
Supplementary material1

S1 Likelihood-based Approaches:2

The GCTA REML (Yang et al., 2011) estimator is derived by assuming that random-SNP-effects β ∼3

N(0, σ2
gIm×m) and that the normalized genotypes Γ are fixed. It assumes a random-SNP-effect model based4

approach for generation of phenotypes, and uses a Euclidean distance kernel for GRM calculation. Using5

the Normality assumption of β, the GCTA REML estimator assumes that y ∼ N(0, σ2
gΨ+ σ2

eI) and uses a6

restricted maximum likelihood (REML) approach to estimate σ2
g and σ2

e . Recently, binning methods, such7

as in GCTA-LDMS have been used to apply GCTA on markers binned for different linkage disequilibrium8

(LD) structures or for different allele frequencies (Yang et al., 2015). However, such binning techniques are9

somewhat adhoc and are not incorporated in our simulation and analytical derivations.10

The LDAK (Speed et al., 2012, 2017) estimator uses a similar approach to the GCTA REML estimator,11

also assuming fixed genotypes and random β. The LDAK model tries to correct for uneven LD by computing12

a reweighted GRM as in Equation (S1).13

Xij = (Gij − 2fj)× [2fj(1− fj)]
α (S1)

The value α = −1.25 is reported to generally work well with genomewide LD structure. Each of the raw14

genotypes is then weighted by substituting each column of Gj with wjGj , where wj is chosen so that15

wj +

′∑
j

wj′r
2
jj′e

−λdjj
′

(S2)

is constant over j. The squared correlation coefficient between SNPs j and j′ is denoted by r2jj′ , the genomic16

distance is denoted by djj′ , and λ is a constant. Note that α = −1 corresponds with the GCTA REML17

estimator if all wj are 1.18

S2 Method of Moments Estimators: no-LD19

In this section we derive basic moment properties of the random-SNP-effect Haseman-Elston (HE) estimator20

and the fixed-SNP-effects Dicker-1 estimator in the case of no LD. We see their differences, but also their21

similarity in practice. The more general case with LD is considered in Section 2.3 of the main paper.22
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S2.1 Haseman Elston Method of Moments Estimator:23

The HE estimator is a second-order moments estimator based on a regression of products of phenotypes yiyk24

for all pairs i ̸= k on the corresponding (i, k) terms of the n × n GRM matrix Ψ = M−1ΓAΓ
′
A. Given the25

standardized genotypes Γ, the phenotypes depend only on the first m causal markers and y = ΓC β + ϵ,26

where the independent variables βj ∼ N(0, σ2
g/m), and ϵi ∼ N(0, σ2

e).27

We first consider the estimator as a regression estimate conditional on Ψ. Noting i ̸= k, so E(ϵi ϵk) = 0

and that the βj are independent, with mean 0 and variance σ2
g/m,

E(yiykΨik) = E

(

m∑
j=1

Γijβj) (

m∑
ℓ=1

Γkℓβℓ)Ψik

 = E

 m∑
j=1

ΓkjΓijE(β
2
j )Ψik

 = Ψ2
ik σ2

g

Summing over all n(n− 1)/2 pairs of distinct individuals, we have the method-of-moments equation28

SYΨ ≡
∑
k

∑
i<k

yiykΨik = σ2
g

∑
k

∑
i<k

Ψ2
ik ≡ σ2

gSΨΨ

so that σ2
g may be estimated as29

σ̃2
g =

SYΨ

SΨΨ
=

∑
k

∑
i<k yiykΨik∑

k

∑
i<k Ψ

2
ik

(S3)

Then an estimate of heritability is given by dividing by the empirical variance of y.30

Here we focus on the estimate of σ2
g and on the numerator and denominator denoted SYΨ and SΨΨ31

respectively. We consider not only the conditional model, but also the variation in Ψ over samples of32

genotypes from the population. Note that33

Ψik = M−1
M∑
j=1

ΓijΓkj and E(Γij) = 0, E(Γ2
ij) = 1

So if individuals are independent, E(Ψik) = 0, and if markers are independent,34

E(Ψ2
ik) = var(Ψik) = M−1var(ΓijΓkj) = M−1(E(Γ2

ij))
2 = 1/M

2



and, under independence of individuals i, k and independence of markers j, w, ℓ,35

