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Chemical Space of the Seed Dataset 

The seed dataset, represented using DP-explicit composition vectors, was mean centered and scaled to 

unit variance before performing principal component analysis (PCA) for dimensionality reduction. The 

data is projected onto the first three components, capturing 52% variation in the data, and displayed in 

Fig. S1a, revealing the systematic nature of the seed dataset construction. The first principal component 

(PC1), explaining the greatest source of variance in the seed dataset, is exclusively a linear combination 

of methyl methacrylate (MMA) and butyl methacrylate (BMA) fractions of incorporation. Increasing PC1 

corresponds to increasing MMA and decreasing BMA incorporations; symmetry about PC1 = 0 indicates 

a number of nearly identical datapoints where the only difference is the reversal in MMA and BMA 

incorporations. Notably, PC1-3 contain variation from all monomer fractions of incorporations but lack 

any representation of degree of polymerization. Jitter added to the data shown in Fig. S1a is presented 

in Fig. S1b-d, revealing that many seed datapoints are compositionally identical but vary in DP. 

Interestingly, Fig. S1b-d suggest that particular regions of the chemical space are associated with 

particularly high REAs for each of the enzymes, with very few instances of isolated high-performers. 

Consistent with the results presented in Fig. 2d-f and Fig. S2a-c, these regions appear distinct for each 

of the enzymes, suggesting that distinct chemistries are responsible for their stabilization.  

Fig. S2a-c presents the seed dataset again in reduced dimensions, but in this case are hand-crafted to 

hold chemical significance and are relatively easily interpreted. The ternary plots are colored by the 

highest measured REA of a PPH formed with a copolymer of composition given by a point in the chemical 

space; interpolative methods are used to color points between assayed regions. Comparison to Fig. 2d-

f, which includes data obtained from the active learning campaigns, visually conveys the 1) improvement 

of REA seen from PPHs formed with copolymers suggested by the active learning, particularly in the 

case of GOx and Lip, and 2) the fine tuning of the REA – chemical space landscape formed from the 

initial seed dataset. The appearance of vast regions of the copolymer chemical space viable for HRP 

stabilization shown in Fig. S2c is slightly misleading considering the extent of the space over which 

interpolation takes place. Notably, the 504 copolymers constituting the seed dataset leave much of the 

chemical space unsampled, including the region where many of the top performing copolymers for Lip. 

stabilization come from. Despite this, iterations of active learning identify and exploit this region for 

polymer design.  

Fig. S1| Principal component analysis (PCA) was performed on the seed dataset. The data is projected onto the first 
three principal components and shown in panel (a). Panels (b), (c), (d) add jitter to the data presented in panel A and are 
colored with the retained enzyme activities (REAs) measured for GOx, Lip, and HRP, respectively.  
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Fig. S2| Ternary plots of copolymers in the seed dataset. Monomers 1-4, 5-6, and 7-8 are grouped together as 
hydrophobic, hydrophilic, and ionic monomer types, respectively. Points are colored by considering the maximum REA 
of a copolymer found within a given region in the chemical space, thus accounting for overlaps. Extrapolative coloring 
is performed with linear barycentric interpolation.  
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Copolymer Featurization and Initial Modeling 

Copolymers were numerically encoded as a weighted average of 

“fingerprint” vectors representing individual monomers, where the 

weights are set in proportion to the monomers’ fraction of 

incorporations within the polymer being represented. One-hot 

encoding (OHE), Morgan fingerprints (MFP), and vectors of chemical 

descriptors (CD), some computed using density functional theory 

(DFT), were all probed as potential fingerprints used to represent 

monomers in the polymer featurization strategy.  

The OHE is a 𝑛 − bit vector, n being the number of unique monomer 

types (8 in this case), where a “1” in a particular bit corresponds to 

the indication of a particular monomer type. The remaining bits 

populated with “0”. MFP represent monomers as a collection of 

chemical structures, encoding their presence and absence with “1s” 

and “0s”, respectively. The vector of chemical descriptors includes 

molecular weight, nuclear repulsion energy, dispersion correction 

energy, total energy, and dipole magnitude, the latter four being 

mean quantities computed with DFT for all conformers found using 

in-house code. 

Linear, Gaussian process regression (GPR), and neural network 

(NN) models were trained to predict REA for each of the three 

enzymes from polymer representations (Fig. S3). Notably, predictive 

performance is insensitive to the identity of the chemical fingerprint 

used to encode monomer identity for any given model type and 

enzyme. It is likely that much of the variation in REA can be explained 

by variation in composition between copolymers, which is encoded 

in the featurization strategy regardless of the fingerprint used. 

Furthermore, any potential performance gain in using chemically 

informed monomer representations is likely masked by noise in the 

REA measurements. For this reason, the simple OHE was chosen 

to represent monomers in the polymer featurization strategy. Using 

this strategy, polymer representations amounted to 8-dimensional 

vectors, where each dimension contains the fraction of incorporation 

of a particular monomer. Representations are then appended with a 

max-normalized value of the DP, resulting in a final 9-dimensional 

vector.  

Fig. S3 also shows the relatively high predictive performance of 

nonlinear GPR and MLP models over the simple linear models for 

all enzymes and fingerprint types, suggesting a complex 

relationship between polymer chemistry and enzyme stabilization. 

The marginal yet consistent success of the GPR model over the NN 

model can likely be attributed to the relatively limited size of the seed 

datasets. Due to its demonstrated superior predictive performance and ability to robustly quantify 

uncertainty in such predictions, GPR was chosen to model PPH REA for all enzymes.  

  

Fig. S3| Boxplots showing the distribution 
of coefficients of determinations obtained 
via K = 5 cross validation for Gaussian 
process regression, neural network, and 
linear models trained to predict GOx. (a), 
Lip (b), and HRP (c). REAs from polymer 
representations employing one-hot 
encodings (OHE), Morgan fingerprints 
(MFP), and vectors of chemical descriptors 

(CD) to represent monomers. 
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REA Distributions Through Iterations of Design 

Fig. S4 depicts general upward trend in median REA of copolymers discovered at iterative stages of the 

active learning. In all cases, median REAs of polymers constituting the exploit iteration of all design 

campaigns are greater than those found at any previous iteration of design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. S4| Boxplots depicting the distribution of copolymer REAs found at progressive stages of the design 
campaign for (a) GOx, (b) Lip, (c) HRP. Distributions for iterations 1-4 and the exploit stage show the individual 
polymer performances. Dark lines within the boxes, bounded by the first and third quartiles, demarcate medians. 
Whiskers are extended to 1.5 × Interquartile Range + (-) Quartile 3 (1).  
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Model Robustness to Noise 

 

 

 

 

 

 

 

 

 

 

Upon completion of the active learning, it was found that none of the polymer candidates identified by the 

active learning for HRP had REAs above 100%. This result was surprising considering four polymers 

from the seed dataset were observed to pass this threshold, one even reaching an REA of 167%. 

Suspected to be outliers, the four polymers were resynthesized and characterized. Table S1 shows the 

initial REA measurement used to label the four polymers in model training and their re-measured values. 

Unsurprisingly, all remeasured REAs were lower than their initial measurements, albeit in larger-than-

expected amounts. To better understand potential implications on the active learning, the HRP REA 

models trained at every iteration we used to predict the REA of these four polymers. In all four cases, the 

REA predicted by the seed model and all following models is substantially lower than the label it was 

trained to predict and closer to the remeasured value, indicating the GPR model’s robustness to noise. 

This robustness likely reduced the impact of these erroneous points in guiding the AL through chemical 

space. 

 

  

Candidates 397 415 295 439 

Measured REA 167% 113% 110% 102% 

Re-measured REA  25% 18% 62% 7% 

Seed Model Predictions 74% 54% 77% 37% 

Iteration 1 Model Predictions 55% 50% 23% 32% 

Iteration 2 Model Predictions 69% 51% 42% 39% 

Iteration 3 Model Predictions 50% 47% 23% 32% 

Iteration 4 Model Predictions  47% 48% 21% 31% 

Iteration 5 Model Predictions  52% 51% 25% 34% 

Table S1| Measured, remeasured, and predicted REAs for four outlier points within 
the dataset used to train HRP models 
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Characterization of EP1: 

Upon selection of EP1-HRP for further analysis through biophysical characterization, we characterized 

EP1 by size-exclusion chromatography and 1H NMR.  As EP1 is composed of 13% 2-HPMA, 12% SPMA, 

53% MMA, and 22% TMAEMA (mol %), with a target DP of 75, EP1’s theoretical molecular weight (MW) 

= 10790 g/mol. While measured MW was lower than anticipated (Measured Mn = 5802 g/mol, Mw = 6866 

g/mol) (Fig. S5a-b), the use of aqueous GPC calibrated by PEG standards may create discrepancies 

between expected and measured MW. While polymerization of EP1 demonstrated excellent reaction 

control (Ð = 1.18), to confirm robust polymerization, further analysis by 1H NMR (Fig. S5c-d) triplicate 

polymerizations (M = pre-polymerization, P = post-polymerization) of EP1 demonstrate >99.9% 

conversion over 16hr polymerizations as observed from the complete loss of methacrylic peaks at 5.5 - 

6.0 ppm and the appearance of peaks at 0.5 - 1.0 ppm indicative of polymer backbone. These results 

suggest complete polymerization of EP1. 

 

 

 

 

Fig. S5| Characterization of copolymer EP1. a. Size-exclusion chromatography (SEC) trace of copolymer EP1 where signal 
peak representative of EP1 highlighted in red. b. Molecular weight distribution of EP1, as measured by calculation from identified 

peak region. c-d.  1H NMR triplicate polymerizations (M = pre-polymerization, P = post-polymerization) of EP1.  
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Circular Dichroism (CD) Spectroscopy: 

 

CD spectra collected were analyzed using CDNN software which uses neural network algorithms to 

estimate the secondary structure of proteins using data from a trained set of proteins.2 Utilizing CDNN, 

the secondary structure of HRP and HRP-EP1 were estimated and wavelength range between 205-260 

nm was selected to reduce the error associated from salts present in buffers at lower wavelengths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2| Secondary structures of HRP-EP1 during thermal stress.  
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Small-Angle X-Ray Scattering (SAXS): 

To observe the changes in the physical conformation of HRP, EP1, and HRP-EP1 from pre-heat to post-

heat conditions, small-angle X-ray scattering (SAXS) was performed on all samples. To obtain 

information about molecular size, Guinier analysis, pair distance distribution functions, and Kratky 

analysis were completed to calculate Rg, Dmax, and gauge sample compactness (Table S3). First, 

Guinier analysis was performed to calculate Rg of HRP, EP1, and HRP-EP1 before and after heating. 

Fig. S6 shows the lines of best fit for all samples ranging from scattering angles qmin = 0.012 Å-1 to qmax 

= 0.05 Å-1. HRP, EP1, and HRP-EP1 demonstrated single species populations as measured by SAXS 

with Rg determined by Guinier analysis ranging from 24.6-27.2 Å. Upon exposure to heat, HRP exhibited 

an increased Rg of 51.9 Å by Guinier analysis with an upward slope at low q indicative of aggregation or 

denaturation. In contrast, heating did not induce as drastic of a shift in EP1 and HRP-EP1 which post 

heating exhibited Guinier Rg of 26.0 and 26.9 Å respectively. This evidence is further supported by the 

pair distance distribution functions and calculated Rg which suggest the development of a highly extended 

HRP after thermal stress (Rg = 60.6 Å) whereas HRP-EP1 maintains a more conserved size (Rg = 27.7 

Å) relative to HRP before thermal stress (Rg = 24.3 Å). This is clear indication of the presence of a single 

population both before and after heating, indicating that HRP-EP1 maintained much of its conformational 

integrity after heating similar to that of native HRP. Furthermore, to observe whether the complexation of 

HRP with EP1 could form a compact structure, we utilized Kratky analysis to qualitatively assess the 

PPH’s compactness in comparison to the native protein. Fig. S7 shows the Kratky plots in which both 

HRP and HRP-EP1 demonstrate strong peaks at scattering angles q = 0.065 (Å-1) and q = 0.075 (Å-1) 

respectively that is indicative of compactness. 

 

Table S3| Characterization of HRP, EP1, and HRP-EP1 by SAXS. Rg were determined by Guiner analysis, and R2 was 
calculated based on the corresponding linear fit. Further, maximum dimension (Dmax) was calculated by evaluation of the 
pairwise distribution function in BioXTAS.  
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Fig. S6| Guinier analysis of HRP, EP1, and HRP-EP1. Highlighted regions show q-region of best-fit used to determine Rg 
for each sample. 

Fig. S7| Kratky plots of HRP, EP1, and HRP-EP1. Kratky analysis suggests both HRP and HRP-EP1 are compact structures. 
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Dynamic Light Scattering (DLS): 

 

Fig S8| Dynamic light scattering (DLS) data for HRP, EP1, 
and HRP-EP1. 

Table S4. DLS data for HRP, EP1, and HRP-EP1.  

Sample Rh PD Index

HRP 3.26 +/- 0.011 0.136 +/- 0.002

HRP-EP1 3.10 +/- 0.006 0.066 +/- 0.003

EP1 3.05 +/- 0.082 0.154 +/- 0.045
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Quartz Crystal Microbalance with Dissipation (QCM-D): 

 

  

Fig S9| Measured change in frequency and dissipation of HRP and HRP-EP1 by quartz crystal microbalance with 
dissipation (QCM-D). Direct adsorption of HRP followed by EP1 is observed closely following injection. Washing and 
injection steps were as follows: NaAc wash (T = 0min), HRP injection (T = 22min), NaAc wash (T = 57min), and EP1 
injection (T = 82min). 
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Penalty Function 

Upon application of the diversity filter, it was found that only 19 sufficiently diverse candidates could be 

identified from the 200 proposed at iteration one of active learning for Lip. Although the acquisition 

function is varied between each of the proposals by changing the explore-exploit hyperparameter 𝜉 along 

a logarithmically spaced interval, meaning each of the 200 candidates is a theoretically unique and 

optimal solution, it is likely that small variations in 𝜉 lead to proximate optima. Accordingly, a penalty 

function was used to bias against proposing candidates within experimental error of candidates 

synthesized in the seed database, those found in any previous iteration of active learning, and those 

previously proposed within a given round of active learning. The form of the penalty function is given by: 

𝑃(�⃑�) = 100 ×  𝐻(𝑑 − 0.05√2) × (1 − tanh (
𝑑

0.05√2

10
−1.

