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Supplementary Notes. 
 

1. Cell-free DNA features are correlated with gene expression.  
Furthermore, TSS regions were distinguished from exonic and intronic by having the highest 
representation of subnucleosomal fragments (P<0.0001, Extended Data Fig. 1c).  
We also tested whether the partially protected, subnucleosomal cfDNA fragments that are 100-
150 bases long could derive from tumor tissues.  As previously described, in patients with non-
small cell lung cancers (NSCLC) 1, we observed cfDNA molecules harboring tumor mutations to 
have significantly higher representation of subnucleosomal fragments than their wild-type 
counterparts (P<6E-08, Extended Data Fig. 1d). Therefore, the prevalence of subnucleosomal 
fragments observed in cfDNA correlate with expression levels and can derive from solid tumor 
origin. 
We also examined whether the distance from the TSS impacts correlations between cfDNA 
fragmentomic features and gene expression. When considering the ~20kb region flanking each 
promoter, we observed the peak correlation between cfDNA PFE and gene expression to be 
centered at the TSS. However, in comparison to NDR, correlation of PFE with gene expression 
had broader dispersion and extended into regions flanking the TSS (Fig. 1e).  

2. Subnucleosomal cfDNA fragments.  
We tested whether the partially protected, subnucleosomal cfDNA fragments that are 100-150 
bases long could derive from tumor tissues.  As previously described, in patients with non-small 
cell lung cancers (NSCLC) 1, we observed cfDNA molecules harboring tumor mutations to have 
significantly higher representation of subnucleosomal fragments than their wild-type counterparts 
(P<6E-08, Extended Data Fig. 1d). Therefore, the prevalence of subnucleosomal fragments 
observed in cfDNA correlate with expression levels and can derive from solid tumor origin. 



 

3. Validation of gene expression inference model. 
We also examined the robustness of our gene expression inference model by considering its 
performance on cfDNA data from different subjects, and various independent ground truth 
transcriptome data sources obtained by RNA-Seq. We therefore profiled two additional cfDNA 
samples from two healthy adults by deep whole genome sequencing. As ground truth, we also 
profiled the matched leukocytes of these two individuals by RNA sequencing. In both cases, we 
found expression inferences from cfDNA WGS using our model to be strongly and significantly 
correlated across the transcriptome as measured by RNA-Seq TPM (r=0.86, and r=0.91 with 
P<2.2E-16, Extended Data Figs. 2c-d). Therefore, the generalized linear model described here 
appears robust for estimating gene expression levels from cfDNA and is not substantially 
impacted by the source of cfDNA, or by the ground-truth transcriptome data employed for training. 
 
To validate the performance of our model in healthy controls versus patients with cancer, we next 
re-analyzed genome-wide cfDNA profiling data from 40 healthy adults and 46 patients with early-
stage lung cancers that were previously profiled by WGS at ~20-40x coverage2. We observed 
similar performance for predicting leukocyte gene expression levels when considering the 
average cfDNA meta-profile across the genome in the 40 healthy subjects (Extended Data Figs. 
2e-f). When considering groups of 10 genes across the transcriptome, Pearson correlations 
between model predicted expression and expected RNA expression levels from PBMCs remained 
~0.85. Nevertheless, gene expression levels inferred from plasma cfDNA fragmentomic profiles 
of lung cancer patients were lower compared to PBMC transcriptomes (P=0.018; Extended Data 
Fig. 2g). Hypothesizing that the lower correlation in lung cancer may be driven by an increased 
contribution of lung cancer-derived fragments, we used tumor fraction estimates by ichorCNA3 
and observed a significant negative correlation with inferred leukocyte expression levels (r=-0.69, 
P= 0.0005, Extended Data Fig. 2h). This experiment demonstrates that tumor-derived cfDNA 
can substantially reduce the contribution of the leukocyte compartment to the cell-free nucleic 
acid pool, and this contribution can be measured by inferring tissue-specific gene expression from 
cfDNA when tumor burden is high. 
 

4. EPIC-seq selector design. 
We then identified subtype-specific genes by evaluating those differentially expressed in NSCLC 
adenocarcinoma (LUAD) versus squamous cell carcinoma (LUSC) and DLBCL germinal center 
B- (GCB) versus activated B-cell (ABC) like subtypes. Specifically, we identified 69 differentially 
expressed genes (DEGs) when stratifying 1,156 NSCLC tumors by histological subtype from The 
Cancer Genome Atlas (TCGA; n=601 LUAD4 vs n=555 LUSC5, Fig. 3b, Supplementary Table 
3). We separately identified 44 DEGs when stratifying 381 DLBCL tumors by molecular cell-of-
origin (COO) subtype from prior publications (n=138 GCB vs n=243 ABC tumors6, Fig. 3c, 
Supplementary Table 3). In addition to these 113 genes for classification of lung cancers and 
lymphoma subtypes, we also included 50 genes that are differentially expressed in leukocyte 
subsets7 as well as 16 genes as additional controls (Methods).  
 
For each gene of interest, we designed probes to capture the ~2kb region flanking the TSS, then 
profiled plasma cfDNA from by deep sequencing of the targeted regions to a median ~2,000x 
unique depth of coverage as previously described1, 8. In cfDNA fragmentomic profiles captured by 
WGS, we observed marginal gains in transcriptome wide correlations beyond ~500x nominal 
coverage depth (Fig. 1h). Nevertheless, for our EPIC-Seq experiments and our modestly sized 
panel, we targeted ~2000x unique depth (~4-fold excess) for three reasons: (1) to guarantee 
saturation of the correlation plateau, (2) to avoid any gene-to-gene variability in accuracy of EPIC-



Seq predictions of expression levels that might otherwise be attributable to spurious differences 
in depth variability due to non-uniform hybrid capture of the TSS regions of genes of interest, and 
(3) to address the lower partial concentration of cfDNA from non-hematopoietic tissues in 
circulation. 