E(yiykΨik) = M−1 E

(

m∑
j=1

Γijβj + ϵi)(

M∑
w=1

ΓiwΓkw)(

m∑
ℓ=1

Γkℓβℓ + ϵk)


= M−1E

 m∑
j=1

β2
j (

M∑
w=1

ΓijΓiwΓkwΓkj)


= M−1E

 m∑
j=1

β2
j Γ

2
ijΓ

2
kj

 = M−1m(σ2
g/m) = σ2

g/M

Hence SΨΨ has expectation n(n−1)/2M and SYΨ has expectation σ2
gn(n−1)/2M . Empirical simulations36

(not shown) showed that while the standard deviation of SΨΨ is approximately n/M , that of SYΨ is of order37

n/
√
M , but both decrease to 0 as M → ∞. Thus as M → ∞ with n remaining fixed, both SYΨ and38

SΨΨ converge in probability to 0. As the number of markers increases, the coefficient of variation of SΨΨ39

remains constant, but that of SYΨ increases, and the empirical study shows the the standard deviation of40

the estimate of σ2
g to be of order

√
M/n. This result is in agreement with the theoretical equations for the41

estimator of Dicker (2014) in the case of no LD: see Lemma 2 and the Remarks following in that paper.42

That is, uncertainty in σ2
g and hence in h2 increases as the number of markers M increases.43

S2.2 The Dicker-1 fixed-SNP-effects model moments estimator44

The Dicker-1 estimator (Dicker, 2014) is also a method of moments estimator, but starts from very different45

assumptions. The standardized genotypes Γij are are assumed to be distributed N(0, 1), independent over46

individuals i. The effects βj are fixed effects, and in our case where only the firstmmarkers are causal, βj ≡ 047

for j = (m+1), ...M . The parameter to be estimated is σ2
g ≡ β′Σ∗β where here β is the m-vector of effects48

at causal markers augmented by (M −m) zeros and Σ∗ is the true LD matrix of correlations among all M49

markers. Because of the Normality assumption for genotypes, these can be rotated to orthonormality. This50

implies that the case of known Σ∗ is mathematically equivalent to Σ∗ = I. For simplicity we consider this51

case, then β′Σ∗β =
∑m

j=1 β
2
j and m−1

∑m
j=1 β

2
j ≡ σ2

g/m, equivalent, for large m to the random-SNP-effects52

HE assumption βj ∼ N(0, σ2
g/m).53
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Dicker (2014) uses the quadratic forms ∥y∥2 = y′y and ∥Γ′
Ay∥2 = M y′Ψy. Without making Normality

assumptions, we can compute

E(M y′Ψy) =

n∑
i=1

n∑
k=1

E(M yiΨikyk)

=

n∑
i=1

n∑
k=1

E

(

m∑
j=1

Γijβj + ϵi)(

M∑
w=1

ΓiwΓkw)(

m∑
ℓ=1

Γkℓβℓ + ϵk)

 (S4)

Under independence of Γiw and Γkw for i ̸= k, the coefficient of σ2
e is seen to be Mn. Under independence

of markers indexed by j, ℓ and w, the majority of terms in βj and βl in this expression disappear, leaving

only a coefficient of σ2
g =

∑m
j=1 β

2
j . The remaining terms have j = ℓ ̸= w (in which case i = k), or j = ℓ = w

(in which case terms with both i = k and i ̸= k remain). Grouping these two sets of terms this coefficient

reduces to

(M − 1) E(
∑
i

Γ2
ijΓ

2
iw) + E(

∑
i

∑
k

Γ2
ijΓ

2
kj) = n(M− 1) + Kn + n(n− 1) = n(M + n +K− 2)

where K = E(Γ4
ij). Combining the following two equations,

E(n−1M y′Ψy) = (M + n+K − 2)σ2
g + Mσ2

e

E(n−1y′y) = σ2
g + σ2

e

and assuming K = 3 we obtain the Dicker (2014) method-of-moments estimator of σ2
g :54

σ̃2
g = (n(n+ 1))−1(M y′Ψy − My′y) = (n(n+ 1))−1(∥Γ′

Ay∥2 − M∥y∥2) (S5)

