SUPPLEMENTARY INFORMATION

A source of Gata6⁺ resident peritoneal macrophages promote the growth of liver metastasis

Mokarram Hossain^{1,3#}, Raymond Shim^{1,3#}, Woo-Yong Lee³, Arlene H. Sharpe^{4,5,6}, Paul Kubes^{1,2,3,*}

¹Department of Physiology and Pharmacology, ²Microbiology and Immunology, ³Snyder

Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary,

Alberta, T2N 4N1.

⁴Department of Immunology, Blavatnik Institute, Harvard Medical School, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.

⁵Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

⁶Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.

*Correspondence: <u>pkubes@ucalgary.ca</u>

[#] These authors contributed equally

Supplementary figures

Supplementary Figure 1. GLPMs in CT26 liver metastases. a Representative flow cytometry plots showing specific PKH labeling of GLPMs, and **b** leaving myeloid cells of blood, spleen and bone marrow origin unstained (bottom row). **c** Stitched intravital image (scale bar = 140 μ m) showing PKH⁺ GLPMs (white) in CT26 liver metastasis (red). Kupffer cells (bright green) around the metastasis are not labeled with PKH. **d** Representative flow cytometry plots showing gating strategy for identifying GLPMs from the metastases bearing livers where PKH⁺ macrophages in the TME express GLPM-specific transcription factor Gata6. **e** Representative histogram plot of Gata6 expression of GLPMs from the peritoneal cavity or GLPMs in the TME at 4 and 8 days after tumor cell inoculation (n = 3; from one independent experiment). **f** Generation of Gata6^{H2B-Venus} reporter mice following irradiation and bone marrow transfer into BALB/c mice (left), representative images of the Gata6^{H2B-Venus} GLPMs (white) following CT26 liver metastases (red) (middle), and quantification of GLPMs on CT26 liver metastases (right; n = 2 per group), data is presented as mean.

Supplementary Figure 2. Mesothelium disruption is required for GLPM recruitment to liver metastases. a Quantification of MC38 fluorescence per mm² of liver (n = 4 per group), *P* values were calculated using two-tailed unpaired t-test, P = 0.0759. b Intravital image (left; scale bar = 200 µm) and a magnified image of the selected area (right; scale bar = 70 µm) showing GLPM (white) recruitment in MC38 metastases (red) bearing liver where the mesothelium (podoplanin; green) is mechanically disrupted. c Quantification of Gata6-Venus⁺ peritoneal macrophage on the disrupted mesothelium at 2-, 4- and 6-days post-disruption (n = 3 per group) *P* values were calculated using an Ordinary one-way ANOVA with Tukey's multiple comparisons test, *P* < 0.0001 2 day vs 4 day or 6 day post-disruption, *P* = 0.0006 4 day vs 6 day post-disruption. d Representative intravital images (scale bar = 200 µm) showing PI⁺ cells (white) in control liver, MC38 metastases (red) or CT26 metastases (red) bearing liver (n = 3; from one independent experiment). All graphs are presented as mean ± SEM.

Supplementary Figure 3. Liver macrophage populations are not altered at 7-days after Clodronate loaded liposomes treatment. a Representative flow cytometry plots (left) and quantification (right) showing efficacy of peritoneal macrophage depletion following 50 μ l of CLL over 3 weeks (n = 3 per group), *P* values were calculated using an Ordinary two-way ANOVA with Bonferroni's multiple comparisons test, *P* < 0.0001 PBS vs CLL. **b** Representative intravital images (left) and quantification (right) of CX3CR1-GFP macrophages (green) following PBS liposome or CLL treatment (n = 4 per group) *P* values

were calculated using two-tailed unpaired t-test, P = 0.8953. c Quantification of Kupffer cells in the liver after PBS liposome or CLL treatment (n = 3 per group) P values were calculated using two-tailed unpaired t-test, P = 0.6730 (left) and representative intravital images (middle) and quantification (right) of Kupffer cell (red) catching of *S. aureus* (bright green) following PBS liposome or CLL treatment. **d** Representative flow cytometry plots and histogram showing lack of Gata6 expression in Kupffer cells in both WT and Mac-Gata6 KO mice (n = 3; from one independent experiment). All graphs are presented as mean ± SEM.