) ,  𝑑 = min(‖�⃑� − �⃑�𝑖‖2) ,  �⃑�𝑖 ∈ {𝐴}   

where �⃑� is the point in the feature space in question and �⃑�𝑖 is an element of the set {𝐴} of avoided points. 

The quantity 0.05√2 is used to penalize polymers that differ by less than 0.05 in the fraction of 

incorporation of a given monomer type given that the Hamilton MLSTARlet liquid handling robot 

dispenses reagents to within ~5% error. The geometric distance between feature vectors was computed 

excluding the bit containing the DP representation; points within the penalty threshold of elements of {𝐴} 

but differing in DP were not penalized. The penalty tends to ~102 as points approach the aforementioned 

penalized points and ~10-6 at a distance of 0.07 away from them; the penalty function would not act 

outside this distance threshold. The penalty is calculated by considering only the closest penalizing-point 

at a given position in the feature space. Use of a density-based penalty that simultaneously accounted 

for all elements of {𝐴} at all points of the feature space was explored, however, it was found that “optimal 

candidates” identified with BO with use of this density-based penalty function had extreme sensitivity to 

the length scale over which the penalty propagated from a given point. Too large of a length scale biased 

candidates away from optimal regions; too small and not enough diverse candidates would be proposed.  

Fig. S10 shows the distribution of pairwise distances less than 0.07 between each unique pair of the 200 

candidates produced with and without use of the penalty function at iteration one of active learning for 

each enzyme. In all three cases, the penalty function aided in biasing proposed candidates away from 

one another on length-scales in feature space on order with experimental error and ultimately aided in 

producing diverse candidates at every round of active learning. This was found particularly helpful for Lip 

(Fig. S10B) where a relatively large number of candidates were produced in proximity of one another. 

While use of the penalty function was less necessary for GOx (Fig. S10A) and even less so for HRP 

Fig. S10| Distributions of pairwise distances less than 0.07 for the 200 candidates 
proposed for GOx (a), Lip (b), and HRP (c) at iteration 1 of the active learning. Bars colored 
blue (orange) belong to the distribution of pairwise distances between candidates without (with) 
use of the penalty function during active learning; the mean of the distribution is indicated by a 
black (red) line.  



 
14 

 

(Fig. S10C), it still aided in diversifying the candidates produced at iterations 1-4 of the active learning. 

For iterations 2-5, the penalty function was adopted to bias optimal candidates away from points in the 

chemical space observed or predicted to gel.  
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Classifier Implementation 

20 of the 24 iteration-four polymer candidates for GOx stabilization were found to phase separate into 

liquid and gel phases. Outside of the penalty function, the GPR model and Bayesian Optimization 

algorithm are agnostic to polymer phase behavior, motivating the development of an additional model 

that could be used to avoid areas of the chemical space prone to gelling. In the spirit of data-driven / ML 

lead design this was framed as a classification problem, where a model was trained to predict the binary 

outcome of “gelling or non-gelling”. 

Hyperparameter Possible Values 

Features [DP,{M1-M8}] 

Number of Estimators [100,200,300] 

Max Depth [None, {10-100} (intervals of 10) 

Max Features [√𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, log2(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), None] 

Minimum Samples at Leaf Node [1,2,4] 

Minimum Samples to Split a Node [2,4,6] 

Probability Threshold for Classification [0-0.5] 

 

For simplicity, the classifier was trained using the same polymer representations used to train the GPR 

model, though, investigation of model performance using alternative representations is a worthy future 

pursuit. Initial investigations of multiple classifiers with minimal hyperparameter tuning suggested that a 

Random Forrest Classifier (RFC) would perform well for the task and was the basis for further model 

development. Table S5 provides details of tuned hyperparameters for the RFC model.  

Notably, the available data to train the initial classifier was largely imbalanced, with only 15% of the 

datapoints corresponding to gelled polymers. To combat this issue and avoid the model learning to only 

predict a “non-gelling” outcome, it was found imperative to follow three particular strategies in designing 

the classifier. First was using the balanced accuracy score, defined as the average recall of a classifier 

for each class, as the metric of interest for model selection. The balanced accuracy score for a model 

that predicts only “non-gelling” is quite low compared to models that can predict nearly equally as well for 

either class. Second, it was found important to reweight the class importance to be inversely proportional 

to its frequency in the dataset during model training. Lastly, as Table S5 shows, treating the probability 

threshold for classification as a hyperparameter allowed for models to be more conservative when 

predicting a sample to be “non-gelling”. The latter two strategies facilitated the training and selection of 

models that maximized the balanced accuracy score. The Tree-structured Parzen Estimator Approach 

(TPE) was again used to identify model hyperparameters that maximized the mean balanced accuracy 

scored obtained through K=5 fold-cross validation over the full dataset. The final RFC model was then 

trained with the entirety of the dataset and using ideal hyperparameters.  

Shapely Additive Explanation (SHAP) analysis was used to better understand gelling behavior by looking 

at how monomer fraction of incorporations in a given polymer affected classifier predictions. As Fig. S11 

shows, PEGMA, DMAEAEMA, and SPMA were largely the most influential features used by the RFC in 

making a prediction. In line with physical expectation, the classifier learned to associate polymers with 

relatively more the hydrophilic monomer-type PEGMA with larger probabilities of solubility, and likewise, 

polymers with relatively less PEGMA with larger probabilities of gelling. In a similar fashion, the classifier 

associated polymers with larger fraction of incorporations of hydrophobic monomer type DMEAEMA with 

Table S5| Hyperparameters tuned during training of the RFC gelation model.  

Hyperparameter Possible Values 

Features [DP,{M1-M8}] 

Number of Estimators [100,200,300] 

Max Depth [None, {10-100} (intervals of 10) 

Max Features [Sqrt(n_features),log_2(n_features),None] 

Minimum Samples at Leaf Node [1,2,4] 

Minimum Samples to Split a Node [2,4,6] 

Probability Threshold for Classification [0-0.5]  
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larger probabilities of gelling; smaller fractions of incorporations of DMEAEMA had a smaller impact on 

model predictions, though, were generally associated with higher probabilities of solubility. 

Comparing Fig. S11 and Fig. 3e, one finds that feature values associated with predictions of solubility 

are often associated with predictions of lower REA. For example, large fractions of incorporations of 

PEGMA are predicted to increase the probability of solubility but are detrimental to predictions on REA. 

A similar effect can be seen with SPMA. Equally problematic, feature values that are associated with 

predictions of gelling are associated with higher predictions of GOx REA. For example, larger fractions 

of incorporation of DMEAEMA lead to larger predictions in REA but are strongly linked to predictions of 

gelation. Thus, there is an apparent tradeoff between solubility and REA for polymers for GOx 

stabilization.   

The classifier was deployed to avoid proposing gelling polymer candidates for iterations four (a retry) and 

five of the GOx campaign, albeit in varying capacities. For iteration four, the classifier acted as a 

screening tool: as each of the 200 candidates were proposed by the BO algorithm, the classifier would 

predict whether the candidate would gel or not. If the candidate was predicted to gel, a scaling penalty 

would be added in the region of the feature space of that particular polymer. The acquisition function 

would then be re-maximized, taking into account the penalty placed in the formerly optimal position in 

chemical space. This process is continued until an optimal candidate for a given value of 𝜉 is identified 

that is predicted to not gel. While the classifier was successful in reducing the number of gelling 

candidates from 20/24 (w/o classifier) to only 7/24 (w/classifier) for iteration four of the active learning, 

there were two potential shortcomings identified with its use screening tool. Firstly, polymer candidates 

from iteration four of the GOx campaign, while exhibiting high REAs relative to those from the seed 

database, were underwhelming compared to many polymers found in iteration three. While use of the 

classifier was key in identifying many non-gelling, high performing polymers, it is possible that many 

globally top performing polymers proposed by BO were simultaneously at high-risk for gelling and 

ultimately rejected by the classifier. This is likely since polymer chemistries responsible for gelation and 

GOx stabilization were found to be related.  

Secondly, a related issue, the Bayesian optimization algorithm was still agnostic to gelling behavior when 

selecting optimal candidates, outside of small regions in the chemical space where polymers have either 

Fig. S11| SHAP summary values for the random forest gelation classifier. The features displayed are those 
retained from the feature selection during model selection. Negative SHAP values are interpreted as 
predicted probabilities towards gelation. 
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been previously observed or predicted to gel. Accordingly, since the same polymer chemistries were 

largely responsible for gelation and GOx stabilization, a significant number of candidates suggested by 

BO were rejected by the classifier and was thus a computationally inefficient approach. An alternative 

approach considered was to first screen the chemical space and restrict the bounds of the optimization 

to only consider predicted non-gelling regions as a viable domain. However, due to the high 

dimensionality of the feature space and their complex interactions, putting definitive bounds on the 

domain was deemed unreliable. Furthermore, such agnosticism is likely what caused 7/24 polymers to 

gel despite all being predicted to not gel. A simple Bayes’ rule argument, expanded in the following 

equations and plotted in Fig. S12, shows that even the most successful classifier will fail if presented with 

predominantly gelling polymers:  

𝑃(𝑇 =  𝐺𝑒𝑙 |𝑃𝑟𝑒𝑑 = 𝑁𝑜𝑡 𝑔𝑒𝑙) 

=
𝑃(𝑃𝑟𝑒𝑑. = 𝑁𝑜𝑡 𝐺𝑒𝑙 | 𝑇 = 𝐺𝑒𝑙) 𝑃(𝑇 = 𝐺𝑒𝑙)

𝑃(𝑃𝑟𝑒𝑑. = 𝑁𝑜𝑡 𝐺𝑒𝑙 | 𝑇 = 𝐺𝑒𝑙) 𝑃(𝑇 = 𝐺𝑒𝑙) +  𝑃(𝑃𝑟𝑒𝑑. = 𝑁𝑜𝑡 𝐺𝑒𝑙 | 𝑇 = 𝑁𝑜𝑡 𝐺𝑒𝑙) 𝑃(𝑇 = 𝑁𝑜𝑡 𝐺𝑒𝑙)
 

=
𝐹𝑁𝑅 ∗ 𝑃(𝑇 = 𝐺𝑒𝑙)

𝐹𝑁𝑅 ∗ 𝑃(𝑇 = 𝐺𝑒𝑙) + 𝑇𝑁𝑅 (1 − 𝑃(𝑇 = 𝐺𝑒𝑙))
 

The false positive rate (FNR) and true negative 

rate (TNR) of the classifier are estimated to be 

0.075 and 0.78 respectively (means obtained 

through K=5 cross validation). P(T = Gel) is the 

proportion of gelling candidates in the 

population of candidates suggested by BO for 

GOx at iteration four, which can be estimated to 

be the ~ 20/24 = 0.83 observed to gel at this 

iteration without the use of the classifier. Using 

the aforementioned values in Bayes’ rule gives 

a sizable probability of 0.32 to gel given it is 

predicted to not gel. As partial validation to the 

values used in this estimation, (0.32) (24) = 

7.68 ~ 8 copolymers would be expected to gel 

in a set of 24 copolymers predicted not to gel 

using the classifier, which is quite close to the 

seven that were observed to gel. Thus, keeping 

the BO agnostic to the gelling and using the 

classifier as a screening tool is a viable but 

suboptimal way to avoid gelling candidates.  

