ to make it invertible by simply adding a small diagonal element.
Indeed, for any λ ∈ (0, 1), the matrix

R̂λ := (1− λ)R̂+ λI (55)

will be invertible.
When R̂ is not invertible, the RSS-Z model (52) becomes degenerate, which means

that some values of ẑ become impossible. In particular, with probability one,
ẑ ∈ range(Q); that is, ẑ = Qα for some α.

Definition 1 (Consistency of ẑ with R̂). We say that ẑ is consistent with R̂ if

ẑ ∈ range(Q). Otherwise, if ẑ /∈ range(Q) we say ẑ is inconsistent with R̂.

Note that, if R̂ is invertible, then range(Q) = RJ , and so ẑ will always be consistent

with R̂. Further, if ẑ was generated from the model (52), then it will be consistent with

R̂ (with probability 1). However, in practice the model (52) is only an approximation,

and so in practice ẑ may be inconsistent with R̂.
Now we consider four approaches to dealing with a non-invertible R̂.

1a. Substitute the non-invertible R̂ with the invertible matrix R̂λ, for some small λ,
in (52). This is the approach used in [5,6]. The model becomes ẑ ∼ NJ (R̂λz, R̂λ),

which has a density because R̂λ is invertible, yielding likelihood

`1a(z; ẑ, R̂, λ) := exp(− 1
2z

ᵀR̂λz + zᵀẑ). (56)

1b. Use the RSS-Z likelihood (53) even though R̂ is non-invertible, so the likelihood is

`1b(z; ẑ, R̂) := exp(− 1
2z

ᵀR̂z + zᵀẑ). (57)

Note that the likelihood exists, and is easily computed, even when R̂ is not
invertible. Earlier versions of FINEMAP [7] effectively used this approach

(instead disallowing configurations γ ⊆ {1, . . . , J} where R̂γ is not invertible).

2a. Set the covariance in the RSS-Z model (52) to R̂λ for some small λ, so that

ẑ ∼ NJ(R̂z, R̂λ). Note that this approach differs from 1a because it uses R̂

instead of R̂λ for the mean. This yields the following likelihood:

`2a(z; ẑ, R̂, λ) := exp(− 1
2z

ᵀR̂R̂−1λ R̂z + zᵀR̂R̂−1λ ẑ). (58)

2b. Project ẑ into a lower-dimensional subspace, ẑ′ := Λ−1/2Qᵀẑ, which ensures that
ẑ′ ∈ Rr has a probability density, ẑ′ ∼ Nr(Λ1/2Qᵀz, Ir). Thus we have

p(ẑ′ | z, R̂) ∝ exp{− 1
2 (ẑ′ −Λ1/2Qᵀz)ᵀ(ẑ′ −Λ1/2Qᵀz)}

∝ exp(− 1
2z

ᵀR̂z + zᵀQΛ1/2ẑ′)

= exp(− 1
2z

ᵀR̂z + zᵀQQᵀẑ), (59)
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and therefore the likelihood is

`2b(z; ẑ, R̂) = exp(− 1
2z

ᵀR̂z + zᵀQQᵀẑ). (60)

The same likelihood is obtained by replacing R̂−1 in the density for (52) with the

pseudoinverse of R̂, which is QΛ−1Qᵀ. This is the approach used in
msCAVIAR [8].

We summarize the connections between these four approaches in the following
proposition.

Proposition 2. (a) As λ→ 0, Approach 1a becomes equivalent to Approach 1b, and
Approach 2a becomes equivalent to Approach 2b; that is,

lim
λ→0

`1a(z; ẑ, R̂, λ) = `1b(z; ẑ, R̂); (61)

lim
λ→0

`2a(z; ẑ, R̂, λ) = `2b(z; ẑ, R̂). (62)

(b) Approaches 1b and 2b are equivalent—i.e., `1b(z; ẑ, R̂) = `2b(z; ẑ, R̂)—if and

only if ẑ is consistent with R̂.
(c) If ẑ is inconsistent with R̂, Approach 2b behaves discontinuously,

lim
λ→0

`2b(z; ẑ, R̂λ) 6= `2b(z; ẑ, R̂), (63)

but in the limit it is equivalent to Approach 1b,

lim
λ→0

`2b(z; ẑ, R̂λ) = `1b(z; ẑ, R̂). (64)