Supplementary Figure 4. CD8+ T cell role in liver metastases. a Time-lapse intravital images (left; scale bar = 17 μ m) showing interaction between a GLPM (white) and a CD8+ T cell (green) within CT26 metastasis (red) and the quantification (right) of the interaction time between GLPMs and CD8+ T cells within the TME (each point indicates an interaction; n=3). b Representative flow cytometry plots showing efficiency of CD8+ T cell depletion in the blood, liver and spleen following intraperitoneal administration of anti-CD8 α (clone: 2.43; Bio X Cell) antibody (n = 5; from one independent experiment). All graphs are presented as mean \pm SEM.

Supplementary Figure 5. Mesothelial damage and GLPM recruitment in 4T1 liver metastasis. Representative confocal images (left; scale bar = 46 μ m) displaying the mesothelium (green) and 4T1 metastasis (red) bearing liver and (right; scale bar = 42 μ m) PKH⁺ GLPMs (white) in 4T1 metastasis (red).

Fluorophore	Antibody	Clone	Supplier	cat no	lot no	dilutio
						n
AF647	Hamster	eBio8.1.1	eBioscience	53-	B334381	1:100
	anti-mouse			5381-		
	podoplanin			82		
AF647	Rat anti-	Ly-3	Biolegend	126612	B204556	1:100
	mouse					
	CD8b					
APC	Rat anti-	29F.1A12	Biolegend	135209	B220226	1:100
	mouse PD-				4	
	1					
APC	Rat IgG2a	RTK2758	Biolegend	400511	B207074	1:100
	(isotype					
	control)					
APC	Rat anti-	M5/114.15.	BD	562367	8310917	1:100
	mouse	2	Biosciences			
	MHCII					
APC Cy7	Rat anti-	BM8	eBioscience	47-	2086942	1:100
	mouse			4801-		
	F4/80			82		
BV510	Rat anti-	30-F11	Biolegend	103138	B346257	1:100
	mouse					
	CD45					
1				1	1	

Supplementary Table 1. Table of all antibodies used for flow cytometry.

BV605	Rat anti-	3C4(m1c2/	BD	740346	233587	1:100
	mouse	4)	Biosciences			
	CD102					
eFluor450	Hamster	145-2C11	ThermoFish	48-	1993648	1:100
	anti-mouse		er	0031-		
	CD3			82		
eFluor450	Anti-mouse	BM8	eBioscience	48-	1974936	1:100
	F4/80			4801-		
				80		
FITC	Rat anti-	BM8	eBioscience	11-	2B33010	1:100
	mouse			4801-	7	
	F4/80			85		
Pacific blue	Rat anti-	1A8	Biolegend	127612	B336505	1:100
	mouse					
	Ly6G					
PE	Rat anti-	YTS156.7.7	Biolegend	126608		1:100
	mouse					
	CD8b					
PE	Rat anti-	10F9G2	Biolegend	124307		1:100
	mouse PD-					
	L1					
PE	Rat IgG2b	RTK4530	Biolegend	400607		1:100
	(Isotype					
	control)					

PerCp Cy5.5	Rat anti-	HK1.4	Biolegend	128012	B338815	1:100
	mouse					
	LyoC					
PE Cy7	Rat anti-	M1/70	ThermoFish	25-	2394478	1:100
	mouse		er	0112-		
	CD11b			82		
PE	Rat anti-	RM4-5	eBioscience	12-	E01014-	1:100
	mouse CD4			004308	1633	
				2		
FITC	Rat anti-	53-6.7	eBioscience	11-	2202710	1:100
	mouse CD8			0081-		
				0.5		
				85		
FITC	Hamster	16-10A1	BD	553768	7493	1:100
	anti-mouse		Pharmingen			
	CD80					
Unconjugated	Rat anti0mouse CD16/32	BE307	BioXcell	BE030 7		1:4000