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Supplementary Methods

Social planner's optimal consumption

A social planner would maximise the sum of all players' social utilities, which
can be written as

US(c1, . . . , cN ,W, S0) =

N∑
i=1

ui =

(
N∑
i=1

(1 + αdi)
√
ci

)√
S0 +W − Σci −

1

2
(Σci)2,

(S1)

where W is the (total) initial income, N the number of players, S0 the initial
state of the public good and di the degree of the i-th player in the network (the
number of connections involving player i).

Note that US is a concave function of each ci, hence it has a single maximum.
This maximum is computed by �nding the point at which all partial derivatives
vanish:

∂US
∂ci

=
(1 + αdi)

√
S0 +W − C − C2

2

2
√
ci

−
(1 + C)ΣNk=1

(
(1 + αdk)

√
ck
)

2
√
S0 +W − C − C2

2

= 0, (S2)

where C denotes ΣNi=1ci as in the main text. Suppose ci > 0 for all i and

S0 +W −C − C2

2 > 0 (which is always the case for small enough ci since initial
conditions S0 and W are strictly positive). Then, equation S2 is equivalent to

√
ci

1 + αdi
=

S0 +W − C − C2

2

(1 + C)ΣNk=1

(
(1 + αdk)

√
ck
) ∀i. (S3)

Since equation S3 holds for every player, we obtain the equilibrium distri-
bution condition:

√
ci

1 + αdi
=

√
ck

1 + αdk
∀i, k (S4)
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which allows us to reduce our initial optimization problem to a single variable
one, e.g. the optimization of c1. Hence, by substitution we obtain:

C =

N∑
i=1

ci =
c1

(1 + αd1)
2

N∑
i=1

(1 + αdi)
2
, (S5)

N∑
i=1

((1 + αdi)
√
ci) =

√
c1

1 + αd1

N∑
i=1

(1 + αdi)
2
. (S6)

Let K denote

N∑
i=1

(1 + αdi)
2
. Then, to solve equation S3 is equivalent to �nd

the positive solution of:

− 3K2

2(1 + αd1)3
c21 −

2K

1 + αd1
c1 + (1 + αd1)(S0 +W ) = 0, (S7)

which is

c?1 = (1 + αd1)2
√

4 + 6(S0 +W )− 2

3K
. (S8)

Thus, by equation S5

C? =

√
4 + 6(S0 +W )− 2

3
. (S9)

Note however that the total consumption cannot exceed the initial income
W . Indeed, when the value of C? is larger than the total initial income W , then
the optimal consumption Copt is capped to W :

Copt = min{C?,W}. (S10)

Existence of Nash equilibria and corresponding equations

The social utility ui is a concave function, thus �rst order equations are nec-
essary and su�cient conditions for Nash equilibria. Let W =

∑N
i=1 wi be the

total income, where wi is player i's initial income. Let S0 be the initial state
of the public good, N the number of players, ci the personal consumption of
player i and N (i) denote the set of player i's neighbors. At equilibrium, the
marginal utility, ∂ui

∂ci
(c1, . . . , cN ,W, S0), of the own consumption of each player

i is bounded by the marginal utility of their transfer ti,k to their neighbour k:

∂ui
∂ci

(c1, . . . , cN ,W, S0) ≥ ∂ui
∂ti,k

(c1, . . . , cN ,W, S0) ∀k ∈ N (i) ∀i (S11)
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and the equality holds when there the transfer from player i to player k indeed
occurs.

Equivalently, the marginal utility of consumption for each player is bounded
by the marginal utility of their transfer ti,S to the public good,

∂ui
∂ci

(c1, . . . , cN ,W, S0) ≥ ∂ui
∂ti,S

(c1, . . . , cN ,W, S0) ∀i (S12)

and the equality holds when a transfer from player i to the public good actually
takes place.

Since the initial personal income has either to be consumed, transferred to
another player or transferred to the public good, it is clear that:

ci = wi −
∑

k∈N (i)

ti,k − ti,S +
∑

k∈N (i)

tk,i. (S13)

With some abuse of notation, all conditions can be written using only the terms
c1, . . . , cN , W and S0. As in the main text, we denote the state of the public
good G =

√
S0 +W − C − C2/2. A simple calculation gives:

∂us,i
∂ci

(c1, . . . , cN ,W, S0) =
·G

2
√
ci

+

√ci + α
∑

k∈N (i)

√
ck

 · ∂G
∂ci

(S14)

∂us,i
∂ck

(c1, . . . , cN ,W, S0) =
α · G
2
√
ck

+

√ci + α
∑

k∈N (i)

√
ck

 · ∂G
∂ck

(S15)

∂us,i
∂ti,S

(c1, . . . , cN ,W, S0) =

√ci + α
∑

k∈N (i)