Proof. (a) As λ→ 0, R̂λ → R̂, so (61) is trivially satisfied. To prove (62), we define
B := QΛ1/2 with pseudoinverse B† = Λ−1/2Qᵀ. With these definitions, we can write
`2a(z; ẑ, R̂, λ) as

`2a(z; ẑ, R̂, λ) = exp(− 1
2z

ᵀBBᵀ((1− λ)BBᵀ + λI)−1BBᵀz

+ zᵀBBᵀ((1− λ)BBᵀ + λI)−1ẑ). (65)

In the limit as λ→ 0, Bᵀ((1− λ)BBᵀ + λI)−1 → B† (Theorem 3.4 in [9]). Therefore,

lim
λ→0

`2a(z; ẑ, R̂, λ) = exp(− 1
2z

ᵀBB†BBᵀz + zᵀBB†ẑ)

= exp(− 1
2z

ᵀR̂z + zᵀQQᵀẑ)

= `2b(z; ẑ, R̂). (66)

(b) `1b(z; ẑ, R̂) = `2b(z; ẑ, R̂) for all z if and only if QQᵀẑ = ẑ. Since P = QQᵀ is
an orthogonal projector onto range(Q), ẑ ∈ range(Q)⇔ QQᵀẑ = ẑ (see [4], Ch. 6).

(c) First we prove (64). Since R̂λ is full rank, the J × J matrix of eigenvectors Qλ

satisfies QλQ
ᵀ
λ = IJ . Therefore,

`2b(z; ẑ, R̂λ) = exp(− 1
2z

ᵀR̂λz + zᵀẑ) = `1a(z; ẑ, R̂λ), (67)

so the result follows from (61). The result (63) then follows from part (b).

Remark 5. Proposition 2 (a) and (b) together imply that if ẑ is consistent with R̂
then, for sufficiently small λ, all four approaches should give the same results (ignoring
numerical errors that occur in floating-point computations). However, because the

RSS-Z model is only an approximation, ẑ will often be inconsistent with R̂. It is this
fact that causes the methods to give different results.
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Irrelevance of null SNPs

Given that the different approaches to dealing with non-invertible R̂ may give different
results, it is natural to ask which approach is preferable. Here we argue that Approaches
1a and 1b are preferable to Approaches 2a and 2b because Approaches 1a and 1b always
satisfy a simple property that we call “irrelevance of null SNPs.” (Approaches 2a and
2b may sometimes satisfy this property, but they are not guaranteed to do so.) This
property is also satisfied by the full data likelihood and implies, among other things,
that inference under the SER model is independent of the LD matrix.

We motivate this property by observing that the individual-data multiple regression
likelihood (1) has the following simple property: if a SNP j has no effect (a “null
SNP”), then its genotypes xj do not appear in the likelihood. As a result, genotypes at
null SNPs do not impact inference for other SNPs. We call this property “irrelevance of
null SNPs.”

In the summary-data setting, we do not directly observe the genotypes, so we need
to formulate an analogous property. Therefore, to translate these ideas to the
summary-data likelihoods with z, R̂, we ask instead whether the likelihood has the
following property: if zj = 0, then R̂j1, . . . , R̂jJ do not appear in the likelihood. If, for

example, R̂jj′ is the correlation between SNPs j and j′ obtained from a suitable
reference panel, then this property implies that the genotypes for SNP j have no impact
on the summary-data likelihood when zj = 0. (The same can be said for regularized LD
matrices of the form (23).)

To formalize these ideas, we introduce some notation. We use γ to denote a subset of
SNPs, γ ⊆ {1, . . . , J}, and we let zγ denote the elements of the vector z corresponding

to the SNPs in γ. The remaining elements are denoted by z−γ . Similarly, we use R̂γ to

denote the |γ| × |γ| matrix formed by the rows and columns of R̂ corresponding to

elements of γ, and R̂−γ denotes the matrix formed by all rows and columns of R̂ that
do not correspond to elements of γ. We then define irrelevance of null SNPs as follows.

Definition 2 (Irrelevance of null SNPs). Let `(z) be any likelihood for z (which

implicitly depends on ẑ, R̂, and the model parameters). For any subset γ ⊆ {1, . . . , J},
let `γ(zγ) denote the likelihood for zγ when the remaining elements z−γ are set to zero;
that is,

`γ(zγ) := `(zγ , z−γ = 0). (68)

We say the likelihood `(z) satisfies the irrelevance of null SNPs property if, for all γ,

`γ(zγ) depends on R̂ only through R̂γ .