To simultaneously address both shortcomings, the classifier was retrained with gelation data up to 

iteration four and directly incorporated into the optimization objective itself for iteration five (full exploit of 

the GOx campaign). Here, the probability of not gelling predicted by the RFC was used as a multiplicative 

factor for values predicted by the GPR model. In this way, the exploit round for GOx was reframed from 

selecting the candidates that had the highest predicted REA to instead candidates that had the highest 

“expected REA”, valuing the REA of gelled polymers at 0% since we do not consider them as viable 

materials for PPHs:  

𝐸[𝑅𝐸𝐴] = ∑ 𝜇𝑖(𝑥) 𝑝𝑖(𝑥) = 𝜇𝑖(𝑥) ∗ (1 − 𝑝𝑖(𝑥)) + 0 ∗ 𝑝(𝑥) = 𝜇𝑖(𝑥) ∗ (1 − 𝑝𝑖(𝑥)) 

Fig. S12| Impact of the prior on probability of gelling given a 
prediction of “not-gelling”. Using the false negative rate (FNR) 
and true positive rate (TPR) of the classifier, estimated as means 
from K=5 cross validation, and a prior informed by the proportion 
of candidates observed to gel without use of the classifier, we 

estimate the probability of gelling to be 0.32.  
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Optimization with this objective function accounts for gelation behavior and allows for risks in selecting 

candidates with high probability of gelling if there is a suitably high predicted REA. Accordingly, 

candidates produced from this round of active learning had only 3/24 polymers gel and had the highest 

mean REA of any iteration of the GOx campaign. This objective resembles that used by Gardner et al. in 

performing BO with black-box constraints, which in this case are gelling regions of the chemical space.1 
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Polymer Seed Library 

# DP DEAEMA 2-HPMA SPMA BMA DMAPMA MMA PEGMA TEAMA 
HRP 
REA 

GOx 
REA 

Lip 
REA 

1 200 0.1 0.2 0 0 0 0.5 0.2 0 1.8% 21.0% -4.8% 

2 200 0.1 0.2 0 0 0 0.55 0.15 0 1.2% 22.4% -4.9% 

3 200 0.1 0.2 0 0 0 0.6 0.1 0 1.5% 26.2% 1.1% 

4 200 0.1 0.2 0 0 0 0.65 0.05 0 0.7% 26.5% 26.8% 

5 200 0.1 0.2 0 0 0 0.7 0 0 0.7% 26.1% 11.5% 

6 200 0.1 0 0 0 0 0.5 0.4 0 0.8% 13.3% -3.5% 

7 200 0.1 0 0 0 0 0.55 0.35 0 0.6% 11.5% -4.0% 

8 200 0.1 0 0 0 0 0.6 0.3 0 0.8% 9.5% -3.7% 

9 200 0.1 0 0 0 0 0.65 0.25 0 1.3% 25.2% -2.9% 

10 200 0.1 0 0 0 0 0.7 0.2 0 2.0% 30.4% -4.7% 

11 200 0 0.3 0 0 0 0.5 0.2 0 1.0% 4.8% 3.3% 

12 200 0.05 0.25 0 0 0 0.5 0.2 0 0.7% 6.4% -5.0% 

13 200 0.1 0.2 0 0 0 0.5 0.2 0 0.6% 32.1% -3.9% 

14 200 0.15 0.15 0 0 0 0.5 0.2 0 0.8% 24.9% -4.4% 

15 200 0.2 0.1 0 0 0 0.5 0.2 0 1.1% 15.4% -3.1% 

16 200 0.25 0.05 0 0 0 0.5 0.2 0 1.1% 12.6% -4.3% 

17 200 0.3 0 0 0 0 0.5 0.2 0 1.3% 22.4% -3.0% 

18 200 0.1 0.2 0 0 0 0 0.7 0 0.8% 7.8% -4.4% 

19 200 0.1 0.2 0 0 0 0.05 0.65 0 0.6% 8.1% -3.2% 

20 200 0.1 0.2 0 0 0 0.1 0.6 0 0.4% 10.3% -3.3% 

21 200 0.1 0.2 0 0 0 0.15 0.55 0 0.5% 11.7% -3.4% 

22 200 0.1 0.2 0 0 0 0.2 0.5 0 0.6% 9.0% -5.1% 

23 200 0.1 0.2 0 0 0 0.25 0.45 0 0.6% 8.3% -5.5% 

24 200 0.1 0.2 0 0 0 0.3 0.4 0 0.9% 8.0% -5.4% 

25 200 0.1 0.2 0 0 0 0.35 0.35 0 1.4% 13.1% -5.2% 

26 200 0.1 0.2 0 0 0 0.4 0.3 0 0.7% 17.0% -5.5% 

27 200 0.1 0.2 0 0 0 0.45 0.35 0 1.0% 10.4% -5.2% 

28 200 0.1 0.2 0 0.5 0 0 0.2 0 0.7% 10.7% 62.5% 

29 200 0.1 0.2 0 0.55 0 0 0.15 0 0.7% 9.5% 64.3% 

30 200 0.1 0.2 0 0.6 0 0 0.1 0 1.9% 7.5% 12.6% 

31 200 0.1 0.2 0 0.65 0 0 0.05 0 2.2% 5.9% 19.4% 

32 200 0.1 0.2 0 0.7 0 0 0 0 0.6% 4.7% 20.7% 

33 200 0.1 0 0 0.5 0 0 0.4 0 1.2% 5.2% -5.1% 

34 200 0.1 0 0 0.55 0 0 0.35 0 0.6% 6.3% -5.4% 

35 200 0.1 0 0 0.6 0 0 0.3 0 0.8% 6.8% -5.1% 

36 200 0.1 0 0 0.65 0 0 0.25 0 0.9% 6.7% -3.7% 

37 200 0.1 0 0 0.7 0 0 0.2 0 1.3% 5.3% 1.2% 

38 200 0 0.3 0 0.5 0 0 0.2 0 0.5% 5.2% -3.2% 

39 200 0.05 0.25 0 0.5 0 0 0.2 0 0.6% 5.8% 7.3% 

40 200 0.1 0.2 0 0.5 0 0 0.2 0 0.8% 3.7% 14.0% 

41 200 0.15 0.15 0 0.5 0 0 0.2 0 0.7% 5.1% -2.8% 
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42 200 0.2 0.1 0 0.5 0 0 0.2 0 0.8% 6.2% 1.5% 

43 200 0.25 0.05 0 0.5 0 0 0.2 0 0.9% 6.1% -0.8% 

44 200 0.3 0 0 0.5 0 0 0.2 0 1.1% 6.3% -0.2% 

45 200 0.1 0.2 0 0 0 0 0.7 0 0.8% 5.0% -2.9% 

46 200 0.1 0.2 0 0.05 0 0 0.65 0 0.7% 5.7% -3.9% 

47 200 0.1 0.2 0 0.1 0 0 0.6 0 0.8% 5.3% -4.2% 

48 200 0.1 0.2 0 0.15 0 0 0.55 0 0.6% 2.2% -3.6% 

49 200 0.1 0.2 0 0.2 0 0 0.5 0 1.0% 2.8% -1.7% 

50 200 0.1 0.2 0 0.25 0 0 0.45 0 1.1% 3.6% -5.6% 

51 200 0.1 0.2 0 0.3 0 0 0.4 0 0.7% 4.7% -5.9% 

52 200 0.1 0.2 0 0.35 0 0 0.35 0 1.1% 5.5% -5.0% 

53 200 0.1 0.2 0 0.4 0 0 0.3 0 0.9% 7.9% -4.7% 

54 200 0.1 0.2 0 0.45 0 0 0.25 0 1.0% 8.4% -4.9% 

55 200 0 0.2 0.1 0 0 0.5 0.2 0 1.1% 1.3% 1.0% 

56 200 0 0.2 0.1 0 0 0.55 0.15 0 1.7% 1.2% 0.5% 

57 200 0 0.2 0.1 0 0 0.6 0.1 0 6.8% 1.3% 1.1% 

58 200 0 0.2 0.1 0 0 0.65 0.05 0 12.8% 1.5% 1.3% 

59 200 0 0.2 0.1 0 0 0.7 0 0 12.7% 1.3% 1.4% 

60 200 0 0 0.1 0 0 0.5 0.4 0 1.0% 0.9% 0.5% 

61 200 0 0 0.1 0 0 0.55 0.35 0 1.0% 0.7% 3.1% 

62 200 0 0 0.1 0 0 0.6 0.3 0 1.2% 0.8% 0.7% 

63 200 0 0 0.1 0 0 0.65 0.25 0 0.8% 2.0% 0.2% 

64 200 0 0 0.1 0 0 0.7 0.2 0 1.9% 3.4% -0.8% 

65 200 0 0.3 0 0 0 0.5 0.2 0 3.3% 3.3% 2.9% 

66 200 0 0.25 0.05 0 0 0.5 0.2 0 2.2% 2.2% 0.9% 

67 200 0 0.2 0.1 0 0 0.5 0.2 0 2.8% 3.3% -1.6% 

68 200 0 0.15 0.15 0 0 0.5 0.2 0 1.9% 0.0% -1.6% 

69 200 0 0.1 0.2 0 0 0.5 0.2 0 2.4% 2.0% 0.9% 

70 200 0 0.05 0.25 0 0 0.5 0.2 0 2.0% 1.0% 0.4% 

71 200 0 0 0.3 0 0 0.5 0.2 0 1.2% 1.6% 11.4% 

72 200 0 0.2 0.1 0 0 0 0.7 0 1.9% 3.4% 8.0% 

73 200 0 0.2 0.1 0 0 0.05 0.65 0 1.1% 3.6% 4.0% 

74 200 0 0.2 0.1 0 0 0.1 0.6 0 1.2% 5.3% 3.6% 

75 200 0 0.2 0.1 0 0 0.15 0.55 0 1.6% 3.6% 4.6% 

76 200 0 0.2 0.1 0 0 0.2 0.5 0 1.4% 3.0% 5.7% 

77 200 0 0.2 0.1 0 0 0.25 0.45 0 1.7% 2.6% 5.6% 

78 200 0 0.2 0.1 0 0 0.3 0.4 0 2.0% 1.2% 3.0% 

79 200 0 0.2 0.1 0 0 0.35 0.35 0 0.9% 2.0% 0.8% 

80 200 0 0.2 0.1 0 0 0.4 0.3 0 2.5% 3.8% 0.8% 

81 200 0 0.2 0.1 0 0 0.45 0.35 0 1.7% 4.1% 0.9% 

82 200 0 0.2 0.1 0.5 0 0 0.2 0 3.0% 4.9% -0.1% 

83 200 0 0.2 0.1 0.55 0 0 0.15 0 3.2% 3.8% 0.2% 

84 200 0 0.2 0.1 0.6 0 0 0.1 0 2.4% 3.6% 0.5% 

85 200 0 0.2 0.1 0.65 0 0 0.05 0 6.8% 3.4% 1.0% 
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86 200 0 0.2 0.1 0.7 0 0 0 0 1.3% 1.4% 39.9% 

87 200 0 0 0.1 0.5 0 0 0.4 0 0.6% 2.5% 0.3% 

88 200 0 0 0.1 0.55 0 0 0.35 0 1.1% 4.1% -0.1% 

89 200 0 0 0.1 0.6 0 0 0.3 0 2.0% 4.2% -0.1% 

90 200 0 0 0.1 0.65 0 0 0.25 0 1.6% 4.7% 0.1% 

91 200 0 0 0.1 0.7 0 0 0.2 0 0.7% 4.6% 0.1% 

92 200 0 0.3 0 0.5 0 0 0.2 0 3.9% 5.8% -0.2% 

93 200 0 0.25 0.05 0.5 0 0 0.2 0 3.9% 3.5% -1.4% 

94 200 0 0.2 0.1 0.5 0 0 0.2 0 4.8% 2.1% 0.3% 

95 200 0 0.15 0.15 0.5 0 0 0.2 0 1.4% 2.1% 0.1% 

96 200 0 0.1 0.2 0.5 0 0 0.2 0 2.9% 3.3% 0.2% 

97 200 0 0.05 0.25 0.5 0 0 0.2 0 2.4% 3.4% 0.3% 

98 200 0 0 0.3 0.5 0 0 0.2 0 1.8% 4.5% 0.5% 

99 200 0 0.2 0.1 0 0 0 0.7 0 1.3% 4.1% 0.1% 

100 200 0 0.2 0.1 0.05 0 0 0.65 0 4.3% 3.7% 0.0% 

101 200 0 0.2 0.1 0.1 0 0 0.6 0 0.9% 2.9% 1.0% 

102 200 0 0.2 0.1 0.15 0 0 0.55 0 1.3% 1.5% 1.2% 

103 200 0 0.2 0.1 0.2 0 0 0.5 0 3.5% 1.9% -0.3% 

104 200 0 0.2 0.1 0.25 0 0 0.45 0 2.3% 3.5% -0.6% 

105 200 0 0.2 0.1 0.3 0 0 0.4 0 1.0% 4.7% -0.7% 

106 200 0 0.2 0.1 0.35 0 0 0.35 0 1.4% 5.0% -0.4% 

107 200 0 0.2 0.1 0.4 0 0 0.3 0 1.4% 4.9% -0.4% 

108 200 0 0.2 0.1 0.45 0 0 0.25 0 1.5% 4.5% -0.4% 

109 200 0.05 0 0 0 0 0.65 0.3 0 0.4% 15.0% 0.2% 

110 200 0.1 0 0 0 0 0.6 0.3 0 0.6% 13.6% -1.1% 

111 200 0.15 0 0 0 0 0.55 0.3 0 0.6% 10.3% -1.8% 

112 200 0.2 0 0 0 0 0.5 0.3 0 0.8% 7.6% -1.6% 

113 200 0.25 0 0 0 0 0.45 0.3 0 0.9% 5.2% -1.9% 

114 200 0.3 0 0 0 0 0.4 0.3 0 0.9% 4.8% -1.5% 

115 200 0.35 0 0 0 0 0.35 0.3 0 0.9% 4.1% -0.4% 

116 200 0.4 0 0 0 0 0.3 0.3 0 0.8% 5.2% -0.9% 

117 200 0.45 0 0 0 0 0.25 0.3 0 0.6% 12.1% -3.4% 

118 200 0.5 0 0 0 0 0.2 0.3 0 0.7% 14.2% -1.1% 

119 200 0.05 0 0 0.65 0 0 0.3 0 0.4% 21.7% -1.6% 

120 200 0.1 0 0 0.6 0 0 0.3 0 0.5% 21.3% -0.7% 

121 200 0.15 0 0 0.55 0 0 0.3 0 0.6% 18.3% -1.5% 

122 200 0.2 0 0 0.5 0 0 0.3 0 0.8% 16.1% -1.2% 

123 200 0.25 0 0 0.45 0 0 0.3 0 0.6% 16.4% -1.4% 

124 200 0.3 0 0 0.4 0 0 0.3 0 0.8% 9.8% -1.6% 

125 200 0.35 0 0 0.35 0 0 0.3 0 0.5% 26.4% -1.2% 

126 200 0.4 0 0 0.3 0 0 0.3 0 0.6% 25.3% -0.7% 

127 200 0.45 0 0 0.25 0 0 0.3 0 0.9% 28.4% -0.9% 

128 200 0.5 0 0 0.2 0 0 0.3 0 0.9% 27.9% -0.6% 

129 200 0 0 0 0 0.05 0.65 0.3 0 0.4% 28.9% -0.5% 
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130 200 0 0 0 0 0.1 0.6 0.3 0 0.4% 30.3% -1.0% 

