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We thank the reviewers for their detailed feedback on our manuscript, “Fine-mapping from
summary data with the ‘Sum of Single Effects’ model.” The reviewers’ feedback, and in
particular the feedback from Reviewer 2, prompted us to reconsider large parts of the presen-
tation. As a result our resubmission differs in many places from our initial submission (places
in the text that have been substantially revised are in blue). We summarize the main changes
below.

We note that the core of our new fine-mapping methods did not fundamentally change—
the main change is a modification to better deal with the “high PVE setting” raised by Re-
viewer 2. However, we hope that the new presentation is simpler and provides a better un-
derstanding of existing fine-mapping methods, why they work well (or not), and under what
circumstances. For example, the new presentation better highlights the fact that some meth-
ods use adjusted z-scores (e.g., SuSiE-RSS, FINEMAP) and others do not (e.g., DAP-G,
CAVIAR), and since the unadjusted z-scores introduce an additional approximation that is
violated when effect sizes are large, in experiments we see that SuSiE-RSS and FINEMAP
perform much better than the other methods in these circumstances. We believe that the
resulting manuscript is substantially improved over our initial submission, and we hope the
reviewers agree with this. We also wish to thank the reviewers for their patience as we worked
to address their comments.

Several improvements were made to the manuscript to address, directly or indirectly, the
reviewers’ comments. We summarize the main changes here:

1. We modified our SuSiE-RSS method to better deal with the high PVE setting. Apart from
improving performance in high-PVE setting, this modification has a conceptual benefit
(even in the low-PVE setting): it makes SuSiE-RSS, when used with an in-sample LD
matrix, exactly equivalent to SuSiE on the individual data. As a result, we removed the
SuSiE-suff terminology, since this is now just a special case SuSiE-RSS. We added a new
table (Table 1) to summarize these ideas, and to help readers understand the relationships
among the methods.

2. This modification also led to an improved understanding of connections and differences
between fine-mapping methods for summary data, particularly in the special case when
X,y are standardized (see Section, “Special case when X,y are standardized”). In this
special case (which is also a very common case in GWAS), as noted by Benner et al.
(2018), one can replace Xᵀy with

√
N z̃, where N is the sample size and z̃ is the vector

of “PVE-adjusted z-scores.” A key difference among existing fine-mapping methods can
then be framed as whether or not they use the PVE-adjusted z-scores (see “Connections
with previous work”).
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3. We included a new set of experiments to evaluate the performance of fine-mapping meth-
ods in the high-PVE setting (addressing a comment by Reviewer 2). See “Fine-mapping
causal SNPs with larger effects” in Results.

4. We improved the figures, in particular Fig 3 and Fig 5, to make the results more clear and
more comparable across panels (addressing a comment by Reviewer 3).

5. We performed an empirical assessment of the likelihood-ratio statistic for identifying al-
lele flips (addressing a comment by Reviewer 1). See “Likelihood ratio for detecting allele
flips” in S1 Text.

6. Finally, we improved and simplified the susie_rss interface in the susieRR package.

Comments from Reviewer 1. Zou et al present their work that extends the sum of sin-
gle effects (SuSiE) Bayesian sparse model for fine-mapping to operate directly on GWAS
summary statistics. To do so, they describe the sufficient statistics for fine-mapping, which
happen to be marginal effect-size estimates and linkage disequilibrium information (LD).
They demonstrate that this setting can accommodate either effect-size estimates along with
standard errors, or z-score statistics, which are much more commonly released in GWAS
data. In addition to this extension, Zou et al describe approaches to perform inference in a
low-rank setting, which is commonly the case when estimating LD from reference population
data (e.g., 1000 Genomes). Lastly, Zou et al also describe approaches to QC summary data
under model assumptions and identify SNPs with improperly labeled encoding (i.e., “allele
flips”). The manuscript presents simulated data results to support their claims, is well written,
and easy to follow. SuSiE has quickly become a standard approach for fine-mapping in recent
years and I was excited to see the authors describe a robust summary-based version. I have
some comments below.