√
ck

 · ∂G
∂ti,S

(S16)

All terms being well de�ned and non zero near the Nash equilibria, together
with the fact that ∂G

∂ci
= ∂G

∂cj
, imply that equation S11 is equivalent to:

√
ck ≥ α

√
ci ∀k ∈ N (i). (S17)

Note that W −C = T , where T =
∑N
i=1 ti,S . Thus, G =

√
S0 + T − C2

2 and

∂G
∂ci

=
−C

2
√
S0 + T − C2

2

(S18)

∂G
∂ti,S

=

√
ci + α

∑
k∈N (i)

√
ck

2
√
S0 + T − C2

2

(S19)

Hence, equation S12 is equivalent to

S0 +W − C − C2

2
≥

ci +
∑

k∈N (i)

α
√
cick

 (1 + C) . (S20)

3



Since these are true for each player, we can agregate them all to obtain the
following Nash equilibria condition:

S0 +W − C − C2

2

1 + C
≥ max

i≤N

ci +
∑

k∈N (i)

α
√
cick

 . (S21)

Complete network computations

For complete networks (i.e. when every pair of players is connected), equa-
tion S17 limits the consumption inequality at the Nash equilibrium to a factor
of α2. As a consequence, for a network containing one single rich player, the
maximal Gini coe�cient compatible with a Nash equilibrium corresponds to
the situation where the rich player consumes cr and all other players consume
exactly α2cr (which corresponds to the red dot on �gure 2 of the main text).
It is worth noting that there is no overconsumption in the corresponding Nash
equilibrium.

We consider a fully connected network featuring 1 rich player, with income
wr and 99 poor ones (with income wp) and we assume that initial conditions S0,
W = wr+99wp and α are given. In this case, the binding term for equation S21
is the one corresponding to the richest player.

If equation S21 is ful�lled, i.e. if no transfer to the public good is needed,
the Nash equilibrium depends on the need of transfers between players as stated
by equation S11. If equation S11 is ful�lled, the initial income distribution
together with the initial S0 is already a Nash equilbrium, which corresponds to
the blue region of the graph. Conversely, if equation S11 is not ful�lled, transfers
only occur from the rich player to the poorer ones, i.e. the initial conditions
belong to the region under the dotted black line of �gure 2 of the main text. In
this case, the Nash equilibrium is the point in the vertical blue line featuring
W = (1 + 99α2)cr and cp = α2cr.

When transfer to the public good is needed, it will be performed by the
richest player alone up to an amount of wr − wp, i.e., as long as

S0 +W − 100wp − (100wp)
2

2

1 + 100wp

≥ wp(1 + 99α), (S22)

When equation S22 is ful�lled, the Nash equilibrium reached depends on the
value wp. Two di�erent cases need to be considered:

1. Either the solution to the equation:

S0 +W − 99wp − cr − (99wp+cr)
2

2

1 + 99wp + cr
= cr + 99α

√
crwp (S23)

satis�es wp ≥ α2cr, so cp = wp, and cr is obtained this way. This corre-
sponds to the initial conditions on the purple region of �gure 2 and yields
a Nash equilibrium in the blue line between the green and the red dots.
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2. Or cp = α2cr, where cr is the solution to the equation:

S0 +W − (1 + 99α2)cr − ((1+99α2)cr)
2

2

1 + (1 + 99α2)cr
= cr(1 + 99α2). (S24)

This corresponds to the initial conditions on the red region of �gure 2 and
yields as Nash equilibrium the red dot.

Finally, when further transfer is required, i.e., if equation S22 is not ful-
�lled, the rest of the transfer will be equally distributed among all players and
the Nash equilibrium reached will be the one consisting in equally distributed
consumption. In this case, at the Nash equilibrium the Gini coe�cient of the
consumption distribution is gNe = 0 and the corresponding total consumption
CNe = 100c is obtained by solving the equation:

S0 +W − 100c− (100c)2

2

1 + 100c
= c(1 + 99α). (S25)

This situation corresponds to initial conditions in the green region of the �gure
2 on the main text, and the Nash equilibrium at the green dot.

Once the consumption distribution of the corresponding Nash equilibrium
is computed, one can easily compute its total, CNe, as well as the correspond-
ing Gini coe�cient, gNe. Finally, as Copt only depends on S0 + W and W ,
overconsumption is simply computed as CNe/Copt.

The Nash equilibria boundaries on �gures 2 and 3 of the main text where
obtained by implementing the above algorithm with 100 players, S0 +W = 106,
W ∈ {1200, 2500, 500} and the fraction of W dedicated to wr varying from 1 to
0.1 by decreasing steps of 0.1.

The dotted lines marking the boundaries in the phase diagram (see �gure
2 of the main text) were obtained by numerically solving the overlap of the
di�erent cases described above.