Remark 6. We have framed the definition in terms of likelihoods for the scaled
parameters z, but a similar definition could be obtained for the effects b by replacing z
with b.

The multiple regression likelihood based on individual-level data (8) satisfies the
irrelevance of null SNPs property. Likelihoods `1a (56) and `1b (57) also satisfy this
property, as summarized by the following proposition.

Proposition 3. The `RSS-Z likelihood (53) satisfies irrelevance of null SNPs (Definition
2).

Proof. Setting z−γ = 0 in (53) yields

`RSS-Z(zγ , z−γ = 0) = exp(− 1
2z

ᵀ
γR̂γzγ + zᵀγ ẑγ). (69)
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The irrelevance of null SNPs has the following simple implication: to assess support
for the hypothesis Hγ : zγ = 0, one only needs the genotypes corresponding to the
non-null SNPs. Indeed, if pγ(zγ) denotes any prior on zγ under Hγ then, in the absence
of nuisance parameters, the Bayes Factor for Hγ vs. H0 is

BFγ :=

∫
`γ(zγ) pγ(zγ) dzγ
`γ(zγ = 0)

. (70)

This result implies that BFγ depends only on ẑγ , R̂γ whatever priors are used for each
γ (assuming that the prior pγ does not depend on the null genotypes). This result is
easily extended to integrate out additional nuisance parameters (e.g., σ2 in the multiple
regression model) in both the numerator and denominator.

A similar result is shown for specific priors in [7], and is exploited in FINEMAP. Our
analysis here emphasizes that this is, fundamentally, due to properties of the likelihood,
and is not confined to specific priors.

Remark 7. Applying this result to the special case that γ contains a single SNP j,
i.e., γ = {j}, BFγ depends on the genotypes only through SNP j; in particular, BFγ
does not depend on the LD between SNPs. Thus, irrelevance of null SNPs implies that
fitting a SER does not depend on LD. (A similar observation has been made for
prospective models of case-control traits based on conditional-independence
arguments [10]). Since the likelihood (13) satisfies irrelevance of null SNPs, inference
under the SER model with this likelihood has the desirable property that it does not
depend on LD.

Estimation of λ in regularized LD matrix

To solve (24), we used the Brent-Dekker algorithm [11], which is implemented in R by
the optimize function. This algorithm performs a 1-d search over λ ∈ [0, 1]. The main

computational expense of this optimization step is the eigenvalue decomposition of R̂0.
Computing the eigenvalue decomposition has computational complexity O(J3), and
therefore can impose a substantial computational burden on the overall fine-mapping
analysis when J is large. In practice, we found that the regularization typically
provided only a small improvement to the SuSiE fine-mapping results, so in the
software we set λ = 0 by default to avoid this potentially large computational expense.

Likelihood ratio for detecting allele flips

Based on the conditional distribution (26), we developed a likelihood ratio to detect

allele flips. Consider that, when R̂ = R, the standardized differences (27) should be

approximately standard normal; tj ∼ N (0, 1). However, when R̂ is estimated from a
reference panel, even without errors such as allele flips, the empirical distribution of
standardized differences will be longer tailed than the standard normal. This suggests
that a more flexible distribution should be used to model the standardized differences.
We used a mixture of normals to model the empirical conditional distribution,

z̃j | z̃−j , R̂ ∼
K∑
k=1

wkN (−Ωj,−j z̃−j/Ωjj , σ
2
k/Ωjj), (71)

where σ1, . . . , σK are pre-specified standard deviations such that σ1 < · · · < σK , and
w = (w1, . . . , wK) are mixture proportions (non-negative and sum to 1). In our
analyses, we chose the σk’s such that σ1 = 0.8, σK = 2×max{|t1|, . . . , |tJ |}, and
σk+1 = 1.05× σk. We estimated w by maximum likelihood, using summary data for all
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SNPs. Computing the maximum-likelihood estimate of w is a convex optimization
problem and can be solved efficiently using mixsqp [12]. (When J is large, the effort
involved in solving this convex optimization problem is negligible compared to inverting
or factorizing R̂.) We then used the maximum-likelihood estimates of the mixture
weights, ŵ = (ŵ1, . . . , ŵK), to compute a likelihood ratio for each SNP j,

LRj :=

∑K
k=1 ω̂kN (z̃j ; Ωj,−j z̃−j/Ωjj , σ

2
k/Ωjj)∑K

k=1 ω̂kN (z̃j ;−Ωj,−j z̃−j/Ωjj , σ2
k/Ωjj)

. (72)

This likelihood ratio can only identify errors in SNPs j with z-scores that are large in
magnitude. Therefore, after estimating the mixture weights, we focus on SNPs j with
|z̃j | > 2.