131 200 0 0 0 0 0.15 0.55 0.3 0 0.6% 26.3% -1.3% 

132 200 0 0 0 0 0.2 0.5 0.3 0 0.7% 20.4% -1.1% 

133 200 0 0 0 0 0.25 0.45 0.3 0 0.7% 23.2% -1.5% 

134 200 0 0 0 0 0.3 0.4 0.3 0 1.0% 28.5% -1.1% 

135 200 0 0 0 0 0.35 0.35 0.3 0 0.9% 30.0% 2.7% 

136 200 0 0 0 0 0.4 0.3 0.3 0 1.0% 31.1% 4.8% 

137 200 0 0 0 0 0.45 0.25 0.3 0 1.0% 28.9% -0.6% 

138 200 0 0 0 0 0.5 0.2 0.3 0 1.2% 25.5% 1.3% 

139 200 0 0 0 0.65 0.05 0 0.3 0 0.4% 9.3% -1.6% 

140 200 0 0 0 0.6 0.1 0 0.3 0 0.5% 8.3% -1.4% 

141 200 0 0 0 0.55 0.15 0 0.3 0 0.7% 12.5% 0.2% 

142 200 0 0 0 0.5 0.2 0 0.3 0 0.5% 22.8% 6.0% 

143 200 0 0 0 0.45 0.25 0 0.3 0 0.6% 31.7% 15.7% 

144 200 0 0 0 0.4 0.3 0 0.3 0 0.7% 26.2% 20.5% 

145 200 0 0 0 0.35 0.35 0 0.3 0 0.8% 25.2% 16.6% 

146 200 0 0 0 0.3 0.4 0 0.3 0 0.6% 23.2% 10.7% 

147 200 0 0 0 0.25 0.45 0 0.3 0 1.1% 27.5% 8.0% 

148 200 0 0 0 0.2 0.5 0 0.3 0 0.7% 26.0% 0.0% 

149 200 0 0 0 0 0 0.65 0.3 0.05 0.3% 5.1% -1.8% 

150 200 0 0 0 0 0 0.6 0.3 0.1 0.2% 11.8% -1.5% 

151 200 0 0 0 0 0 0.55 0.3 0.15 0.3% 6.9% -0.7% 

152 200 0 0 0 0 0 0.5 0.3 0.2 0.5% 5.0% -0.1% 

153 200 0 0 0 0 0 0.45 0.3 0.25 0.5% 4.5% -0.7% 

154 200 0 0 0 0 0 0.4 0.3 0.3 10.7% 3.4% -1.1% 

155 200 0 0 0 0 0 0.35 0.3 0.35 1.7% 3.4% -0.5% 

156 200 0 0 0 0 0 0.3 0.3 0.4 30.9% 2.1% 0.9% 

157 200 0 0 0 0 0 0.25 0.3 0.45 43.7% 2.7% -0.6% 

158 200 0 0 0 0 0 0.2 0.3 0.5 44.5% 4.1% 1.5% 

159 200 0 0 0 0.65 0 0 0.3 0.05 0.8% 26.2% 41.7% 

160 200 0 0 0 0.6 0 0 0.3 0.1 1.0% 10.1% 44.7% 

161 200 0 0 0 0.55 0 0 0.3 0.15 1.6% 4.1% 31.1% 

162 200 0 0 0 0.5 0 0 0.3 0.2 38.1% 6.1% 15.0% 

163 200 0 0 0 0.45 0 0 0.3 0.25 30.1% 4.2% 5.6% 

164 200 0 0 0 0.4 0 0 0.3 0.3 31.4% 2.1% 0.4% 

165 200 0 0 0 0.35 0 0 0.3 0.35 44.1% 2.5% -1.0% 

166 200 0 0 0 0.3 0 0 0.3 0.4 36.0% 3.6% -0.1% 

167 200 0 0 0 0.25 0 0 0.3 0.45 31.4% 3.8% -1.0% 

168 200 0 0 0 0.2 0 0 0.3 0.5 34.0% 3.5% -1.0% 

169 100 0.1 0.2 0 0 0 0.5 0.2 0 3.0% 28.9% 1.5% 

170 100 0.1 0.2 0 0 0 0.55 0.15 0 4.9% 33.4% -0.1% 

171 100 0.1 0.2 0 0 0 0.6 0.1 0 4.7% 30.8% 4.3% 

172 100 0.1 0.2 0 0 0 0.65 0.05 0 5.7% 27.4% 14.9% 

173 100 0.1 0.2 0 0 0 0.7 0 0 6.1% 32.5% 3.1% 
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174 100 0.1 0 0 0 0 0.5 0.4 0 2.9% 26.9% 0.0% 

175 100 0.1 0 0 0 0 0.55 0.35 0 3.8% 22.4% -0.5% 

176 100 0.1 0 0 0 0 0.6 0.3 0 3.1% 22.5% 0.0% 

177 100 0.1 0 0 0 0 0.65 0.25 0 2.5% 39.8% 1.9% 

178 100 0.1 0 0 0 0 0.7 0.2 0 3.3% 56.2% 0.2% 

179 100 0 0.3 0 0 0 0.5 0.2 0 53.9% 12.0% 1.2% 

180 100 0.05 0.25 0 0 0 0.5 0.2 0 2.5% 12.7% -0.8% 

181 100 0.1 0.2 0 0 0 0.5 0.2 0 46.1% 62.3% -0.5% 

182 100 0.15 0.15 0 0 0 0.5 0.2 0 6.1% 57.7% 0.0% 

183 100 0.2 0.1 0 0 0 0.5 0.2 0 6.5% 40.3% 0.5% 

184 100 0.25 0.05 0 0 0 0.5 0.2 0 3.5% 35.9% 0.0% 

185 100 0.3 0 0 0 0 0.5 0.2 0 14.5% 33.5% 1.4% 

186 100 0.1 0.2 0 0 0 0 0.7 0 2.4% 9.4% -0.9% 

187 100 0.1 0.2 0 0 0 0.05 0.65 0 4.9% 11.5% -0.1% 

188 100 0.1 0.2 0 0 0 0.1 0.6 0 3.7% 11.8% -0.1% 

189 100 0.1 0.2 0 0 0 0.15 0.55 0 5.0% 12.3% -0.1% 

190 100 0.1 0.2 0 0 0 0.2 0.5 0 3.7% 13.9% -0.4% 

191 100 0.1 0.2 0 0 0 0.25 0.45 0 3.3% 11.8% 0.1% 

192 100 0.1 0.2 0 0 0 0.3 0.4 0 3.5% 9.9% -0.6% 

193 100 0.1 0.2 0 0 0 0.35 0.35 0 2.2% 8.5% 0.3% 

194 100 0.1 0.2 0 0 0 0.4 0.3 0 3.3% 12.4% -0.7% 

195 100 0.1 0.2 0 0 0 0.45 0.35 0 3.3% 11.9% -0.7% 

196 100 0.1 0.2 0 0.5 0 0 0.2 0 3.2% 14.4% 0.4% 

197 100 0.1 0.2 0 0.55 0 0 0.15 0 8.2% 9.7% 5.7% 

198 100 0.1 0.2 0 0.6 0 0 0.1 0 1.9% 10.0% 0.4% 

199 100 0.1 0.2 0 0.65 0 0 0.05 0 1.3% 7.3% 0.8% 

200 100 0.1 0.2 0 0.7 0 0 0 0 1.4% 6.0% 0.9% 

201 100 0.1 0 0 0.5 0 0 0.4 0 2.8% 7.7% -0.2% 

202 100 0.1 0 0 0.55 0 0 0.35 0 4.6% 11.2% -0.7% 

203 100 0.1 0 0 0.6 0 0 0.3 0 4.0% 11.0% -0.1% 

204 100 0.1 0 0 0.65 0 0 0.25 0 4.6% 11.3% 1.2% 

205 100 0.1 0 0 0.7 0 0 0.2 0 9.7% 9.8% 4.6% 

206 100 0 0.3 0 0.5 0 0 0.2 0 14.3% 11.4% 1.0% 

207 100 0.05 0.25 0 0.5 0 0 0.2 0 3.5% 9.0% 3.5% 

208 100 0.1 0.2 0 0.5 0 0 0.2 0 2.8% 12.7% 0.7% 

209 100 0.15 0.15 0 0.5 0 0 0.2 0 2.3% 8.6% 9.3% 

210 100 0.2 0.1 0 0.5 0 0 0.2 0 3.1% 10.4% 6.7% 

211 100 0.25 0.05 0 0.5 0 0 0.2 0 3.2% 10.9% 3.0% 

212 100 0.3 0 0 0.5 0 0 0.2 0 4.0% 9.8% 3.7% 

213 100 0.1 0.2 0 0 0 0 0.7 0 2.8% 10.8% 0.6% 

214 100 0.1 0.2 0 0.05 0 0 0.65 0 4.1% 11.2% -0.6% 

215 100 0.1 0.2 0 0.1 0 0 0.6 0 2.3% 10.4% 0.0% 

216 100 0.1 0.2 0 0.15 0 0 0.55 0 3.3% 9.6% 1.3% 

217 100 0.1 0.2 0 0.2 0 0 0.5 0 1.3% 8.0% 3.7% 
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218 100 0.1 0.2 0 0.25 0 0 0.45 0 2.5% 10.0% -0.4% 

219 100 0.1 0.2 0 0.3 0 0 0.4 0 2.7% 13.1% -0.8% 

220 100 0.1 0.2 0 0.35 0 0 0.35 0 4.8% 11.8% -0.3% 

221 100 0.1 0.2 0 0.4 0 0 0.3 0 4.0% 13.7% -0.1% 

222 100 0.1 0.2 0 0.45 0 0 0.35 0 4.1% 13.5% -0.3% 

223 100 0 0.2 0.1 0 0 0.5 0.2 0 27.0% 1.2% -2.2% 

224 100 0 0.2 0.1 0 0 0.55 0.15 0 20.2% 1.5% -1.6% 

225 100 0 0.2 0.1 0 0 0.6 0.1 0 49.4% 2.0% -1.1% 

226 100 0 0.2 0.1 0 0 0.65 0.05 0 24.2% 2.3% -0.6% 

227 100 0 0.2 0.1 0 0 0.7 0 0 32.3% 2.5% -0.2% 

228 100 0 0 0.1 0 0 0.5 0.4 0 46.5% 2.6% -2.9% 

229 100 0 0 0.1 0 0 0.55 0.35 0 47.6% 2.2% -2.7% 

230 100 0 0 0.1 0 0 0.6 0.3 0 47.7% 1.9% -2.4% 

231 100 0 0 0.1 0 0 0.65 0.25 0 32.1% 2.2% -2.9% 

232 100 0 0 0.1 0 0 0.7 0.2 0 35.1% 5.7% -2.6% 

233 100 0 0.3 0 0 0 0.5 0.2 0 62.9% 7.2% 7.3% 

234 100 0 0.25 0.05 0 0 0.5 0.2 0 55.0% 7.8% 10.5% 

235 100 0 0.2 0.1 0 0 0.5 0.2 0 32.6% 8.2% 1.7% 

236 100 0 0.15 0.15 0 0 0.5 0.2 0 28.5% 8.3% -0.4% 

237 100 0 0.1 0.2 0 0 0.5 0.2 0 28.0% 4.7% 2.7% 

238 100 0 0.05 0.25 0 0 0.5 0.2 0 18.8% 1.5% 4.8% 

239 100 0 0 0.3 0 0 0.5 0.2 0 14.8% 1.6% 19.4% 

240 100 0 0.2 0.1 0 0 0 0.7 0 43.3% 5.8% 9.0% 

241 100 0 0.2 0.1 0 0 0.05 0.65 0 45.4% 8.0% 18.8% 

242 100 0 0.2 0.1 0 0 0.1 0.6 0 35.4% 10.2% 20.6% 

243 100 0 0.2 0.1 0 0 0.15 0.55 0 50.4% 11.0% 17.9% 

244 100 0 0.2 0.1 0 0 0.2 0.5 0 51.0% 11.8% 7.9% 

245 100 0 0.2 0.1 0 0 0.25 0.45 0 35.6% 8.8% 10.7% 

246 100 0 0.2 0.1 0 0 0.3 0.4 0 10.2% 1.9% 9.0% 

247 100 0 0.2 0.1 0 0 0.35 0.35 0 37.6% 2.0% 10.8% 

248 100 0 0.2 0.1 0 0 0.4 0.3 0 55.1% 7.4% 1.9% 

249 100 0 0.2 0.1 0 0 0.45 0.35 0 48.4% 10.8% 1.0% 

250 100 0 0.2 0.1 0.5 0 0 0.2 0 22.1% 14.0% 0.7% 

251 100 0 0.2 0.1 0.55 0 0 0.15 0 10.4% 14.7% 1.7% 

252 100 0 0.2 0.1 0.6 0 0 0.1 0 3.1% 14.3% 3.6% 

253 100 0 0.2 0.1 0.65 0 0 0.05 0 5.1% 9.3% 3.7% 

254 100 0 0.2 0.1 0.7 0 0 0 0 0.0% 2.6% 1.0% 

255 100 0 0 0.1 0.5 0 0 0.4 0 0.0% 2.8% -2.5% 

256 100 0 0 0.1 0.55 0 0 0.35 0 0.0% 8.2% -2.0% 

257 100 0 0 0.1 0.6 0 0 0.3 0 0.0% 11.6% -1.4% 

258 100 0 0 0.1 0.65 0 0 0.25 0 0.0% 12.7% 2.9% 

259 100 0 0 0.1 0.7 0 0 0.2 0 0.0% 14.5% 27.3% 

260 100 0 0.3 0 0.5 0 0 0.2 0 0.0% 16.6% 0.2% 

261 100 0 0.25 0.05 0.5 0 0 0.2 0 0.0% 12.5% -0.3% 



 
25 

 