The green dotted line was obtained by �rst numerically solving equation S25
for c, and then calculating a series of 25 points by incrementing the value of
W/C?, therefore obtaining wr = W − 99c. Similarly, for the red dotted line, we
�rst calculated the corresponding Nash equilibrium without overconsumption
by solving equation S24 for cr. Then, a total of 25 points on the red dotted
line were found by progressively incrementing W/C?, �nally yielding wr = W −
99α2cr. Finally, the black dotted line corresponds to setting W = C? and

wr >
W

1 + 99α2
.

Supplementary results

Asymptotic behaviour of the social optimum

The social planner's utilities, the optimal consumption, and the �nal state of
the public good all increase when increasing the total initial budget W + S0.
However, they do not increase at the same rate.
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Indeed, the total consumption is asymptotically proportional to the square
root of the initial budget, see equation 9 of the main text, while the �nal con-
dition of the public good under optimum consumption is linear on the initial
budget:

S? = S0 +W − C? − (C?)2

2
(S26)

= S0 +W −
−2 +

√
4 + 6(S0 +W )

3
−

(
−2+
√

4+6(S0+W )

3

)2

2
(S27)

� 2

3
(S0 +W ) (S28)

and social utility is asymptotically proportional to the power 3
4 of the total

budget:

US(c?1, . . . , c
?
N ,W, S0) =

(
K
√
c?1

1 + αd1

)√
S0 +W − C? − (C?)2

2
(S29)

�
√

2K

3
(S0 +W )

3
4 . (S30)

Hence, at the optimum, in relative the initial income devoted to consumption
rises slower than the share allocated to the public good. This is exempli�ed in
�gure S1. For an initial income W = 104, the optimal total utility of 733 is
reached for C = 81. Increasing the initial income by 10% only rises the optimal
consumption to C = 85, i.e. an increase of 5%, while the corresponding total
utility reaches 788, i.e. an increase of 7.5%.

Figure S1: (a) Optimization of total utility for two di�erent values of W + S0.
The optimal consumption C? increases slower than S0 + W . (b) Optimal con-
sumption, total utility and public good state at the social optimum for increasing
initial income.

Finally, we note that the quadratic degradation of the public good with
consumption sets a natural upper bound to the latter: in order to keep a nonzero
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utility, players need to ensure

S0 +W − C − C2/2 > 0. (S31)

Thus C ≤
√

1 + 2(S0 +W )− 1. Hence, for a su�ciently large initial amount of
S0 +W , the upper bound of C and C? are, respectively, well approximated by√

2(S0 +W ) and

√
6(S0+W )

3 , see equation 9 of the main text. Overconsumption,
C
C? , tends therefore to

√
3 for large initial S0+W . This value is also approached

in all our simulations when players are all totally disconnected from each other
and the total income is such that some transfer to the public good is needed.
This full overconsumption regime in an egoistic setup behaves as the standard
tragedy of the commons.

Alternative social optimum, based on personal utility

Since the social utility can be decomposed as a personal utility term plus the
discounted personal utilities of the neighbours:

ui(c1, . . . ,W, S0) =
√
ci

√
S0 +W − C − C2

2
+α

∑
k∈N (i)

√
ck

√
S0 +W − C − C2

2
,

(S32)

the social planner could maximize the sum of the personal utilities instead of
the sum of the social utilities:

UP =

(
N∑
i=1

√
ci

)√
S0 +W − C − C2

2
. (S33)

In this case, for a given amount of total consumption C, considering the con-
cavity of the utility function, the Cauchy-Schwarz inequality implies that UP is
maximized by equally distributing C among all players. Hence, when optimizing
UP, the social planner ends up optimizing the following function:

UP(C) =
√
N
√
C

√
S0 +W − C − C2

2
. (S34)

Interestingly, the optimum is reached at the same level of consumption C =
C? as when considering the sum of social utilities. However the distribution of
C∗ among all players are di�erent, except for regular graphs (i.e. graphs where
all players have the same number of neighbors), where the function S34 is clearly
a multiple of the function US of the main text.

In�uence of the network topology

In order to assess the generality of the trade-o� between inequality reduction
and public good conservation with regard to the network topology, we have
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computed several Nash equilibria for the 5-regular tree of height 4, a more
connected and regular variant of such a tree and three networks with the same
connectivity and the same number of vertices obtained using three classical
random network models: Erdös-Rényi networks [1] (using Gilbert's probabilistic
version [2]), Watts-Strogatz networks [3] and Barabási-Albert networks [4]. We
have chosen height 4 because it already has a low critical altruism parameter
in the Pareto front (see �gure 5 of the main text) and the algorithms we use
in our simulations are still manageable in time and storage space in a desktop
computer with the corresponding number of players.