To verify the use of this likelihood ratio to identify allele flips, we simulated
fine-mapping data sets in which exactly one SNP was a casual SNP, and exactly one of
the SNPs had a flipped allele—that is, the allele encoding used to compute the z-scores
was different from of the allele encoding used to compute the LD matrix. We considered
two scenarios in these simulations: (1) the allele-flip SNP was also the causal SNP; (2)
the allele-flip SNP was not the causal SNP. An allele flip in both of these scenarios can
affect accuracy of the fine-mapping so it is important to identify and eliminate the
allele-flip SNP in both cases.

We simulated fine-mapping data sets using the UK Biobank genotypes, as previously
described in the Results (see also “Details of simulations” below), with the following
changes: we simulated one causal SNP with an effect size chosen so that it explained 2%
of variance in y; and we used 10,000 samples to compute the z-scores and LD matrix.
The z-scores and LD matrix were computed using the same samples (“in-sample LD”),
except that the LD matrix was computed only after modifying the genotypes of the
allele-flip SNP. Once the summary data ẑ, R̂ were computed from the individual-level
data, we computed LRj for each SNP j. (We computed the likelihood ratios using the
unadjusted z-scores, ẑj , instead of the PVE-adjusted z-scores, z̃j . The latter is
recommended, but here this would have made little difference because the sample size
was large and the SNP effects were small.) In total, we simulated 200 data sets for the
first scenario and another 200 data sets for the second scenario.

The results of these simulations are summarized in S1 Fig. The allele-flip SNPs
almost always had a likelihood ratio greater than 1 (i.e., log LRj > 0), and other SNPs
usually had likelihood ratios less than 1 (note the logarithmic scale in some of the plots).
A small proportion of SNPs without an allele flip had likelihood ratios greater than 1
(plots in middle row). However, most of these SNPs had z-scores close to zero, so
restricting to SNPs with larger z-scores (plots in bottom row) eliminates most of these
false positives. In summary, based on these simulations, the likelihood-ratio statistic
(72) provides an accurate diagnostic for identification of allele flips so long as we restrict
attention to SNPs with larger z-scores.

SuSiE refinement procedure

The refinement procedure is outlined in Algorithm 2. This procedure will work with any
individual-level data or summary data accepted by SuSiE or SuSiE-RSS. In the
algorithm, when we say the SuSiE model fit s is initialized to fit t, specifically we mean
that the posterior means b̄l for each single effect l = 1, . . . , L are initialized from t.
(Refer to Algorithm 1 in [1], and Algorithm 1 in this paper.)
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Algorithm 2 SuSiE refinement procedure

Require: A SuSiE model fit, s, with K ≥ 1 credible sets, CS1, . . . ,CSK .
1: F ← ELBO(s)
2: repeat
3: for k = 1 to K do
4: π̃ ← π
5: π̃j ← 0 for all j ∈ CSk
6: Fit SuSiE model, tk, using prior weights π̃ and default initialization
7: Fit SuSiE model, sk, using prior weights π, initialized at tk
8: Fk ← ELBO(sk)
9: end for

10: k? ← argmaxk ELBO(sk)
11: if Fk? > F then
12: s← sk?

13: end if
14: until Fk? ≤ F

Details of calculations for toy example

In the toy example (see “Fine-mapping with inconsistent summary data and a

non-invertible LD matrix: an illustration” in the Results), we assumed R̂ is the 2× 2

rank-1 matrix of all ones. Then the eigenvalue decomposition of R̂ is R̂ = QΛQᵀ with
Λ = 1, Q = (

√
1/2,

√
1/2)ᵀ, and QQT is the 2× 2 matrix with all entries set to 1/2. In

the likelihood `2b(z; ẑ, R̂) (see eq. 60), this has the effect that QQᵀẑ is the average of
the observed z-scores; that is, QQᵀẑ = ((ẑ1 + ẑ2)/2, (ẑ1 + ẑ2)/2)ᵀ.