262 100 0 0.2 0.1 0.5 0 0 0.2 0 0.0% 3.1% -1.3% 

263 100 0 0.15 0.15 0.5 0 0 0.2 0 20.4% 6.5% 1.3% 

264 100 0 0.1 0.2 0.5 0 0 0.2 0 3.0% 7.1% 1.9% 

265 100 0 0.05 0.25 0.5 0 0 0.2 0 0.7% 7.4% 2.2% 

266 100 0 0 0.3 0.5 0 0 0.2 0 1.9% 7.1% 1.0% 

267 100 0 0.2 0.1 0 0 0 0.7 0 3.5% 5.9% 8.3% 

268 100 0 0.2 0.1 0.05 0 0 0.65 0 30.7% 5.6% -0.1% 

269 100 0 0.2 0.1 0.1 0 0 0.6 0 1.4% 4.6% 0.4% 

270 100 0 0.2 0.1 0.15 0 0 0.55 0 0.6% 3.4% 3.2% 

271 100 0 0.2 0.1 0.2 0 0 0.5 0 6.4% 7.2% 4.4% 

272 100 0 0.2 0.1 0.25 0 0 0.45 0 6.4% 8.8% 0.3% 

273 100 0 0.2 0.1 0.3 0 0 0.4 0 13.8% 10.7% -0.4% 

274 100 0 0.2 0.1 0.35 0 0 0.35 0 7.2% 11.0% -0.4% 

275 100 0 0.2 0.1 0.4 0 0 0.3 0 4.6% 10.9% -0.6% 

276 100 0 0.2 0.1 0.45 0 0 0.25 0 3.6% 10.9% -0.5% 

277 100 0.05 0 0 0 0 0.65 0.3 0 -1.6% 7.9% 0.2% 

278 100 0.1 0 0 0 0 0.6 0.3 0 22.0% 21.5% 0.2% 

279 100 0.15 0 0 0 0 0.55 0.3 0 28.2% 26.6% -0.6% 

280 100 0.2 0 0 0 0 0.5 0.3 0 41.2% 30.6% 0.0% 

281 100 0.25 0 0 0 0 0.45 0.3 0 29.8% 35.0% 0.2% 

282 100 0.3 0 0 0 0 0.4 0.3 0 39.4% 31.8% 0.1% 

283 100 0.35 0 0 0 0 0.35 0.3 0 41.7% 28.8% 0.3% 

284 100 0.4 0 0 0 0 0.3 0.3 0 36.6% 27.2% 0.5% 

285 100 0.45 0 0 0 0 0.25 0.3 0 73.4% 27.2% 0.0% 

286 100 0.5 0 0 0 0 0.2 0.3 0 74.7% 18.9% 0.4% 

287 100 0.05 0 0 0.65 0 0 0.3 0 -1.3% 11.7% 1.8% 

288 100 0.1 0 0 0.6 0 0 0.3 0 0.2% 35.1% 1.1% 

289 100 0.15 0 0 0.55 0 0 0.3 0 0.3% 44.0% 0.7% 

290 100 0.2 0 0 0.5 0 0 0.3 0 2.9% 45.0% 0.9% 

291 100 0.25 0 0 0.45 0 0 0.3 0 2.4% 42.7% 1.1% 

292 100 0.3 0 0 0.4 0 0 0.3 0 3.3% 39.2% 0.6% 

293 100 0.35 0 0 0.35 0 0 0.3 0 3.0% 36.9% 0.2% 

294 100 0.4 0 0 0.3 0 0 0.3 0 78.4% 27.4% 0.1% 

295 100 0.45 0 0 0.25 0 0 0.3 0 110.0% 31.9% -0.3% 

296 100 0.5 0 0 0.2 0 0 0.3 0 93.1% 28.3% 1.9% 

297 100 0 0 0 0 0.05 0.65 0.3 0 20.4% 14.2% 3.5% 

298 100 0 0 0 0 0.1 0.6 0.3 0 22.2% 15.1% 8.0% 

299 100 0 0 0 0 0.15 0.55 0.3 0 14.8% 18.0% 0.7% 

300 100 0 0 0 0 0.2 0.5 0.3 0 0.0% 20.6% 2.0% 

301 100 0 0 0 0 0.25 0.45 0.3 0 0.4% 18.3% 1.8% 

302 100 0 0 0 0 0.3 0.4 0.3 0 16.3% 16.4% 0.8% 

303 100 0 0 0 0 0.35 0.35 0.3 0 4.4% 27.0% 4.5% 

304 100 0 0 0 0 0.4 0.3 0.3 0 10.3% 33.4% 1.3% 

305 100 0 0 0 0 0.45 0.25 0.3 0 -0.3% 39.5% 3.5% 
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306 100 0 0 0 0 0.5 0.2 0.3 0 -0.3% 40.3% 6.3% 

307 100 0 0 0 0.65 0.05 0 0.3 0 18.7% 15.1% 0.0% 

308 100 0 0 0 0.6 0.1 0 0.3 0 30.7% 23.8% 1.2% 

309 100 0 0 0 0.55 0.15 0 0.3 0 -0.6% 23.0% 3.7% 

310 100 0 0 0 0.5 0.2 0 0.3 0 19.4% 18.1% 5.9% 

311 100 0 0 0 0.45 0.25 0 0.3 0 5.1% 33.7% 6.7% 

312 100 0 0 0 0.4 0.3 0 0.3 0 8.3% 34.7% 5.9% 

313 100 0 0 0 0.35 0.35 0 0.3 0 22.0% 38.1% 7.4% 

314 100 0 0 0 0.3 0.4 0 0.3 0 19.4% 37.5% 5.4% 

315 100 0 0 0 0.25 0.45 0 0.3 0 0.7% 43.3% 4.0% 

316 100 0 0 0 0.2 0.5 0 0.3 0 34.2% 34.4% 1.2% 

317 100 0 0 0 0 0 0.65 0.3 0.05 19.7% 8.9% 0.1% 

318 100 0 0 0 0 0 0.6 0.3 0.1 28.5% 13.6% 0.1% 

319 100 0 0 0 0 0 0.55 0.3 0.15 31.3% 10.8% 0.1% 

320 100 0 0 0 0 0 0.5 0.3 0.2 34.2% 11.3% 1.0% 

321 100 0 0 0 0 0 0.45 0.3 0.25 26.7% 8.4% 7.2% 

322 100 0 0 0 0 0 0.4 0.3 0.3 34.2% 8.3% 1.3% 

323 100 0 0 0 0 0 0.35 0.3 0.35 79.6% 8.0% 1.5% 

324 100 0 0 0 0 0 0.3 0.3 0.4 48.2% 8.4% 2.7% 

325 100 0 0 0 0 0 0.25 0.3 0.45 36.1% 6.8% 3.0% 

326 100 0 0 0 0 0 0.2 0.3 0.5 42.0% 4.7% 3.9% 

327 100 0 0 0 0.65 0 0 0.3 0.05 -1.3% 16.8% 13.4% 

328 100 0 0 0 0.6 0 0 0.3 0.1 0.8% 10.6% 23.7% 

329 100 0 0 0 0.55 0 0 0.3 0.15 6.4% 8.6% 18.0% 

330 100 0 0 0 0.5 0 0 0.3 0.2 10.3% 11.1% 7.7% 

331 100 0 0 0 0.45 0 0 0.3 0.25 5.0% 9.9% 1.9% 

332 100 0 0 0 0.4 0 0 0.3 0.3 21.2% 7.8% 0.5% 

333 100 0 0 0 0.35 0 0 0.3 0.35 31.6% 5.8% 2.0% 

334 100 0 0 0 0.3 0 0 0.3 0.4 2.3% 5.5% 2.0% 

335 100 0 0 0 0.25 0 0 0.3 0.45 5.9% 5.8% 3.1% 

336 100 0 0 0 0.2 0 0 0.3 0.5 17.4% 7.8% 1.8% 

337 50 0.1 0.2 0 0 0 0.5 0.2 0 55.7% 16.2% -0.1% 

338 50 0.1 0.2 0 0 0 0.55 0.15 0 38.7% 14.2% -0.5% 

339 50 0.1 0.2 0 0 0 0.6 0.1 0 50.7% 20.6% 1.6% 

340 50 0.1 0.2 0 0 0 0.65 0.05 0 48.2% 15.5% 9.5% 

341 50 0.1 0.2 0 0 0 0.7 0 0 35.4% 19.9% 4.8% 

342 50 0.1 0 0 0 0 0.5 0.4 0 72.6% 8.4% 0.0% 

343 50 0.1 0 0 0 0 0.55 0.35 0 56.5% 10.0% -0.8% 

344 50 0.1 0 0 0 0 0.6 0.3 0 52.3% 12.2% -0.4% 

345 50 0.1 0 0 0 0 0.65 0.25 0 61.2% 20.6% -0.6% 

346 50 0.1 0 0 0 0 0.7 0.2 0 30.1% 29.5% -0.6% 

347 50 0 0.3 0 0 0 0.5 0.2 0 33.4% 5.8% -0.4% 

348 50 0.05 0.25 0 0 0 0.5 0.2 0 39.1% 8.2% -2.0% 

349 50 0.1 0.2 0 0 0 0.5 0.2 0 45.3% 32.2% -2.0% 
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350 50 0.15 0.15 0 0 0 0.5 0.2 0 38.1% 27.7% -0.6% 

351 50 0.2 0.1 0 0 0 0.5 0.2 0 45.8% 18.6% 0.2% 

352 50 0.25 0.05 0 0 0 0.5 0.2 0 62.4% 13.4% -1.4% 

353 50 0.3 0 0 0 0 0.5 0.2 0 49.8% 13.6% 1.5% 

354 50 0.1 0.2 0 0 0 0 0.7 0 47.6% 7.3% -1.8% 

355 50 0.1 0.2 0 0 0 0.05 0.65 0 49.3% 8.2% -1.4% 

356 50 0.1 0.2 0 0 0 0.1 0.6 0 25.6% 9.3% -1.8% 

357 50 0.1 0.2 0 0 0 0.15 0.55 0 33.5% 15.2% -1.8% 

358 50 0.1 0.2 0 0 0 0.2 0.5 0 29.1% 24.4% -1.6% 

359 50 0.1 0.2 0 0 0 0.25 0.45 0 37.8% 28.2% -1.2% 

360 50 0.1 0.2 0 0 0 0.3 0.4 0 5.5% 21.0% -1.4% 

361 50 0.1 0.2 0 0 0 0.35 0.35 0 41.4% 13.5% -1.0% 

362 50 0.1 0.2 0 0 0 0.4 0.3 0 24.3% 28.6% -1.3% 

363 50 0.1 0.2 0 0 0 0.45 0.35 0 21.6% 25.1% -1.4% 

364 50 0.1 0.2 0 0.5 0 0 0.2 0 1.3% 18.4% 10.5% 

365 50 0.1 0.2 0 0.55 0 0 0.15 0 0.7% 7.1% -0.3% 

366 50 0.1 0.2 0 0.6 0 0 0.1 0 1.0% 6.4% -0.6% 

367 50 0.1 0.2 0 0.65 0 0 0.05 0 -0.1% 4.3% -0.3% 

368 50 0.1 0.2 0 0.7 0 0 0 0 -0.5% 2.7% 1.4% 

369 50 0.1 0 0 0.5 0 0 0.4 0 1.0% 2.8% -1.2% 

370 50 0.1 0 0 0.55 0 0 0.35 0 0.1% 10.1% -0.8% 

371 50 0.1 0 0 0.6 0 0 0.3 0 -0.2% 10.8% -0.4% 

372 50 0.1 0 0 0.65 0 0 0.25 0 -0.7% 15.0% -0.1% 

373 50 0.1 0 0 0.7 0 0 0.2 0 -0.8% 22.6% -0.5% 

374 50 0 0.3 0 0.5 0 0 0.2 0 5.2% 7.6% -1.1% 

375 50 0.05 0.25 0 0.5 0 0 0.2 0 -0.2% 8.0% 0.1% 

376 50 0.1 0.2 0 0.5 0 0 0.2 0 -0.8% 9.2% -0.1% 

377 50 0.15 0.15 0 0.5 0 0 0.2 0 -0.2% 3.5% 0.1% 

378 50 0.2 0.1 0 0.5 0 0 0.2 0 -0.7% 7.9% 2.1% 

379 50 0.25 0.05 0 0.5 0 0 0.2 0 -0.6% 8.0% 1.1% 

380 50 0.3 0 0 0.5 0 0 0.2 0 -0.3% 8.7% 1.0% 

381 50 0.1 0.2 0 0 0 0 0.7 0 25.7% 7.5% 0.7% 

382 50 0.1 0.2 0 0.05 0 0 0.65 0 29.5% 6.9% 1.3% 

383 50 0.1 0.2 0 0.1 0 0 0.6 0 13.9% 4.4% 0.4% 

384 50 0.1 0.2 0 0.15 0 0 0.55 0 -0.2% 2.1% 0.3% 

385 50 0.1 0.2 0 0.2 0 0 0.5 0 -0.8% 6.2% 0.6% 

386 50 0.1 0.2 0 0.25 0 0 0.45 0 -0.8% 11.9% 0.4% 

387 50 0.1 0.2 0 0.3 0 0 0.4 0 0.0% 9.1% 0.4% 

388 50 0.1 0.2 0 0.35 0 0 0.35 0 -0.4% 9.3% 0.6% 

389 50 0.1 0.2 0 0.4 0 0 0.3 0 0.4% 10.1% 0.3% 

390 50 0.1 0.2 0 0.45 0 0 0.25 0 0.9% 8.3% 0.2% 

391 50 0 0.2 0.1 0 0 0.5 0.2 0 70.7% 2.6% 1.6% 

392 50 0 0.2 0.1 0 0 0.55 0.15 0 93.0% 3.3% 0.9% 

393 50 0 0.2 0.1 0 0 0.6 0.1 0 72.2% 4.7% -0.8% 
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394 50 0 0.2 0.1 0 0 0.65 0.05 0 80.4% 5.5% 0.9% 