5. EPIC-seq lung cancer classifier evaluation. 
Epigenetic signals in cfDNA captured by our EPIC-Seq lung cancer classifier were significantly 
correlated with total metabolic tumor volumes (MTV), as measured by 18Fluorodeoxyglucose 
(FDG) uptake in combined positron emission tomography and computed tomography studies 
(PET/CT; 𝜌=0.67; P=0.04; Extended Data Fig. 4a), consistent with higher ctDNA concentrations 

in patients with larger tumor burdens1, 9. We also compared lung cancer epigenetic signals from 
EPIC-Seq in cfDNA with corresponding lung tumor-derived mutation signals from ctDNA 
separately measured by CAPP-Seq8. Here again, EPIC-Seq lung signals in cfDNA seemed to 
capture tumor burden, as we observed significant correlation with the mean allelic fractions (AF) 
of tumor-derived somatic mutations measured by CAPP-Seq on the same specimens (𝜌=0.5, 

P=3E-5; Extended Data Fig. 4b). 
 

6. EPIC-Seq DLBCL classifier evaluation 
For patients with available PET/CT scans, we also observed a significant trend for scores from 
the epigenetic classifier in distinguishing patients with high versus low tumor burden10 as 
measured by total MTV (Wilcoxon P=0.015; Extended Data Fig. 5a). This same trend was also 
observed in the validation set (Extended Data Fig. 5b).  
To further evaluate how EPIC-Seq scores reflect tumor burden in cfDNA, we compared them with 
the mean allele fractions (AFs) of mutations previously measured by CAPP-Seq on the same 
blood specimens11, 12. Notably, DLBCL epigenetic scores determined by EPIC-Seq were strongly 
correlated with the mean mutant AFs determined by CAPP-Seq (𝜌=0.66, P<2E-16; Extended 
Data Fig. 5c). 

7. Concordance of EPIC-seq inferred expression with tumor in the context of DLBCL 
prognosis. 

Therefore, we wished to evaluate the utility of EPIC-Seq for noninvasively measuring expression 
of genes with prognostic associations in DLBCL. Using univariate Cox proportional hazard 
regression models, we tested the prognostic value of individual genes using pre-treatment blood 
plasma from 69 patients and used Z-scores to measure the relative strength of these associations.  
We first assessed the prognostic concordance of our results in blood plasma against primary 
tumor specimens by examining the correlation between our EPIC-Seq results with those 
described in 3 recent tumor expression profiling studies that relied on surgical DLBCL tissue 
specimens6, 13, 14. When comparing the prognostic value of genes profiled in this manner, we 
observed a significant correlation of Z-scores from our study using plasma cfDNA with prior 
studies using tumor RNA (P=0.026; Extended Data Fig. 5i). 
 

8. Pre-analytical Factors 
Importantly, we did not observe a significant impact of several pre-analytical factors on cfDNA 
fragmentation entropy measurements, including blood collection tube types, the time between 
phlebotomy and plasma isolation, and the number of PCR cycles (Extended Data Fig. 6). 
Separately, we observed relatively modest impact of several factors that might confound accuracy 
of expression estimates derived from cfDNA entropy measurements, including corrections for GC 
fraction and presence of somatic copy number aberrations (Extended Data Fig. 6).  Finally, we 
developed a mechanistic framework for how cfDNA fragmentation mirrors activity level of 



expressed genes in human tissues (Extended Data Fig. 7a-c). Using this model framework, we 
used simulations to explore the parameters influencing the likelihood of detection of expression 
of a given gene of interest within cfDNA as a function of tumor burden (Extended Data Fig. 7d). 
Nevertheless, future studies will need to address the relative strengths and weaknesses of 
epigenetic signals that can be gleaned from cfDNA and how this approach compares to direct 
cfRNA measurements.  
 

 

Supplementary Table Legends.  
 
Supplementary Table 1. List of samples analyzed or profiled in this study. Whole-genome 
(n=116) and whole-exome (n=39) sequencing of cell-free DNA samples were used for the 
discovery of PFE, training the gene expression inference model and its validation. The WGS data 
were either profiled in this study (n=30) or downloaded from Zviran et al. (EGA accession number 
EGAS00001004406). The WES data were profiled in this study (n=39). Cell-free DNA from 288 
subjects were profiled using EPIC-Seq.  
 
Supplementary Table 2. Gene groups- average expression values of genes in each group in 
PBMC, normalized PFE, NDR, OCF, WPS, and MDS in the deep WGS sample. Each row in this 
table corresponds to one group of genes (10 genes per group, n=1,748 groups), when they are 
sorted according to the expression level in PBMC. Five columns, corresponding to different 
fragmentomic features (PFE [this study], NDR, OCF, WPS, and MDS) are shown in this table.  
 
Supplementary Table 3. TSSs in the EPIC-Seq selector. Each row corresponds to one TSS in 
the EPIC-seq sequencing panel (‘selector’).  
 
Supplementary Table 4. EPIC-Seq samples’ clinical characteristics and scores corresponding 
to different classifiers. EPIC-Seq was applied to 373 samples, of which 329 passed the QC steps 
and were used to show the utility of the inferred gene expression in different applications: 
detection, subtype classification, and patient response to treatment prediction.  
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