The Erdös-Rényi model was the �rst introduced in [1] and is the most natu-
ral de�nition of a random network. Indeed, in an Erdos-Rényi-Gilbert network,
each of the possible connections (in our particular case 781·780

2 ) is present with
the same probability (in our particular case 6

781 ), and therefore absent with
probability 1 − 6

781 . With this parameter choice, the network obtained has a
main connected component and at most a few other small components (less than
�ve components of one or two vertices). Since we want to deal with connected
networks, if the network obtained with the random generator is not connected,
we add a connection from each of the connected components to the main con-
nected component.

The Watts-Strogatz model was introduced as a variation from the Erdös-
Rényi to better mimick the fact that real sociological networks usually have a
higher clustering coe�cient than the one obtained with the Erdös-Rényi model,
i.e. neighbours of the same player are more connected among them than what
would be expected by random connections. For the Watts-Strogatz network,
with our parameter choice, the generator model starts with a cycle of length
781 where each player is connected to his 6 nearest players (3 turning left,
three turning right). Then, each connection is randomly �ipped (changed to a
connection with a randomly chosen vertex) with probability 1

4 . This probability
ensures still a high clustering coe�cient while already having the small world
property.

The Barabási-Albert model was introduced to better approach the degree
distribution of real networks. For the Barabási-Albert network, with our pa-
rameter choice, the generator model starts with a star of 7 vertices and then
grows by one player at each step. Each new player is connected to exactly 6
pre-existing players with a probability proportional to their degree at that step.

Like for the tree networks in the main text, we set the total consumption
(here, C = 5 · 108) rather than the total income and we look for Nash equilibria
all having the same amount of total consumption C. To �nd the Nash equilibria,
we �rst choose the set of richest players. We then set the consumption of their
neighbours at the α2 relative inequality with respect to them, see equation S17,
the neighbours of their neighbours at α4, and we use iteratively equation S17
until every player has a non-zero consumption (the process ends because we
consider only connected networks). We normalize the resulting individual con-
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sumptions to sum up to C. Finally, we set S0 based on equation S21

S0 = max
i≤N

ci +
∑

k∈N (i)

α
√
cick

 · (1 + C) + C +
C2

2
−W. (S35)

We �rst compute 25 di�erent Nash equilibria for several consumption distri-
butions on a 5-regular tree of height 4(and hence 781 players), whose correspond-
ing Gini coe�cient and overconsumption are represented with green squares in
�gure S3:

� Equidistributed consumption.

� A single rich: a total of 5 di�erent con�gurations depending on the height
of the rich player (from the root to the leaves).

� A single poor: a total of 5 di�erent con�gurations depending on the height
of the poor player.

� A rich cluster constructed as a single player and all his neighbours: again
a total of 5 di�erent con�gurations.

� A rich cluster of all players at distance 2 or less from a single player: also
5 di�erent con�gurations.

� 25 randomly chosen rich players: 4 such con�gurations.

Figure S2: A 3-regular tree of height 2 (the root in black, the vertices on level
one in blue and the vertices on level two in green) and its modi�ed version.

We then slightly modify the tree network to obtain a regular network where
all players have 5 neighbours. To do so, we connect the height 4 players, which
have a single connection, in groups of 5 fully connected neighbours. This process
is shown in �gure S2 for a 3-regular tree of height two. We compute the same
25 Nash equilibria as for the original tree. This modi�cation of the tree does
not a�ect the overconsumption and Gini coe�cients of the Nash equilibria, as
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Figure S3: The Gini coe�cient and overconsumption for the Nash equilibria in
di�erent sparse networks with the same number of players and similar connec-
tivity.

shown by the fact that the corresponding green squares triangles are almost
superposed in �gure S3.

We use the random generators mentioned above (Erdös-Rényi [1], Watts-
Strogatz [3], and Barabási-Albert [4] models) to obtain three di�erent (con-
nected) networks with 781 players and mean degree of 6: the parameters for
the random generators have been chosen to ensure having the same number
of players and the same mean degree as in the modi�ed tree case, in order to
obtain networks with comparable density. One should nevertheless remark that
with only 781 players, the di�erences between the three models are less signif-
icant than what they would be for larger networks. Finally, we also compute
the equidistributed Nash equilibrium and a single rich Nash equilibrium for the
complete network with 781 players and the same total consumption. The results
are shown in �gure S3.

The trade-o� between reducing inequalities and reducing overconsumption
in all investigated non-complete networks is clear from �gure S3. Solutions min-
imising both overconsumption and inequalities would be located in the lower-left
corner of the graph, which is not observed from our simulations except for the
trivial case of the complete graph. The fact that this behaviour is shared be-
tween networks covering a wide variety of situations illustrates its generality.
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Code availability

All algorithms and simulations have been implemented in python using the
networkX library [5]. The scripts are available upon request to the �rst author1.
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