395 50 0 0.2 0.1 0 0 0.7 0 0 48.8% 6.3% -1.2% 

396 50 0 0 0.1 0 0 0.5 0.4 0 81.7% 4.3% 0.5% 

397 50 0 0 0.1 0 0 0.55 0.35 0 167.7% 3.9% 0.5% 

398 50 0 0 0.1 0 0 0.6 0.3 0 42.2% 2.7% -1.4% 

399 50 0 0 0.1 0 0 0.65 0.25 0 42.4% 4.3% -0.8% 

400 50 0 0 0.1 0 0 0.7 0.2 0 53.7% 9.8% -0.9% 

401 50 0 0.3 0 0 0 0.5 0.2 0 61.8% 10.8% 1.3% 

402 50 0 0.25 0.05 0 0 0.5 0.2 0 74.0% 13.6% -0.9% 

403 50 0 0.2 0.1 0 0 0.5 0.2 0 40.8% 13.4% -1.3% 

404 50 0 0.15 0.15 0 0 0.5 0.2 0 54.4% 12.2% 0.8% 

405 50 0 0.1 0.2 0 0 0.5 0.2 0 56.3% 10.3% -0.6% 

406 50 0 0.05 0.25 0 0 0.5 0.2 0 69.2% 4.6% 0.5% 

407 50 0 0 0.3 0 0 0.5 0.2 0 39.7% 3.9% 1.8% 

408 50 0 0.2 0.1 0 0 0 0.7 0 40.5% 10.1% -0.6% 

409 50 0 0.2 0.1 0 0 0.05 0.65 0 45.6% 14.1% -0.6% 

410 50 0 0.2 0.1 0 0 0.1 0.6 0 66.7% 15.0% -0.6% 

411 50 0 0.2 0.1 0 0 0.15 0.55 0 83.8% 15.9% 2.1% 

412 50 0 0.2 0.1 0 0 0.2 0.5 0 58.7% 16.1% -0.8% 

413 50 0 0.2 0.1 0 0 0.25 0.45 0 59.8% 14.5% -1.0% 

414 50 0 0.2 0.1 0 0 0.3 0.4 0 56.6% 5.1% -1.1% 

415 50 0 0.2 0.1 0 0 0.35 0.35 0 112.6% 4.2% 0.6% 

416 50 0 0.2 0.1 0 0 0.4 0.3 0 29.8% 11.2% -0.4% 

417 50 0 0.2 0.1 0 0 0.45 0.35 0 37.3% 12.9% -0.7% 

418 50 0 0.2 0.1 0.5 0 0 0.2 0 14.8% 19.9% -1.2% 

419 50 0 0.2 0.1 0.55 0 0 0.15 0 13.0% 21.8% -0.7% 

420 50 0 0.2 0.1 0.6 0 0 0.1 0 32.5% 21.5% -0.5% 

421 50 0 0.2 0.1 0.65 0 0 0.05 0 17.1% 17.0% -0.2% 

422 50 0 0.2 0.1 0.7 0 0 0 0 14.9% 6.6% 12.2% 

423 50 0 0 0.1 0.5 0 0 0.4 0 30.1% 3.4% -0.8% 

424 50 0 0 0.1 0.55 0 0 0.35 0 25.6% 10.7% -0.6% 

425 50 0 0 0.1 0.6 0 0 0.3 0 18.0% 13.5% -1.3% 

426 50 0 0 0.1 0.65 0 0 0.25 0 11.0% 18.9% -0.6% 

427 50 0 0 0.1 0.7 0 0 0.2 0 21.3% 20.2% 0.0% 

428 50 0 0.3 0 0.5 0 0 0.2 0 37.9% 17.0% 3.1% 

429 50 0 0.25 0.05 0.5 0 0 0.2 0 34.4% 17.0% -3.4% 

430 50 0 0.2 0.1 0.5 0 0 0.2 0 52.3% 6.3% -1.0% 

431 50 0 0.15 0.15 0.5 0 0 0.2 0 35.5% 5.6% -0.7% 

432 50 0 0.1 0.2 0.5 0 0 0.2 0 13.8% 16.7% -0.7% 

433 50 0 0.05 0.25 0.5 0 0 0.2 0 17.4% 21.9% -3.4% 

434 50 0 0 0.3 0.5 0 0 0.2 0 17.7% 22.7% -0.6% 

435 50 0 0.2 0.1 0 0 0 0.7 0 67.0% 16.9% -0.3% 

436 50 0 0.2 0.1 0.05 0 0 0.65 0 78.4% 18.4% 1.0% 

437 50 0 0.2 0.1 0.1 0 0 0.6 0 83.4% 13.1% -1.0% 
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438 50 0 0.2 0.1 0.15 0 0 0.55 0 58.9% 5.1% -0.9% 

439 50 0 0.2 0.1 0.2 0 0 0.5 0 102.0% 4.5% -0.3% 

440 50 0 0.2 0.1 0.25 0 0 0.45 0 23.6% 13.5% -1.4% 

441 50 0 0.2 0.1 0.3 0 0 0.4 0 31.2% 17.4% -1.5% 

442 50 0 0.2 0.1 0.35 0 0 0.35 0 40.5% 19.1% -1.5% 

443 50 0 0.2 0.1 0.4 0 0 0.3 0 69.0% 22.5% -1.4% 

444 50 0 0.2 0.1 0.45 0 0 0.35 0 90.6% 20.1% 1.8% 

445 50 0.05 0 0 0 0 0.65 0.3 0 0.4% 1.3% -1.6% 

446 50 0.1 0 0 0 0 0.6 0.3 0 0.6% 17.2% -1.4% 

447 50 0.15 0 0 0 0 0.55 0.3 0 0.8% 15.0% -0.3% 

448 50 0.2 0 0 0 0 0.5 0.3 0 0.6% 14.2% 0.3% 

449 50 0.25 0 0 0 0 0.45 0.3 0 0.6% 12.6% -0.1% 

450 50 0.3 0 0 0 0 0.4 0.3 0 0.5% 11.6% 0.3% 

451 50 0.35 0 0 0 0 0.35 0.3 0 0.4% 11.0% -0.1% 

452 50 0.4 0 0 0 0 0.3 0.3 0 0.5% 9.6% -0.5% 

453 50 0.45 0 0 0 0 0.25 0.3 0 0.5% 14.2% -0.7% 

454 50 0.5 0 0 0 0 0.2 0.3 0 0.9% 22.6% 0.8% 

455 50 0.05 0 0 0.65 0 0 0.3 0 0.1% 16.5% -1.5% 

456 50 0.1 0 0 0.6 0 0 0.3 0 0.5% 12.9% -1.3% 

457 50 0.15 0 0 0.55 0 0 0.3 0 0.5% 23.9% -0.9% 

458 50 0.2 0 0 0.5 0 0 0.3 0 0.5% 30.4% -0.6% 

459 50 0.25 0 0 0.45 0 0 0.3 0 0.5% 26.3% -0.8% 

460 50 0.3 0 0 0.4 0 0 0.3 0 0.6% 16.0% -1.0% 

461 50 0.35 0 0 0.35 0 0 0.3 0 0.3% 19.2% -0.7% 

462 50 0.4 0 0 0.3 0 0 0.3 0 0.5% 26.1% -0.1% 

463 50 0.45 0 0 0.25 0 0 0.3 0 0.6% 31.6% 0.1% 

464 50 0.5 0 0 0.2 0 0 0.3 0 1.4% 36.0% 0.8% 

465 50 0 0 0 0 0.05 0.65 0.3 0 0.6% 7.6% -0.7% 

466 50 0 0 0 0 0.1 0.6 0.3 0 0.7% 7.9% -0.7% 

467 50 0 0 0 0 0.15 0.55 0.3 0 0.5% 6.6% -0.2% 

468 50 0 0 0 0 0.2 0.5 0.3 0 0.3% 2.5% -0.8% 

469 50 0 0 0 0 0.25 0.45 0.3 0 0.6% 4.5% 0.1% 

470 50 0 0 0 0 0.3 0.4 0.3 0 5.9% 15.6% 4.3% 

471 50 0 0 0 0 0.35 0.35 0.3 0 7.3% 24.1% 8.9% 

472 50 0 0 0 0 0.4 0.3 0.3 0 5.6% 34.7% 12.2% 

473 50 0 0 0 0 0.45 0.25 0.3 0 4.3% 23.7% 15.4% 

474 50 0 0 0 0 0.5 0.2 0.3 0 6.7% 24.9% 16.8% 

475 50 0 0 0 0.65 0.05 0 0.3 0 0.4% 6.9% 0.8% 

476 50 0 0 0 0.6 0.1 0 0.3 0 0.5% 2.1% 2.2% 

477 50 0 0 0 0.55 0.15 0 0.3 0 0.5% 2.3% 1.8% 

478 50 0 0 0 0.5 0.2 0 0.3 0 1.0% 8.1% 6.9% 

479 50 0 0 0 0.45 0.25 0 0.3 0 0.8% 10.3% 12.2% 

480 50 0 0 0 0.4 0.3 0 0.3 0 1.2% 13.6% 11.3% 

481 50 0 0 0 0.35 0.35 0 0.3 0 14.1% 16.0% 10.8% 



 
30 

 

482 50 0 0 0 0.3 0.4 0 0.3 0 22.9% 24.4% 8.4% 

483 50 0 0 0 0.25 0.45 0 0.3 0 8.5% 22.9% 2.3% 

484 50 0 0 0 0.2 0.5 0 0.3 0 1.7% 13.3% -1.3% 

485 50 0 0 0 0 0 0.65 0.3 0.05 3.8% 1.7% -1.8% 

486 50 0 0 0 0 0 0.6 0.3 0.1 17.1% 6.2% -0.5% 

487 50 0 0 0 0 0 0.55 0.3 0.15 29.1% 18.3% 1.6% 

488 50 0 0 0 0 0 0.5 0.3 0.2 33.9% 10.7% 1.7% 

489 50 0 0 0 0 0 0.45 0.3 0.25 35.2% 10.0% 2.9% 

490 50 0 0 0 0 0 0.4 0.3 0.3 31.6% 9.6% 2.7% 

491 50 0 0 0 0 0 0.35 0.3 0.35 28.6% 4.4% 3.2% 

492 50 0 0 0 0 0 0.3 0.3 0.4 29.1% 1.4% 3.5% 

493 50 0 0 0 0 0 0.25 0.3 0.45 33.2% 1.7% 7.7% 

494 50 0 0 0 0 0 0.2 0.3 0.5 25.6% 4.3% 15.0% 

495 50 0 0 0 0.65 0 0 0.3 0.05 32.2% 8.0% 43.7% 

496 50 0 0 0 0.6 0 0 0.3 0.1 22.0% 16.0% 45.5% 

497 50 0 0 0 0.55 0 0 0.3 0.15 33.1% 11.7% 32.4% 

498 50 0 0 0 0.5 0 0 0.3 0.2 26.0% 8.4% 16.9% 

499 50 0 0 0 0.45 0 0 0.3 0.25 25.1% 5.6% 8.8% 

500 50 0 0 0 0.4 0 0 0.3 0.3 27.7% 1.8% 2.5% 

501 50 0 0 0 0.35 0 0 0.3 0.35 44.6% 1.6% 1.9% 

502 50 0 0 0 0.3 0 0 0.3 0.4 21.7% 5.1% 0.2% 

503 50 0 0 0 0.25 0 0 0.3 0.45 39.6% 6.9% 0.2% 

504 50 0 0 0 0.2 0 0 0.3 0.5 35.1% 7.2% -1.5% 
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Active Learning Polymer Iterations – Horseradish Peroxidase (HRP) 

Polymer DP DEAEMA 2-HPMA SPMA BMA DMAPMA MMA PEGMA TEAMA REA Std Dev. 