Note that whereas the numerator and denominator of the HE estimator (6) always has the correct55

expectations, Equation (S5) is only exact if K = 3. Since K appears only in the term (M + n + K − 2)56

the impact will be small for large M and/or n, but it is worth noting that K can be quite large (> 100)57

for loci with rare alleles (see Figure S1). Under the N(0, 1) assumption, Dicker (2014) gives also many58

other expressions for high-order moments of these estimators. However, these depend more critically on the59

higher-order moments of the Γij , and hence his Normality assumption.60

Although the assumptions underlying the MoM estimator (S5) are very different from those of the HE61

estimator of Equation (6), operationally and in performance the estimators are quite similar, in the case of62
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Figure S1: Skewness and kurtosis of the normalized genotypes as a function of allele frequency

known or no LD. The key difference from the HE estimator is then that whereas the latter considers only63

Ψik for i ̸= k, the Dicker estimator uses the full n× n matrix MΨ = ΓAΓ
′
A. This use of the diagonal terms64

Ψii permits an estimators of σ2
g and σ2

e that is linear in the relevant quadratic forms, rather than the ratio65

SY T /STT , but strict correctness and moment properties are dependent on the Normality assumption for Γij .66

S3 Moment based estimators: LD case67

S3.1 Biases in HE estimator in the presence of LD68

In the presence of LD, the HE estimator may be biased. A formula for this bias, approximating the expec-69

tation of a ratio by the ratio of expectations, is derived in Section 2.3 of the main paper. We here include70

some further analyses of the theoretical predictions of Equation13, that LD changes the expectation of the71

HE estimator by a factor of M
m

RCC+RCF

RCC + 2 RCF + RFF
.72
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Figure S2: For the autocorrelation structure, values of the factor of Equation (Y-axis) 13 are plotted for
different values of M (different panels), ρ (X-axis), and skip number (colors)
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In Supplementary Figure S2, we calculated approximate theoretical biases of HE estimator in autocor-73

related data for different values of ρ (x-axis), number of markers total markers M (different panels), and74

different “skip” numbers using equation 2.3.1. The skip number is the number of elements until a causal75

marker is seen. For example, if the skip number for is 2, then every second marker is causal, and all others76

are noncausal. The value of the ratio reported (Y-axis) indicates that the estimator is unbiased when the77

ratio is 1. We observed that as predicted in Section 2.3.1, no bias is observed when the skip number is 2,78

and furthermore, the bias is close to 1 whenever M is large for all skip numbers up to 10.79

For the block structure, we can analytically show that for any number of blocks and any value of ρ, there

is no bias resulting from Equation 13. We begin by computing for the case that there is 1 block consisting of

all M markers, with m of the markers being causal. The correlation between all of the markers in the block

is ρ. Without loss of generality, we can assume that all of the causal markers are listed before the noncausal

markers. When this is the case, we can calculate that RCC = m + m(m − 1)ρ, RCF = m(M − m)ρ ,and

RFF = M −m+ (M −m)(M −m− 1)ρ. Substituting these values, we reach

E(σ̃2
g) ≈ σ2

g

M

m

m+m(m− 1)ρ+m(M −m)ρ

m+m(m− 1)ρ+ 2m(M −m)ρ+M −m+ (M −m)(M −m− 1)ρ

and upon simplifying this expression, we find that E(σ̃2
g) ≈ σ2

g . To extend this to the case of multiple80

identical blocks, we note that each of RCC , RCF , and RFF are multiplied by the number of blocks, and81

hence the bias is the same82
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Figure S3: Estimates of h2 (y-axis) for different values of r, the number of times that 10% of the markers
are being repeated. Estimates are made using the HE estimator (red box plots) with data simulated from
the repeat structure of simulation study 1. The true simulated heritability was 0.8 (solid black line). The
solid blue line plots the theoretical estimates based on Equation (14). The set up is the same as in Figure
3, with (i) n = 1000,m = 200 (ii) n = 200,m = 1000, (iii) n = 200,m = 3000 (iv) n = 2000,m = 1000.