The SuSiE-RSS results for this toy example with ẑ = (6, 7) were generated by
running susie rss with the default settings (susieR version 0.12.06).

Details of simulations

We evaluated the fine-mapping methods on summary data sets generated using real
genotypes and simulated phenotypes. For genotype data, we used version 3 of the
imputed genotypes from the UK Biobank resource [13]. UK Biobank is a large-scale
biomedical database and research resource containing genetic, lifestyle and health
information from half a million UK participants. The UK Biobank genotype data are
well suited for fine-mapping because of their large sample size (approximately 500,000
genotyped individuals) and the high density of available genetic variants after genotype
imputation [14].

Following [15], we took steps to filter out genotype samples, resulting in a candidate
set of 274,549 samples. In detail, to limit confounding due to population structure, we
considered only genotype samples marked as “White British” (based on a principal
components analysis of the genotypes [14]). We then removed any samples from the
“White British” subset that met one or more of the following criteria: mismatch between
self-reported and genetic sex; outlier based on heterozygosity and/or rate of missing
genotypes; has at least one close relative in the same data set (based on the UK
Biobank’s kinship and “relatedness” calculations); or does not have a measurement of
standing height.

From this collection of 274,549 genotype samples, we chose uniformly at a random a
subset of N = 50,000 samples, then we used this random subset of genotypes to
generate a collection of genotypes for fine-mapping. We repeated this 200 times to
generate 200 genotype data sets for fine-mapping. Each of these 200 data sets contained
SNPs within selected regions on autosomal chromosomes. These regions contained
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roughly 1,000 SNPs, and were chosen so that no two regions contained the same SNPs.
A SNP was included in a data set only if it satisfied all of the following criteria: SNP
with at most two alleles; minor allele frequency of 1% or greater; and information score,
which quantifies imputation quality, of 0.9 or greater. On average, 998 SNPs were
included in a region. The smallest region contained 998 SNPs, and the largest contained
1,001 SNPs. The average size of a region in base pairs was 390 kb.

For each of the 200 randomly chosen regions, we generated three data sets by
following a procedure similar to [1], resulting in a total of 200× 3 = 600 fine-mapping
data sets. Our procedure is briefly described here. We simulated phenotypes y under
the multiple regression model (1) in which X was the centered and standardized matrix
of 50,000 genotypes. We simulated three sets of phenotype data from the same X by
setting the number of causal SNPs to be 1, 2 or 3. The causal SNPs were chosen
uniformly at random among the available SNPs in the region. The causal (non-zero)
SNP effects bj were drawn randomly from the standard normal, then the residual
variance σ2 was adjusted so that the genotypes at all SNPs in the region explained 0.5%
of the variance in y. The outcomes y were then simulated as
yi = xi1b1 + · · ·+ xiJbJ + εi, with εi ∼ NN (0, σ2). We then calculated z-scores, z, and
the in-sample LD matrix, R, from X and the simulated y.

To investigate the impact of misspecification of the LD matrix, we randomly
sampled subsets of n = 500 and n = 1,000 individuals (not overlapping with the
N = 50,000 samples used to compute the z-scores), and computed two “out-of-sample”

LD matrices, denoted by R̂500 and R̂1000, respectively. Because the sample sizes were
not large (at most 50,000), it was feasible to compute all in-sample and out-of-sample
LD matrices using the function cor in R.

To assess performance in identifying causal SNPs with larger effects, we repeated the
same simulations as described above, except that (a) we used a smaller number of
samples, and (b) σ2 was adjusted so that the genotypes at all SNPs explained a larger
proportion variance in y. Specifically, we repeated simulations at target PVE settings of
10% and 30%, and for these settings we used N = 2,500 samples and N = 800 samples,
respectively, to achieve roughly the same power as the simulations with 0.5% and
N = 50, 000 samples. The the out-of-sample LD matrix was obtained in each simulation
using a non-overlapping subset of n = 1, 000 individuals.