I1-1 125 0.48 0 0 0.2 0 0 0.32 0 -2% 1% 

I1-2 50 0 0.16 0.27 0.07 0 0 0.5 0 14% 2% 

I1-3 50 0 0 0.1 0 0 0.44 0.41 0.05 11% 1% 

I1-4 100 0.45 0 0 0.15 0 0.1 0.3 0 -2% 0% 

I1-5 75 0 0 0.13 0 0 0.55 0.27 0.05 15% 1% 

I1-6 50 0.14 0.05 0 0 0 0.72 0.09 0 61% 9% 

I1-7 50 0 0 0.21 0 0 0.65 0.14 0 12% 0% 

I1-8 50 0.28 0 0 0 0 0.65 0 0.07 65% 5% 

I1-9 125 0.46 0 0 0.16 0 0 0.25 0.13 -1% 0% 

I1-10 50 0.31 0 0 0.08 0 0.61 0 0 -1% 1% 

I1-11 50 0 0 0 0 0 0.39 0.52 0.09 16% 2% 

I1-12 50 0.24 0 0.13 0.07 0 0.56 0 0 48% 8% 

I1-13 125 0.43 0 0 0.1 0.13 0 0.34 0 49% 4% 

I1-14 75 0 0 0.15 0 0 0.69 0 0.16 41% 1% 

I1-15 50 0.17 0 0.15 0 0.05 0.63 0 0 52% 16% 

I1-16 125 0.39 0 0 0.09 0 0.07 0.45 0 -1% 0% 

I1-17 50 0.25 0 0 0 0.15 0.6 0 0 -1% 1% 

I1-18 125 0.35 0 0 0.08 0 0 0.38 0.19 -2% 0% 

I1-19 125 0.37 0 0.15 0 0 0 0.35 0.13 -2% 0% 

I1-20 125 0.38 0 0.24 0.09 0 0 0.29 0 56% 5% 

I1-21 75 0 0 0.11 0.26 0 0.63 0 0 13% 5% 

I1-22 50 0.2 0 0 0 0 0.54 0 0.26 59% 7% 

I1-23 50 0.11 0 0.09 0.24 0 0.56 0 0 30% 7% 

I1-24 50 0 0 0.38 0.14 0 0 0.48 0 30% 21% 

I2-1 50 0.27 0 0.06 0 0 0.59 0 0.08 46% 3% 

I2-2 75 0 0.14 0.13 0 0 0.15 0.58 0 18% 3% 

I2-3 50 0.32 0.08 0 0 0 0.6 0 0 40% 7% 

I2-4 75 0 0.33 0.09 0 0 0.39 0.19 0 36% 5% 

I2-5 50 0 0.11 0.2 0.32 0 0 0.37 0 54% 8% 

I2-6 50 0.28 0 0 0.07 0 0.59 0.06 0 46% 3% 

I2-7 50 0.25 0 0.12 0.13 0 0.5 0 0 39% 1% 

I2-8 100 0.33 0 0.33 0.12 0 0 0.22 0 32% 10% 

I2-9 75 0 0 0 0 0 0.59 0.12 0.29 55% 8% 

I2-10 50 0 0.32 0.08 0 0 0.22 0.38 0 17% 2% 

I2-11 50 0.16 0 0.11 0 0 0.57 0 0.16 49% 7% 

I2-12 75 0.54 0 0 0.29 0 0 0.17 0 45% 8% 

I2-13 50 0 0 0.24 0.31 0 0 0.45 0 29% 6% 

I2-14 125 0.39 0 0.38 0.09 0 0 0.14 0 40% 10% 

I2-15 50 0.34 0.06 0 0 0.07 0.53 0 0 46% 11% 

I2-16 125 0.32 0 0.44 0 0 0 0.24 0 43% 8% 

I2-17 100 0.58 0 0 0 0 0.31 0.11 0 48% 18% 
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I2-18 75 0 0.19 0 0 0 0.48 0.07 0.26 54% 10% 

I2-19 50 0 0.21 0 0 0 0.53 0 0.26 41% 9% 

I2-20 50 0.43 0.1 0 0 0 0.47 0 0 48% 4% 

I2-21 100 0.55 0 0.13 0.26 0 0 0.06 0 37% 10% 

I2-22 100 0.64 0 0 0.3 0.06 0 0 0 -2% 1% 

I2-23 100 0.6 0.08 0 0.32 0 0 0 0 -2% 0% 

I2-24 100 0.42 0 0.36 0.22 0 0 0 0 36% 15% 

I3-1 75 0 0.15 0.07 0 0 0.63 0 0.15 64% 7% 

I3-2 100 0.48 0 0 0.29 0 0 0.23 0 -2% 0% 

I3-3 50 0.19 0 0.1 0 0 0.59 0.12 0 52% 2% 

I3-4 50 0 0.31 0.09 0 0 0 0.6 0 36% 7% 

I3-5 100 0 0 0.07 0 0 0.62 0.15 0.16 56% 1% 

I3-6 50 0.36 0 0 0 0 0.53 0.11 0 40% 11% 

I3-7 50 0 0 0.17 0 0 0.52 0.31 0 27% 3% 

I3-8 50 0.05 0 0 0 0 0.63 0.13 0.19 -2% 0% 

I3-9 125 0.29 0 0.35 0.1 0 0 0.26 0 -1% 1% 

I3-10 75 0 0.07 0 0 0 0.44 0.16 0.33 52% 7% 

I3-11 50 0.28 0.18 0 0 0 0.44 0.1 0 42% 6% 

I3-12 75 0 0.34 0.09 0 0 0.57 0 0 55% 5% 

I3-13 50 0 0 0.16 0.17 0 0 0.67 0 44% 4% 

I3-14 50 0 0.11 0 0.11 0 0.59 0 0.19 52% 6% 

I3-15 50 0 0 0 0.11 0.06 0.65 0 0.18 32% 3% 

I3-16 125 0.53 0 0 0 0 0.3 0.17 0 -1% 1% 

I3-17 75 0.11 0 0 0 0 0.4 0.1 0.39 -2% 0% 

I3-18 50 0.23 0.16 0 0 0 0.42 0 0.19 33% 7% 

I3-19 75 0.1 0 0 0.11 0 0.39 0 0.4 -1% 1% 

I3-20 50 0 0 0.07 0.19 0 0.46 0 0.28 59% 9% 

I3-21 150 0 0.19 0 0 0 0.14 0.25 0.42 39% 7% 

I3-22 75 0 0 0.16 0 0 0.38 0 0.46 60% 8% 

I3-23 100 0.63 0 0 0 0 0.32 0.05 0 41% 6% 

I3-24 75 0 0 0 0.24 0 0.33 0.08 0.35 38% 11% 

I4-1 50 0 0.25 0.16 0 0 0.59 0 0 43% 6% 

I4-2 100 0.47 0 0 0 0 0.32 0.21 0 54% 13% 

I4-3 50 0 0.14 0.18 0.35 0 0 0.33 0 34% 5% 

I4-4 50 0.29 0.08 0 0 0 0.52 0 0.11 52% 15% 

I4-5 50 0 0.27 0.06 0 0 0.11 0.56 0 32% 4% 

I4-6 75 0 0.25 0.09 0 0 0.55 0.11 0 48% 19% 

I4-7 75 0 0.18 0 0 0 0.42 0.22 0.18 53% 14% 

I4-8 75 0 0.18 0 0.15 0 0.51 0 0.16 48% 14% 

I4-9 75 0 0.27 0 0 0 0.57 0 0.16 60% 2% 

I4-10 125 0.48 0 0.35 0 0 0 0.17 0 19% 2% 

I4-11 75 0 0.08 0 0 0 0.26 0.35 0.31 38% 5% 

I4-12 50 0 0.18 0.18 0 0 0.48 0 0.16 41% 7% 

I4-13 100 0 0 0.16 0 0 0.56 0 0.28 48% 11% 
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I4-14 100 0 0.1 0.12 0 0 0.57 0 0.21 47% 20% 

I4-15 150 0 0 0 0 0 0.22 0.33 0.45 37% 1% 

I4-16 100 0.51 0 0.32 0 0 0 0.17 0 38% 6% 

I4-17 75 0 0 0.2 0.16 0 0.43 0 0.21 48% 8% 

I4-18 50 0 0.28 0 0.2 0 0.52 0 0 21% 19% 

I4-19 75 0 0.12 0.24 0 0 0.42 0 0.22 47% 2% 

I4-20 75 0 0 0.34 0 0 0.4 0 0.26 37% 4% 

I4-21 50 0 0.16 0.28 0 0 0.36 0 0.2 41% 3% 

I4-22 50 0 0 0.33 0 0.06 0.38 0 0.23 44% 6% 

I4-23 125 0 0 0.25 0 0 0.15 0.08 0.52 69% 10% 

I4-24 100 0.49 0 0.3 0 0 0.21 0 0 41% 27% 

I5-1 75 0 0.13 0.12 0 0 0.53 0 0.22 56% 3% 

I5-2 75 0 0.18 0.09 0 0 0.55 0 0.18 50% 7% 

I5-3 50 0 0.21 0.11 0 0 0.58 0.1 0 22% 4% 

I5-4 50 0.29 0.09 0 0 0 0.54 0.08 0 47% 4% 

I5-5 75 0 0.19 0.09 0 0 0.6 0 0.12 55% 3% 

I5-6 50 0.23 0.12 0 0 0 0.56 0.09 0 34% 5% 

I5-7 75 0 0.12 0.15 0 0 0.58 0 0.15 49% 21% 

I5-8 50 0 0.22 0.11 0 0 0.52 0.15 0 17% 5% 

I5-9 75 0 0.24 0.1 0 0 0.52 0 0.14 59% 9% 

I5-10 50 0 0.17 0.12 0.08 0 0 0.63 0 16% 4% 

I5-11 75 0 0.09 0.19 0 0 0.48 0 0.24 54% 13% 

I5-12 50 0 0.15 0.15 0 0 0.56 0.14 0 52% 9% 

I5-13 50 0 0.27 0.09 0 0 0.54 0.1 0 42% 12% 

I5-14 75 0 0.19 0.1 0 0 0.49 0 0.22 57% 11% 

I5-15 75 0 0.1 0.1 0 0 0.6 0 0.2 59% 16% 

I5-16 50 0 0.2 0.09 0 0 0.08 0.63 0 10% 1% 

I5-17 50 0.16 0.14 0.11 0 0 0.59 0 0 0% 0% 

I5-18 75 0 0.14 0.13 0 0 0.47 0 0.26 71% 17% 

I5-19 50 0.23 0.08 0.09 0 0 0.6 0 0 30% 3% 

I5-20 50 0 0.17 0.13 0 0 0.5 0.2 0 54% 11% 

I5-21 75 0 0.04 0.17 0 0 0.55 0 0.24 81% 7% 

I5-22 50 0.09 0.16 0.12 0 0 0.63 0 0 -1% 0% 

I5-23 50 0.27 0 0.05 0 0 0.59 0.09 0 30% 4% 

I5-24 50 0.22 0 0.1 0 0 0.61 0.07 0 63% 6% 
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Active Learning Polymer Iterations – Glucose Oxidase (GOx) 

Polymer DP DEAEMA 2-HPMA SPMA BMA DMAPMA MMA PEGMA TEAMA REA Std Dev. 

I1-1 100 0.05 0 0 0.16 0.38 0 0.41 0 13.1% 1.2% 

I1-2 100 0.2 0 0 0 0.07 0.73 0 0 10.8% 1.7% 

I1-3 125 0 0 0 0.17 0.4 0.14 0.29 0 19.3% 5.5% 

I1-4 100 0.21 0 0 0.35 0.17 0 0.27 0 18.2% 5.0% 

I1-5 75 0.19 0 0 0 0 0.7 0.11 0 30.9% 7.4% 

I1-6 75 0 0 0 0 0.45 0.33 0.22 0 15.9% 5.6% 

I1-7 75 0.41 0 0.06 0.16 0 0 0.37 0 20.9% 6.0% 

I1-8 75 0 0 0.06 0 0.37 0.2 0.37 0 8.7% 1.1% 

I1-9 100 0 0 0 0.15 0.41 0.14 0.3 0 16.7% 0.1% 

I1-10 75 0 0 0 0 0.17 0.72 0.11 0 34.1% 1.9% 

I1-11 200 0.22 0 0 0 0 0.7 0.08 0 16.6% 1.0% 

I1-12 125 0.18 0 0 0.37 0.19 0 0.26 0 19.6% 0.8% 

I1-13 100 0.19 0 0 0 0 0.7 0.11 0 29.6% 1.6% 

I1-14 150 0 0 0 0.08 0.38 0.16 0.38 0 27.7% 4.5% 

I1-15 75 0.19 0 0 0 0.08 0.73 0 0 24.5% 0.5% 

I1-16 75 0.21 0 0 0 0 0.72 0 0.07 21.7% 1.7% 

I1-17 75 0.18 0 0 0.12 0 0.7 0 0 32.4% 1.7% 

I1-18 150 0 0 0 0.16 0.4 0.15 0.29 0 15.8% 1.6% 

I1-19 100 0 0 0 0 0.34 0.09 0.45 0.12 17.2% 2.5% 

I1-20 150 0.21 0 0 0 0 0.69 0.1 0 32.8% 1.8% 

I1-21 75 0.14 0 0 0 0.2 0.66 0 0 39.2% 3.9% 

I1-22 75 0 0 0 0.08 0.33 0.11 0.48 0 23.2% 1.6% 

I1-23 100 0.25 0 0 0.17 0.27 0 0.31 0 23.2% 2.1% 

I1-24 175 0.31 0 0 0 0 0.69 0 0 13.3% 0.9% 

I2-1 75 0.12 0 0 0 0.06 0.69 0.13 0 12.7% 1.7% 

I2-2 100 0 0.06 0 0.19 0.34 0 0.41 0 13.3% 3.9% 

I2-3 125 0.13 0 0 0 0.36 0.19 0.32 0 13.1% 3.8% 

I2-4 100 0.19 0 0 0 0 0.71 0.1 0 22.0% 2.9% 

I2-5 75 0.18 0 0 0 0.06 0.76 0 0 13.3% 3.3% 

I2-6 125 0 0 0 0.18 0.37 0 0.45 0 11.4% 4.9% 

I2-7 50 0.2 0 0 0 0 0.72 0.08 0 23.7% 4.7% 

I2-8 125 0 0 0 0 0.49 0.27 0.24 0 1.8% 0.5% 

I2-9 150 0.39 0 0 0.24 0 0 0.37 0 3.7% 0.7% 

I2-10 75 0.13 0 0 0.12 0 0.75 0 0 20.1% 1.4% 

I2-11 125 0.08 0 0 0 0.2 0.61 0.11 0 26.8% 1.7% 

I2-12 100 0.13 0 0 0.21 0 0.66 0 0 0.3% 0.2% 

I2-13 150 0 0 0 0 0.2 0.66 0.14 0 11.2% 1.0% 

I2-14 125 0.21 0 0 0 0.22 0.57 0 0 21.9% 1.0% 

I2-15 150 0.14 0 0 0 0.3 0.43 0.13 0 17.6% 1.9% 

I2-16 100 0.19 0 0 0 0 0.63 0 0.18 7.2% 0.6% 

I2-17 75 0.15 0 0 0 0 0.66 0 0.19 9.6% 1.0% 
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I2-18 125 0.25 0 0 0 0.42 0.17 0.16 0 12.7% 0.5% 