Of the simulation study examples of this paper, the bias is marked in the case of non-causal markers that

repeat the genotypes of causal markers. Figure S3 aims to validate the formula for the bias and assess the

variation in bias across realizations by taking estimates of heritability from the repeat structure simulated
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data in simulation study 1 and comparing against the theoretical values from Equation (14). It is shown

that there is close alignment of the theoretical values and the observed. We also note that the theoretical

bias does not depend on the value of m, since if we multiply m by a constant c, then if we have set a fixed

percentage of markers to be repeated, d is also multiplied by our constant c, and

σ2
g

(cm+ rcd)2

cm(cm+ rcd(2 + r))
= σ2

g

(m+ rd)2

m(m+ rd(2 + r))

S3.2 Impact of LD on the Dicker-1 Estimator83

We consider now the estimator of Equation (7) in the presence of LD. Although this estimator would likely84

not be used in practice because it does not attempt to adjust for LD and hence has a different estimand85

than σ2
g as defined here, it provides important motivation for the Dicker-2 estimator (Equation 9). We here86

provide justification for poor performance of the Dicker-1 estimator in simulation. Even in the absence of87

LD, this estimator of σ2
g is unbiased only if E(Γ4

ij) = 3 (Supplementary Section S2.2) but the bias is negligible88

for large M or n.89

Recall that for the Dicker-1 estimator (Equation 7), σ̃2
g = (n(n+ 1))−1(My′Ψy − My′y). We begin

by analyzing the term y′y. Note that E(ΓijΓil) = Σ∗
jl so that

E(n−1y′y | β) = n−1E ((ΓCβ + ϵ)′(ΓCβ + ϵ) | β) = β′Σ∗β + σ2
e

where the vector β contains only entries for causal markers.90

The fixed-SNP-effects Dicker-1 estimator estimates τ2 = β′Σ∗β (Dicker, 2014), which may differ from the

additive genetic variance σ2
g ≡

∑m
j=1 β

2
j /m in the presence of LD. However, in our simulation studies, each

replicate uses βj at causal loci j = 1, ...,m that are independently generated N(0, σ2
g/m) and independent

of the standardized genotypes Γij (Section 2.5). Thus, over replicate simulations

E(β′Σ∗β) = E(

m∑
ℓ=1

m∑
j=1

βℓΣ
∗
ℓjβj)

= (σ2
g/m)

m∑
j=1

Σ∗
jj

= σ2
g

and hence E(n−1y′y) = σ2
g + σ2

e91

We now analyze the y′Ψy term. Like with the y′y term, we may consider expectations of the estimator
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over replicates assuming that βj (j = 1, ...,m) are independent N(0, σ2
g/m). First, we note that y′Ψy =

2SYΨ +
∑

i y
2
iΨii so that, from Equation (12)

E(M y′Ψy) = E(2MSYΨ +M
∑
i

y2i Ψii)

= n(n− 1)m−1σ2
g (RCC +RCF ) +ME

∑
i

(
∑
j

Γijβj + ϵi)
2(
∑
w

Γ2
iw)


= n(n− 1)m−1σ2

g (RCC +RCF ) + nm−1σ2
g

m∑
j=1

M∑
w=1

E(Γ2
ijΓ

2
iw) + Mn σ2

e

In general E(Γ2
ijΓ

2
iw) is unknown, but a lower bound on the double-sum term is the no-LD value mK+m(M−

1) (see Supplementary Section S2.2) while a rough approximation might be mK + (M − 1)(RCC + RCF ),

where again K = E(Γ4
ij). This approximation gives the overall result

E(n−1My′Ψy) ≈ σ2
g (K +

(n+M − 2)

m
(RCC +RCF )) + Mσ2

e

Combining the My′Ψy and My′y terms, we have

E
(
(n(n + 1))−1(My′Ψy − My′y)

)
≈ σ2

g (n + 1)−1(K +
(n +M− 2)

m
(RCC +RCF)−M).

Since the squared correlations r2jℓ are non-negative, (RCC +RCF ) ≥ m and the estimator will overestimate92

σ2
g and hence also heritability h2. Unlike the HE estimator where the LD inflates both numerator and93

denominator (Equation 13), the form of the estimator (7) means that it can only be inflated by LD.94

S3.3 Moment estimators designed to accommodate LD95

In the case when LD must be estimated from the sample data, Dicker (2014) and Schwartzman et al. (2019)96

developed moment-based estimators of σ2
g , σ

2
e , and h2 under the fixed-SNP-effects framework.97

Here we consider the estimator of Dicker (2014) in the case of LD. Again, the GRM Ψ = M−1ΓA Γ′
A, and