Major Comments: The main exposition of the SuSiE-suff and SuSiE-RSS approaches is
very well done, justified by empirical results and I have no major comments to include re-
garding the primary fine-mapping procedure.

Minor Comments: The authors present a nice strategy to QC allele flips in summary data
using a likelihood ratio test under a mixture model. Their approach is well described, and the
authors provide some guidelines on how to use this in practice. The authors are clear in that
this procedure should not be considered as an automated approach to QC and should be done
interactively. Given that, I would still appreciate to see some Q-Q plot (or something similar)
to see how well the fitted LRTs behave under the null and its power under the alternate.
Results in this setting could further justify the interactive nature for this tool.

Response to Reviewer 1. We thank the reviewer for these comments.
In response to the comment about identifying allele flips, in the revised manuscript we

added simulations to evaluate the use of the likelihood-ratio statistic. These simulations are
described in S1 Text (“Likelihood ratio for detecting allele flips”), and the results are sum-
marized in Fig 7.

To clarify, the likelihood ratio we compute is a likelihood ratio, and not the commonly-
used “likelihood-ratio test statistic” for testing nested hypotheses. We mistakenly used the
word “test” at a couple of points in our original submission; we apologize for this and have
removed these occurences.

Comments from Reviewer 2. The paper presents a version of the fine-mapping model
SuSiE that is applicable to summary data (z-scores and LD matrix) while the previously
published SuSiE model was applicable to individual level data (genotypes and phenotypes).
Additionally, paper considers three topics related to practical issues of fine-mapping: (1)
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detecting inconsistencies between z-scores and LD estimates, (2) regularizing the estimated
LD matrix, and (3) a computational refinement procedure of SuSiE algorithm. As examples
the study uses simulated phenotypes on UK Biobank genetic data.

Paper is well-written and references to existing work are appropriate. Since SuSiE is a
key method for fine-mapping, its implementation applicable to summary data is an important
contribution to the field and it is/will be used widely. However, when considering the guide-
lines for publications in this forum, it is less clear what in this paper presented “a new way
of approaching a biological or biomedical question, or a substantive advance over existing
approaches.” First, there are well-established fine-mapping methods (such as FINEMAP and
DAP-G) that work with the same idea (replace XTy by scaled effect estimates and XTX by
scaled LD matrix in linear model likelihood) which produce similar results as SuSiE. Second,
the proposed detection of inconsistencies between z-scores and LD matrix seems similar to
recently published DENTIST method (Chen et al., 2021), which is also stated in this paper.
Third, while, to my knowledge, these kind of LD matrix regularization results have not been
presented before in fine-mapping context, and therefore they are interesting, the regulariza-
tion approach does not seem that important in practice. Fourth, the computational refinement
procedure of SuSiE algorithm is a technical fix to SuSiE algorithm rather than a considerable
improvement over the existing methods.

Major comments:
Hat-notation for b and z. I find it confusing that paper defines vector b as multiple regres-

sion coefficient but uses b̂ as an estimate for coefficients from simple regression. Thus, in
this paper, b̂ is not an estimate of b. This is against common statistical notation and therefore
likely causes confusion for a very large group of readers. I would suggest using the standard
notation where hat denotes an estimate of the very parameter on which the hat is put. Same
comment about z-scores.

Assumption about effects being very small. Line 172 states that model RSS-Z is valid only
when all non-zero effects are very small. While this indeed is the most common case, there
are also loci that explain several percentages of variance and typically these are highly in-
teresting loci for fine-mapping with multiple causal variants in them. Does SuSiE model
handle these loci correctly when applied to individual level data? And what about summary
data? If you ran your simulated examples with variance explained set to 30% instead of
0.5% what would happen with each method? Please include in the manuscript some clear
example or statement about this. (At least FINEMAP should handle appropriately such cases
https://doi.org/10.1101/318618)