Fine-mapping methods

In the simulations, all SuSiE-RSS variants were implemented by calling function
susie rss from the R package susieR (version 0.12.06). Unless otherwise stated, we
set the maximum number of non-zero effects to 10 (L = 10), we fixed the residual
variance σ2 to 1 (estimate residual variance = FALSE, residual variance = 1),
we set the maximum number of IBSS-ss iterations to 1,000 (max iter = 1000), and we
used refinement (refine = TRUE). In all calls to susie rss, the summary data
provided were the z-scores, LD matrix, and sample size (passed via susie rss

arguments z, R and n). We considered the following variants of SuSiE-RSS: susie rss

with L, the maximum number of non-zero effects in the regression model, set to 10 or
the true value (1, 2 or 3); with and without the refinement procedure (refine = TRUE,
refine = FALSE); and estimating the residual variance σ2 or fixing it to 1
(estimate residual variance = TRUE or estimate residual variance = FALSE).
Note that SuSiE-RSS with sufficient data (R, ẑ, N) and estimate residual variance

= TRUE (second row of Table 1) gives the same result as SuSiE with individual-level
data.

We also assessed performance of FINEMAP [7] (version 1.4), CAVIAR [5] (version
2.2) and DAP-G [16,17] (git commit id 875ba40). All these methods accept summary

data z, R̂ as input. FINEMAP additionally requires N , the number of samples used to
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calculate the z-scores. (DAP-G accepts either sufficient statistics or summary data, but

in our simulations we only evaluated DAP-G with summary data z, R̂.) These methods
are based on the same multiple linear regression model as SuSiE-RSS, differing in the
choice of priors, the approach used to compute posterior probabilities, and definition of
a credible set.

We ran the FINEMAP program with flags --sss --n-causal-snps 5; with these
options, FINEMAP used shotgun stochastic search to explore causal configurations,
restricting to configurations with at most 5 causal SNPs (this is also the default setting
in FINEMAP 1.4). For the “FINEMAP, L = true” results, we instead called FINEMAP
with --sss --n-causal-snps L, where L was the number of causal SNPs used in the
simulation (1, 2 or 3). In FINEMAP version 1.4, a credible set was defined conditioned
on the number of causal SNPs, k: “For a specific k, FINEMAP takes the k-SNP causal
configuration with highest posterior probability and then asks, for the lth SNP in that
set, which are the other candidates that could possibly replace that SNP in this causal
configuration. The lth credible set shows the best candidate SNPs and their posterior
probability of being in a k-SNP causal configuration that additionally contains k − 1
SNPs. Note that the k − 1 SNPs are chosen to have highest posterior probability in
their credible set.” FINEMAP outputted a set of results for each k = 1, . . . , L. We kept
the credible sets from the k with the highest posterior probability.

We ran DAP-G using the default settings. Note that the default maximum number
of causal SNPs in DAP-G (the “maximum model size”) is J , the total number of SNPs.
The DAP-G software outputs “signal clusters” [16], not credible sets. However, we were
able to compute credible sets from the DAP-G output following this description
from [16]: “For a signal whose local fdr ≤ t, it is straightforward to construct a (1− t)%
Bayesian credible set by selecting a minimum subset of SNPs such that their cumulative
SNP-level PIPs reach 1− t.” We implemented this calculation in R to generate the
DAP-G credible sets.

We ran CAVIAR with flags -g 0.001 -c L so that all SNPs had a prior inclusion
probability of 1/1000, and the maximum number of causal SNPs was L, where L was
the value used to simulate the phenotypes (1, 2 or 3). The remaining CAVIAR
parameters were kept at their default settings.

To compare CSs generated by SuSiE-RSS, FINEMAP and DAP-G (Fig. 4), we first
filtered out all CSs with purity less than 0.5 (this is also the default setting in susieR).
Following [1], “purity” was defined as the smallest absolute correlation among all pairs
of SNPs within a CS.

Computing environment

All simulations were run on Linux machines (Scientific Linux 7.4) with Intel Xeon
E5-2680v4 (“Broadwell”) processors. SuSiE-RSS was run in R 3.6.1 [18] linked to the
OpenBLAS 0.2.19 optimized numerical libraries. At most 2 GB of memory was needed
to run SuSiE-RSS on the simulated data sets, and at most 10 GB was needed to run
DAP-G, FINEMAP and CAVIAR. All methods and other computations were run
without multithreading (one CPU). Runtime statistics for running the methods on
summary data with in-sample LD matrices are given in Table 2.

We used the Dynamic Statistical Comparisons system
(https://github.com/stephenslab/dsc) to perform the simulations. All code
implementing the simulations, including the compiled results generated from our
simulations, are available at https://github.com/stephenslab/dsc_susierss, and
were deposited on Zenodo [19].
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