LD matrix Σ = n−1Γ′
AΓA. If the standardized genotypes, Γij , are marginally N(0, 1) and independent over

i, and if Σ∗ is the true positive definite correlation matrix of the Γij over j, then Σ∗−1/2

Γ′
A are independent
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N(0, 1) and the estimator (S5) becomes

σ̃2
g = (n(n+ 1))−1((Σ−1/2Γ′

Ay)
′(Σ−1/2Γ′

Ay) − My′y)

= (n(n+ 1))−1(y′ΓAΣ
−1Γ′

Ay − My′y) (S6)

and again σ2
g + σ2

e is estimated by the phenotypic variance n−1y′y. More generally, as shown by Dicker98

(2014), if n > M and Σ is a norm-consistent estimator of the true correlation matrix the properties and99

results of the non-LD estimator (S5) apply also in the LD case to the estimator (S6).100

However, in most applications, M is much larger than n. and the estimator (S6) breaks down, and as101

shown in Dicker (2014), In this case they propose to use lower-order moments of the trace of Σ = n−1Γ′
AΓA.102

Specifically they define103

µ1 =
tr(Σ)

M
and µ2 =

tr(Σ2)

M
− (tr(Σ))2

Mn
(S7)

The estimator of σ2
g becomes104

σ̃2
g =

µ1(Γ
′
Ay)

′(Γ′
Ay) − Mµ2

1y
′y

n(n+ 1)µ2
(S8)

and again σ2
g + σ2

e is estimated by n−1y′y. For more on the theory and properties of the estimator (S8)105

see Dicker (2014). For the current paper, we implement this estimator as “Dicker-2” in our simulations and106

results.107

Schwartzman et al. (2019) proposed a method of moments estimator based on that of Dicker (2014).108

They derive a form that depends only on summary statistics instead of the raw genotypic and phenotypic109

data and hence their estimator has wider applicability. However, in the basic form (not using only summary110

statistics) their estimator is essentially equivalent to the estimator (S8), so we do not consider it further in111

this paper.112

S4 Simulation of Genetic Marker LD Structures113

Autocorrelated: we assume that for each individual,M markers are generated from a multivariate Gaussian114

with AR1(ρ) covariance matrix. We generate the markers for each individual independently. In other words,115

we assume that for individual i, genotypes G̃i are generated from G̃i ∼ N(0,Σ), where116
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Figure S4: These panels plot the empirical covariance matrices for simulated genotypes from 10,000 individ-
uals and p = 100 markers. The correlation between markers decreases after discretization but the pattern
generally remains the same. (A) Autocorrelated markers were generated from the Gaussian model, i.e. plot-
ting Cov(G̃) (B) Blocked markers were generated from the Gaussian model. (C) Independent markers were
generated. (D) Autocorrelated markers were generated and then discretized and normalized, i.e. this is
Cov(Γ) (E) Blocked markers were discretized and normalized. (F) Repeated markers were generated with
10 markers being repeated 5 times.

Σ =



1 ρ ρ2 . . . ρM−1

ρ 1 ρ . . . ρM−2

...
...

...

ρM−1 ρM−2 ρM−3 . . . 1


The continuous values G̃i are then converted to discrete genotypesGi taking value 0, 1 or 2. For a marker with117

alternate allele frequency f , Gij = 0, 1, or 2, depending on if G̃ij is less than Φ−1(f2), between Φ−1(f2) and118

Φ−1(f2 + 2f(1− f)) = Φ−1(2f − f2), or greater than Φ−1(2f − f2), where Φ(·) is the N(0, 1) distribution119

function. Note that this trichotomy gives the correct marginal genotype probabilities, but reduces the120

genotypic correlation (LD) between markers below that used in the simulation matrix Σ: compare panels A121

with D, or B with E in Figure S4.122

Block: we generate block genotypes according to the same mechanism as the autocorrelated genotypes,123

except we choose that124
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Figure S5: Colors represent values of the log of 1 plus the average of 100 GRMs generated from 400 indi-
viduals. The i, jth entry of the matrix corresponds to the relatedness between ith individual and the jth
individual. Sets of cousins are adjacent in groups of 40. Colors are thresholded at 0.1, and set to white if it
is above the threshold.

Σ =



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

...
...

...