Minor comments:
l. 87, “tractible” should be “tractable”.
l. 94 “Approximate posterior of b1, . . . ,bL”: Doesn’t the algorithm converge to only one

of the L! symmetrical modes of the posterior rather than to the actual posterior?
l. 121 Says that sufficient statistics contain “exactly the same information as individual

level data.” More precisely they contain same information about the parameters of a particular
model considered here. But they don’t, in general, contain “exactly the same information” as
full data.

l. 122 The statistics mentioned are sufficient statistics for the parameters of the SuSiE
model. (They are not any general “sufficient statistics” of these data.)

l. 233 It is unclear what “refine” means here? Is it “rerun until convergence starting from
the current state”?

l. 289 Remove extra “care”.
l. 373. Say that samples have self-reported their ethnicity as white British. (If that is indeed

the case.)
Figure 2 legend defines “power” and “FDR” that are then used also in other Figures. Would

be better to define these in text once and then use in all Figures.
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l. 497 Benner et al. (2016) suggest how to interpret the linear model parameters to account
for properties of binary data such as case-control ratio.

l. 669 “Then all Rjj′ do not appear in the likelihood.” Do you mean “then none of Rjj′

appear in the likelihood”?
l. 677–678 “rows and columns in γ.” Do you mean the square submatrix of dimension |γ|

of R̂ formed by subrows and subcolumns corresponding to elements in γ? Similarly for −γ.
l. 712. The fact that no LD is needed to do proper inference is also true for binary traits as

stated already by Maller et al. (2012). See Supp Text p. 56–57 of Maller et al. (2012).
l. 773. Hard to believe that the above mentioned criteria result in exactly 50,000 samples.

Make clear how you end up with exactly 50,000?

Response to Reviewer 2. We thank the reviewer for their thorough and detailed feed-
back. We were pleased that the reviewer recognized that the extension of SuSiE to sum-
mary data is “an important contribution to the field” and “is/will be widely used.” While the
referee is correct that there are other existing fine-mapping approaches that use summary
data and produce similar results to SuSiE, the SuSiE approach has both computational and
qualitative advantages (already explored extensively in the original SuSiE paper, and so not
repeated here), and we believe that its extension to summary data therefore represents the
kind of “substantive advance” that merits publication in PLoS Genetics. In addition, the pa-
per contains several new results; for example, we discover the that the two most competitive
methods, FINEMAP and SuSiE-RSS, tend to overestimate the number of causal SNPs with
a misspecified LD matrix. And while the DENTIST work is based on similar ideas to ours,
the two approaches were developed independently, and differ in detail; for example, DEN-
TIST makes use of the pseudoinverse that we demonstrate in our paper to be undesirable,
and does not provide the kinds of likelihood ratio statistic that we have proposed. We hope
that our improvements to the manuscript, together with a new, more unified reassessment of
fine-mapping methods, will persuade the reviewer of the suitability of our work for PLoS
Genetics.

The reviewer’s second major comment (“Assumption about effects being very small”) in-
spired us to rethink aspects of SuSiE-RSS, and lead us to develop a better, more cohesive
understanding of fine-mapping methods for summary data. A key idea, borrowing from Ben-
ner et al. (2018), was to treat more carefully the special case when X,y are standardized. In
this special case (which is also a very common case in GWAS), one can replace Xᵀy with√
N z̃, where N is the sample size and z̃ is the vector of “PVE-adjusted z-scores.” This sim-

ple idea is what allowed us to more clearly draw connections among existing fine-mapping
methods. (Note that computing the PVE-adjusted z-scores requires knowledge of N , and it
seems reasonable to assume that this is available in most cases.) In particular, we concluded,

When R̂ is invertible, these previous approaches (Benner et al., 2016; Hormozdiari et al., 2014;
Kichaev et al., 2014; Lee et al., 2018) are the same as our approach except that they use the z-
scores, ẑ, instead of the PVE-adjusted z-scores, z̃. Thus, where our approach uses the identity
Xᵀy =

√
N z̃, these previous approaches are implicitly making the approximation Xᵀy ≈

√
N ẑ.

