2021 ${\rm IAT_{\rm E}X}$ template

Supplementary Material - Ranking the Effectiveness of Non-Pharmaceutical Interventions to Counter COVID-19 in UK Universities with Vaccinated Population

Zirui Niu¹ and Giordano Scarciotti^{1*}

¹EEE, Imperial College London, Exhibition Rd, South Kensington, London, SW7 2AZ, United Kingdom.

*Corresponding author(s). E-mail(s): g.scarciotti@imperial.ac.uk; Contributing authors: z.niu@outlook.com; 2 Ranking the Effectiveness of Non-Pharmaceutical Interventions

Appendix A Sensitivity Figures

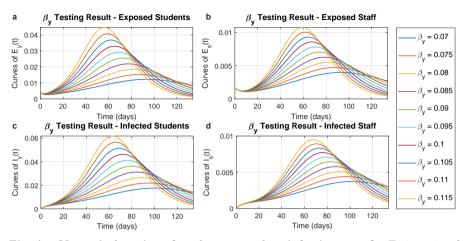


Fig. A1 Numerical testing of student-to-student infection rate β_y . Trajectories of cases among students and staffs when β_y varying from 0.07 to 0.115. With different β_y , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

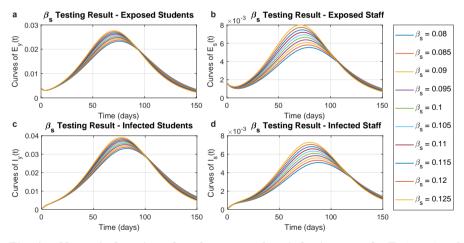


Fig. A2 Numerical testing of student-to-student infection rate β_s . Trajectories of cases among students and staffs when β_s varying from 0.08 to 0.125. With different β_s , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

3

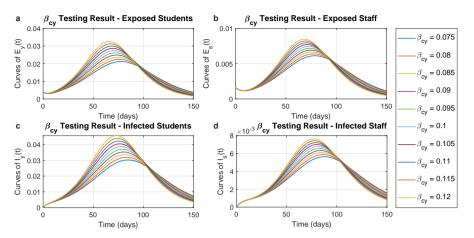


Fig. A3 Numerical testing of student-to-student infection rate β_{cy} . Trajectories of cases among students and staffs when β_{cy} varying from 0.075 to 0.12. With different β_{cy} , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

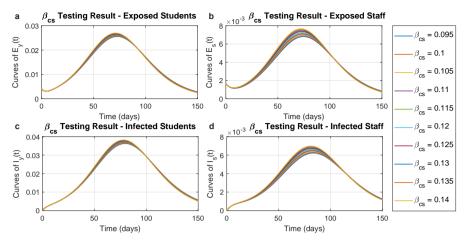


Fig. A4 Numerical testing of student-to-student infection rate β_{cs} . Trajectories of cases among students and staffs when β_{cs} varying from 0.095 to 0.14. With different β_{cs} , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

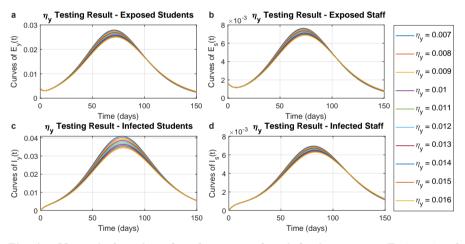


Fig. A5 Numerical testing of student-to-student infection rate η_y . Trajectories of cases among students and staffs when η_y varying from 0.007 to 0.016. With different η_y , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

5

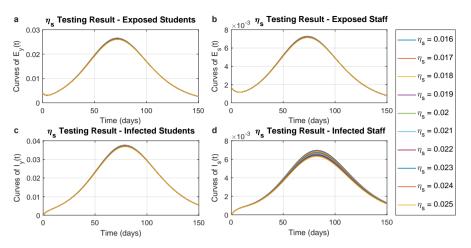


Fig. A6 Numerical testing of student-to-student infection rate η_s . Trajectories of cases among students and staffs when η_s varying from 0.016 to 0.025. With different η_s , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

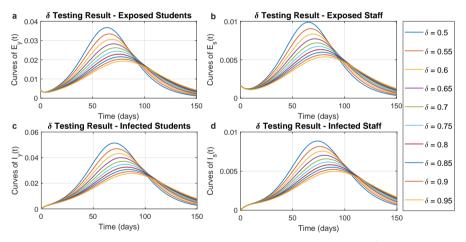


Fig. A7 Numerical testing of student-to-student infection rate δ . Trajectories of cases among students and staffs when δ varying from 0.5 to 0.95. With different δ , panels **a** and **b** show the proportion trajectories of exposed students and staffs respectively while panels **c** and **d** depict the proportion trajectories of infected students and staffs respectively.

6 Ranking the Effectiveness of Non-Pharmaceutical Interventions

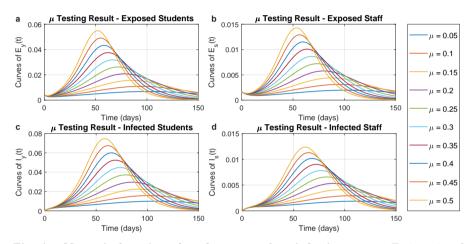


Fig. A8 Numerical testing of student-to-student infection rate μ . Trajectories of cases among students and staffs when μ varying from 0.05 to 0.5. With different μ , panels a and b show the proportion trajectories of exposed students and staffs respectively while panels c and d depict the proportion trajectories of infected students and staffs respectively.