ρ ρ ρ . . . 1


for each block. We assume that there are 10 blocks, each with M/10 markers.125

Repeat: In this case m marker genotypes are independently generated from the binomial distribution.126

That is, for a marker with alternate allele frequency f , Gij ∼ Binomial(2, f). We designate a proportion of127

markers to be repeated. We repeat these markers r times.128

Choice of causal markers129

For the three simulation LD structures, we selected Gc to be a subset of G. For the autocorrelation and130

block simulated genotypes, we chose alternating markers to be causal and non-causal markers. For the repeat131

structure the original m markers were chosen to be causal, while the repeat genotypes were non-causal. The132

genotypes were standardized to each have mean 0 and variance 1, using the empirical allele frequencies in133

the simulated sample of n individuals. The matrix ΓA of standardized genotypes was formed as given in134

Equation (1), while ΓC is the corresponding matrix for the m causal markers.135

S5 Equivalence of a simplified h2
GRE and Dicker-1-Σ136

Recall that from Section 2.2, the Dicker-1 estimator can be expressed as (n(n+1))−1(∥ΓA
′y∥2 − My′y) if

Σ∗ is known to be the identity matrix. In the case that Σ∗ is known or estimable but not the identity, we
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have Dicker-1-Σ. We replace Γ by ΓΣ−1/2, and we have

M
[
(ΓΣ−1/2)′y

]′ [
(ΓΣ−1/2)′y

]
−My′y

n(n+ 1)
=

My′ΓΣ−1/2(Σ−1/2)′Γ′y −My′y

n(n+ 1)
(S9)

=
My′ΓΣ−1Γ′y −My′y

n(n+ 1)
(S10)

On the other hand, if we do not apply partitioning, the h2
GRE estimator is expressed as

h2
GRE =

nβ̂
′
Σ−1β̂ − q

n− q
(S11)

≈ y′ΓΣ−1Γ′y − y′yq

n(n− q)
(S12)

≈ y′ΓΣ−1Γ′y − y′yq

n(n+ 1)
(S13)

Here, β̂ is defined to be 1
nΓ

′y, as per (Hou et al., 2019). Furthermore, q is the rank of Σ. If n > M and Γ is137

full rank, then q = M . We assume that y′y ≈ n. Furthermore, for n >> M , we assume n(n−1) ≈ n(n−M).138

With these assumptions, Equation (S13) and Equation (S10) are the same, demonstrating the equivalence.139

Upon rescaling the Dicker-1-Σ estimator by n−1
n−M , the Dicker-1-Σ and the h2

GRE estimator are essentially140

equivalent (Supplementary Figure S6)141

We simulated data similarly to Section 2.5, but excluded cases where n < M because if n < M and Γ is142

rank n, then Σ can often have rank n, in which case the GRE estimator is not well defined. We excluded143

the repeat LD structure because we were unable to calculate the Dicker-1-Σ estimator since we were unable144

to calculate Σ−1. We found that the h2
GRE estimator was robust to the structures of LD that we presented145

here. Furthermore, even though when r = 0 or ρ = 0, we have that Σ∗ = I, the h2
GRE could have lower MSE146

than Dicker-1. This may be because including the empirical Σ may reduce the variance of the estimate.147

S6 Equivalence of RHE-mc with one component to HE148

The randomized Haseman Elston estimator with multiple components (RHE-mc) uses a system of normal149

equations to estimate σ2
g and σ2

e (Equation 7 in (Pazokitoroudi et al., 2020)). If only one component is used150

in this estimator, then the equations become151

tr(ΨΨ) n

n n


σ̃2

g

σ̃2
e

 =

y′Ψy

y′y

 (S14)
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Figure S6: We simulated 50 data sets for each of autocorrelation, block, and repeat structures of each of
the estimators, and including the h2

GRE estimator (black). The X-axis plots ρ. A horizontal line is shown at
h2 = .8. On the top row, estimates of heritability are shown. On the bottom row, MSEs are shown.

Upon solving the system of equations for σ̃2
g , we obtain the estimator152

σ̃2
g =

y′Ψy − y′y

tr(Ψ′Ψ)− n
(S15)

Note that we used the fact that Ψ is symmetric, and hence Ψ = Ψ′. Because y is standardized, we have153

y′y = 1. Then we note that Equation S15 is the same as Equation 15.154
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