If all effect sizes are small (i.e., PVE ≈ 0), then z̃ ≈ ẑ, and the approximation will be nearly exact;
on the other hand, if the PVE is not close to zero for some SNPs, then the use of the PVE-adjusted
z-scores is preferred (Benner et al., 2018).

Also, as suggested by the reviewer, we have included additional experiments to compare
the performance of fine-mapping methods when the SNPs explain a larger proportion of
variance in the trait. These experiments confirmed our expectation that methods such as DAP-
G and CAVIAR that (implicitly) make the approximation Xᵀy ≈

√
N ẑ perform much worse

when the SNP effects are large. These experiments generated other useful insights and we
invite the reviewer to examine them (see “Fine-mapping causal SNPs with larger effects” in
the manuscript).
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Regarding the “hat notation” used, this is notation used in previous publications, e.g.,
Stephens (2016); Zhu and Stephens (2017). However, we agree that the notation is probably
not familiar to many readers, and may be a source of confusion; in the revised manuscript,
we have rewritten some of the likelihood expressions so that they do not include both the
multiple regression coefficients, b, and the marginal association statistics, b̂. More generally,
we have substantially revised the presentation of the methods to better clarify assumptions
and draw connections to existing methods, which we hope will also address confusion with
the notation.

Regarding DENTIST, we agree that the ideas proposed in that paper are similiar to ours,
and we are now more careful to cite Chen et al. (2021), and draw connections. However, there
are some important differences which we now highlight in the manuscript: first, DENTIST
uses the z-scores whereas we recommend using the “PVE-adjusted” z-scores; second, DEN-
TIST replaces the inverse of the LD matrix, R̂, with its pseudoinverse, which, as we caution,
may lead to undesirable behaviour (see “Fine-mapping with inconsistent summary data and
a non-invertible LD matrix: an illustration”); third, the current implementation of DENTIST
(available at https://github.com/Yves-CHEN/DENTIST) requires both summary
data and individual-level data, whereas our implementation (the function kriging_rss in
susieR) runs using only summary data (z, R̂,N ).

Regarding regularization of the LD matrix, we agree that this is not a central contribution
of the paper. Nonetheless, a surprising result was that the performance of some methods,
notably FINEMAP, was sensitive to the choice of regularization, and in some cases estimating
the regularization parameter greatly improved FINEMAP’s performance.

To respond to the reviewer’s question about the IBSS algorithm (“Doesn’t the algorithm
converge to only one of the L! symmetrical modes of the posterior rather than to the actual
posterior?”), we did not elaborate on the IBSS algorithm, nor the variational approximation,
since these are not essential to explaining the main contributions of the paper. Instead, we
referred the reader to Wang et al. (2020) for details. The variational approximation assumes
that the single effects b1, . . . ,bL are conditionally independent. This is what makes the com-
putations tractable. But, as a result of this constraint, the approximate posterior is necessarily
an approximation (except when L= 1). As the reviewer rightly notes, this approximate pos-
terior, due to the conditional independence assumption, cannot capture the (trivial) symmetric
modes of the posterior. But this is arguably a trivial problem since we rarely care about the
symmetric modes. A less trivial issue is that there can be many other locally optimal approxi-
mate posteriors. (This issue is discussed in Wang et al. 2020, and has beenn discussed in other
papers on variational inference.) In general, we can only guarantee that the IBSS algorithm
will converge to a local optimum (except, again, when L= 1). The refinement procedure de-
scribed in our paper was an attempt to address this problem in cases where the local optimum
provides a particularly poor fit.

To illustrate, we implemented a toy example in R in which 4 variables affect the outcome
y. When L, the number of single effects, is incorrectly set to L= 2, the IBSS algorithm will
settle on different approximate posteriors depending on how the algorithm is initialized:

library(MASS)
library(susieR)
set.seed(1)
n = 400
p = 20
s = 0.8
beta = rep(0,p)
beta[1:4] = 1
S = s^abs(outer(1:p,1:p,"-"))
X = mvrnorm(n,rep(0,p),S)

https://github.com/Yves-CHEN/DENTIST
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X = scale(X,center = TRUE,scale = TRUE)
y = drop(X %*% beta + rnorm(n))
fit1 = susie(X,y,L = 2s_init = susie_init_coef(c(1,2),c(1,1),p))
fit2 = susie(X,y,L = 2,s_init = susie_init_coef(c(3,4),c(1,1),p))
unlist(fit1$sets$cs)
unlist(fit2$sets$cs)
packageVersion("susieR")
# L1 L2
# 3 1
# L1 L2
# 2 4
# 0.11.96

In the Discussion, we briefly discussed how to extend these fine-mapping ideas to binary
or case-control traits. To this point, the reviewer said, “Benner et al. (2016) suggest how to
interpret the linear model parameters to account for properties of binary data such as case-
control ratio.” Our understanding is that Benner et al. (2016) is referring a result given in
the supplementary materials of Pirinen, Donnelly and Spencer (2013), in particular equation
(1.6). However, it seems that Pirinen et al define β̂ to be the maximum-likelihood estimate
(MLE) in the multiple regression, not the vector of MLEs from the univariate regressions, so
it isn’t clear to us how their result applies to the summary-data setting. But perhaps we have
misinterpreted this comment and if so we would welcome a clarification.

The ethnicity of the UK Biobank individuals is not self-reported; this is based on PCA.
We have clarified this in the text.

We also thank the reviewer for highlighting several mistakes, typos and confusing or am-
biguous statements made in the manuscript. We have corrected these errors in the revised
submission. We have also cited Maller et al. (2012) as suggested.

Comments from Reviewer 3. This manuscript describes the extension of the recently
proposed SuSiE model to summary data (z-scores and correlation matrix), extending its ap-
plicability to fine mapping for genetic summary data.

The manuscript is clearly written, and the mathematical exposition is careful and suffi-
ciently detailed to follow.

Inconsistency between summary estimates and the LD matrix is an important prob-
lem which can produce misleading results and slow convergence. A good section of the
manuscript is dedicated to dealing with these, through regularization of the LD matrix, in-
cluding estimating the regularization parameter λ, which I think is novel. Detecting incon-
sistencies though is a thorny problem, and a new method is proposed for those. However, the
computational complexity is high, perhaps higher than fitting the SuSiE model itself. And so
some guidance about when this should be considered would be useful. Are there diagnos-
tics from the SuSiE output that indicate something could be awry and suggest it would be
worth running the discrepancy detection? For example, in my own experience finding mul-
tiple credible sets (up to 10) often containing only one SNP, or containing SNPs with no
marginal evidence for association has indicated issues with the data.

Overall, this is an important contribution, extending the use of the new SuSiE approach
to summary data. The approach is already in widespread use in the statistical genetics and
bioinformatics communities, so the exposition of the underlying mathematics and associated
comments on how the approach should be applied is very timely.

Minor comments: In Fig 4 [now Fig 5], I would like to compare SuSiE-RSS to other
approaches, but as each approach has its own subplot and there are no grid lines, this is very
hard to do. Could the results be faceted data (LD sample size, lambda, etc) or grid lines
added? The dotted black line is there in each plot, but is not enough for me to decide whether
the green lines in D are above/below the green lines in F, for example.
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Response to Reviewer 3. We thank the reviewer for their constructive comments and
suggestions.

As the reviewer noted, we have also found that SuSiE can behave unpredictably when the
LD matrix is inconsistent with the z-scores. In the original manuscript, we wrote, “Anec-
dotally, we have found large inconsistencies like these often cause SuSiE to converge very
slowly and produce misleading results such as an unexpectedly large number of CSs.” Since
this is mainly anecdotal, we are hesistant to add much more detail without investigating
this more systematically. In the revised manuscript, we expanded on this statement slightly:
“Anecdotally, we have found large inconsistencies like these often cause SuSiE to converge
very slowly and produce misleading results, such as an unexpectedly large number of CSs,
or two CSs containing SNPs that are in strong LD with each other.”

Finally, following the reviewer’s suggestion, we have reworked Fig 3 and Fig 5 to make
the results more comparable across the different panels.
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