I2-19 200 0.56 0 0 0 0 0.44 0 0 2.8% 0.3% 

I2-20 100 0.29 0.32 0 0 0 0.39 0 0 23.4% 2.1% 

I2-21 150 0.53 0 0 0 0 0.4 0.07 0 2.4% 0.3% 

I2-22 50 0.46 0.3 0 0 0 0 0.24 0 20.7% 1.3% 

I2-23 75 0.1 0 0 0.31 0 0.59 0 0 -1.8% 0.2% 

I2-24 150 0.29 0.32 0 0 0 0.39 0 0 10.1% 0.6% 

I3-1 125 0.16 0 0 0 0 0.66 0.18 0 24.8% 2.2% 

I3-2 50 0.56 0.11 0 0 0 0 0.33 0 25.1% 4.6% 

I3-3 75 0 0 0 0 0.33 0.67 0 0 43.1% 8.5% 

I3-4 175 0 0 0 0.05 0.31 0.24 0.4 0 18.8% 8.7% 

I3-5 200 0 0 0 0.12 0.38 0.15 0.35 0 23.4% 9.5% 

I3-6 100 0 0 0 0 0.48 0.13 0.39 0 19.9% 5.4% 

I3-7 75 0.23 0 0 0.47 0 0 0.3 0 41.4% 8.6% 

I3-8 75 0 0 0 0.28 0.4 0.07 0.25 0 29.3% 4.2% 

I3-9 75 0.46 0 0 0.22 0 0.09 0.23 0 38.0% 1.5% 

I3-10 100 0 0 0 0.17 0.39 0.16 0.28 0 29.2% 8.0% 

I3-11 100 0.05 0 0 0 0.27 0.68 0 0 54.3% 2.5% 

I3-12 100 0 0.07 0 0.34 0.44 0 0.15 0 55.1% 3.4% 

I3-13 125 0.16 0 0 0.16 0 0.55 0.13 0 52.4% 4.2% 

I3-14 150 0 0 0 0.44 0.33 0 0.23 0 39.2% 4.2% 

I3-15 175 0 0 0 0 0.37 0.08 0.38 0.17 12.0% 2.1% 

I3-16 100 0.27 0 0 0.23 0 0.21 0.29 0 43.9% 10.0% 

I3-17 75 0 0 0 0.18 0.21 0.61 0 0 42.3% 6.1% 

I3-18 100 0.24 0.28 0 0 0 0.42 0.06 0 55.8% 6.9% 

I3-19 150 0.38 0 0 0 0 0.47 0.15 0 29.7% 11.1% 

I3-20 100 0 0 0 0.32 0.41 0 0.11 0.16 50.4% 1.5% 

I3-21 50 0.48 0 0 0 0.22 0 0.3 0 50.4% 9.0% 

I3-22 150 0.21 0.24 0 0 0 0.55 0 0 57.2% 18.2% 

I3-23 175 0 0 0.2 0.06 0.37 0 0.37 0 8.4% 2.7% 

I3-24 100 0.13 0 0 0.3 0.5 0 0.07 0 36.6% 9.0% 

I4-1 125 0.25 0.17 0 0.14 0 0.44 0 0 18.2% 2.4% 

I4-2 50 0.53 0 0 0.12 0.18 0 0.17 0 10.1% 1.8% 

I4-3 125 0 0 0 0.45 0.43 0 0.12 0 7.6% 2.5% 

I4-4 75 0.49 0 0 0.13 0.2 0 0.18 0 18.9% 8.0% 

I4-5 125 0.28 0.21 0 0 0 0.46 0.05 0 47.7% 14.1% 

I4-6 150 0.26 0.19 0 0.13 0 0.42 0 0 48.2% 11.6% 

I4-7 100 0.19 0 0 0.21 0 0.43 0.17 0 49.2% 7.0% 

I4-8 75 0.58 0 0 0 0.22 0 0.2 0 -1.2% 0.7% 

I4-9 50 0.56 0 0 0 0.16 0 0.16 0.12 -1.5% 0.3% 

I4-10 125 0 0 0 0.54 0.38 0 0.08 0 4.3% 0.2% 

I4-11 150 0.28 0.23 0 0 0 0.4 0.09 0 50.5% 8.9% 

I4-12 125 0.31 0 0 0.28 0 0.41 0 0 46.0% 2.1% 

I4-13 50 0.45 0 0 0 0.28 0 0.1 0.17 35.3% 0.5% 
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I4-14 175 0.25 0.26 0 0 0.18 0.31 0 0 56.9% 5.9% 

I4-15 50 0.61 0 0 0.14 0.19 0 0.06 0 12.5% 1.2% 

I4-16 175 0.21 0.18 0 0.23 0 0.38 0 0 63.4% 1.9% 

I4-17 75 0.53 0 0 0.12 0.21 0.14 0 0 3.2% 0.4% 

I4-18 75 0.53 0 0.15 0.06 0.26 0 0 0 3.6% 0.1% 

I4-19 75 0.57 0 0 0 0.24 0 0 0.19 6.3% 0.3% 

I4-20 150 0.48 0.06 0 0.15 0 0.31 0 0 40.3% 0.5% 

I4-21 75 0.64 0 0 0.13 0.23 0 0 0 26.2% 0.8% 

I4-22 50 0.76 0 0 0.07 0.17 0 0 0 18.3% 0.8% 

I4-23 50 0.58 0 0 0 0.17 0 0 0.25 9.0% 1.6% 

I4-24 75 0.53 0 0 0 0.19 0 0 0.28 -0.5% 0.9% 

I5-1 100 0 0 0 0.3 0.48 0 0.15 0.07 29.5% 7.9% 

I5-2 100 0 0 0.03 0.31 0.45 0 0.21 0 39.3% 9.8% 

I5-3 100 0.16 0.14 0 0 0 0.49 0.21 0 36.5% 5.4% 

I5-4 50 0.45 0 0 0.06 0.2 0 0.29 0 30.9% 7.2% 

I5-5 100 0 0 0 0.31 0.42 0 0.15 0.12 51.8% 7.3% 

I5-6 100 0.14 0.17 0 0 0 0.54 0.15 0 44.7% 13.3% 

I5-7 100 0.09 0 0 0.29 0.4 0 0.22 0 41.5% 14.5% 

I5-8 100 0.06 0 0 0.24 0.49 0 0.21 0 32.5% 11.0% 

I5-9 125 0.21 0.18 0 0 0 0.51 0.1 0 29.1% 5.0% 

I5-10 100 0.15 0.21 0 0 0 0.49 0.15 0 56.6% 16.0% 

I5-11 100 0.12 0.12 0 0 0 0.54 0.22 0 42.5% 11.0% 

I5-12 100 0 0 0 0.29 0.45 0 0.1 0.16 52.0% 5.0% 

I5-13 100 0 0 0 0.26 0.46 0 0.22 0.06 43.7% 4.7% 

I5-14 100 0 0.1 0 0.3 0.45 0 0.15 0 55.6% 6.8% 

I5-15 100 0 0.05 0 0.36 0.44 0 0.15 0 48.3% 2.7% 

I5-16 100 0.18 0.18 0 0 0 0.44 0.2 0 36.1% 4.1% 

I5-17 100 0.12 0.1 0 0 0 0.62 0.16 0 29.2% 6.8% 

I5-18 100 0.2 0.21 0 0 0 0.5 0.09 0 50.3% 9.4% 

I5-19 100 0.2 0 0 0.5 0 0 0.3 0 30.7% 4.1% 

I5-20 100 0 0 0.05 0.34 0.39 0 0.22 0 67.4% 6.3% 

I5-21 50 0.45 0 0 0 0.25 0 0.3 0 40.2% 2.8% 

I5-22 50 0.39 0 0 0.09 0.22 0 0.3 0 51.0% 4.3% 

I5-23 100 0.3 0 0 0.24 0 0.16 0.3 0 41.3% 6.7% 

I5-24 100 0.24 0.12 0 0 0 0.44 0.2 0 30.0% 7.6% 
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Active Learning Polymer Iterations – Lipase (Lip) 

Polymer DP DEAEMA 2-HPMA SPMA BMA DMAPMA MMA PEGMA TEAMA REA Std Dev. 

I1-1 100 0 0 0 0.7 0 0 0.15 0.15 15.1% 0.8% 

I1-2 200 0 0 0 0.66 0 0 0.18 0.16 21.4% 7.1% 

I1-3 75 0 0 0 0.67 0 0 0.17 0.16 39.0% 4.2% 

I1-4 200 0 0.15 0 0.85 0 0 0 0 64.7% 10.1% 

I1-5 200 0 0.44 0 0 0 0.56 0 0 -2.1% 0.6% 

I1-6 175 0 0.4 0 0 0 0.6 0 0 -2.8% 0.4% 

I1-7 200 0 0.12 0 0.82 0 0 0 0.06 6.5% 2.2% 

I1-8 50 0 0 0 0.63 0 0 0.19 0.18 23.9% 2.9% 

I1-9 175 0 0 0 0.67 0 0 0.17 0.16 23.0% 1.9% 

I1-10 125 0 0 0.19 0 0 0.14 0.67 0 -3.2% 1.3% 

I1-11 100 0 0 0.45 0 0 0.36 0.19 0 2.5% 1.5% 

I1-12 125 0 0 0.45 0 0 0.37 0.18 0 26.0% 2.4% 

I1-13 175 0 0.11 0 0.66 0 0 0 0.23 21.4% 5.9% 

I1-14 175 0 0.06 0 0.78 0 0 0 0.16 33.8% 24.7% 

I1-15 200 0 0 0 0.69 0 0 0.06 0.25 22.5% 2.9% 

I1-16 150 0 0 0.43 0 0 0.31 0.26 0 -3.7% 0.5% 

I1-17 200 0 0 0 0.77 0 0 0 0.23 36.7% 3.5% 

I1-18 125 0 0 0.52 0 0.06 0.42 0 0 6.9% 2.4% 

I1-19 125 0 0.07 0.42 0 0 0.21 0.3 0 64.5% 11.5% 

I1-20 150 0 0 0.41 0 0 0.23 0.36 0 48.7% 9.0% 

I1-21 150 0 0.07 0.39 0 0 0.2 0.34 0 65.9% 14.7% 

I1-22 150 0 0 0 0.73 0 0 0.07 0.2 17.2% 0.5% 

I1-23 150 0 0 0.36 0 0 0.21 0.35 0.08 -1.2% 0.8% 

I1-24 125 0 0 0.39 0 0 0.15 0.34 0.12 21.4% 15.4% 

I2-1 75 0 0 0 0.62 0 0 0.24 0.14 29.0% 3.4% 

I2-2 200 0.18 0.3 0 0.52 0 0 0 0 5.2% 0.8% 

I2-3 200 0.07 0.1 0 0.83 0 0 0 0 19.7% 2.9% 

I2-4 200 0 0.12 0 0.77 0 0 0 0.11 18.5% 1.7% 

I2-5 200 0 0.1 0.05 0.85 0 0 0 0 30.1% 0.3% 

I2-6 200 0 0.39 0 0 0 0.61 0 0 -0.3% 0.2% 

I2-7 150 0 0.12 0.27 0 0 0.23 0.38 0 1.9% 1.0% 

I2-8 100 0 0 0 0.67 0 0 0.18 0.15 24.1% 0.2% 

I2-9 150 0 0 0.46 0 0 0.13 0.41 0 29.4% 2.4% 

I2-10 175 0 0.13 0 0.78 0 0 0 0.09 12.4% 7.7% 

I2-11 175 0 0.15 0.05 0.8 0 0 0 0 22.5% 1.9% 

I2-12 125 0 0.09 0.39 0 0 0.14 0.38 0 35.8% 2.1% 

I2-13 150 0 0.12 0.39 0 0 0.12 0.37 0 33.6% 2.5% 

I2-14 100 0 0.12 0.35 0 0 0.16 0.37 0 36.7% 3.0% 

I2-15 125 0 0 0.39 0.09 0 0.13 0.39 0 8.0% 0.6% 

I2-16 125 0 0.12 0.49 0 0 0.05 0.34 0 28.3% 2.4% 

I2-17 125 0 0 0.49 0.06 0 0.06 0.39 0 23.6% 2.1% 
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I2-18 150 0 0.12 0.27 0 0 0.16 0.45 0 33.7% 3.6% 

I2-19 150 0 0.06 0.5 0 0 0.06 0.38 0 55.2% 5.2% 

I2-20 175 0 0.06 0.47 0 0.06 0 0.41 0 49.7% 4.1% 

I2-21 175 0 0.12 0 0.88 0 0 0 0 40.4% 5.9% 

I2-22 150 0 0.23 0.33 0 0 0 0.44 0 38.3% 1.3% 

I2-23 125 0 0.24 0.35 0 0 0 0.41 0 42.2% 0.9% 

I2-24 150 0 0.05 0.59 0 0 0 0.36 0 19.1% 1.0% 

I3-1 200 0 0 0 0.61 0 0 0.23 0.16 13.1% 1.4% 

I3-2 125 0 0.13 0.39 0 0 0.17 0.31 0 26.8% 3.9% 

I3-3 200 0.21 0.26 0 0.53 0 0 0 0 1.7% 1.4% 

I3-4 75 0 0 0 0.61 0 0 0.24 0.15 36.6% 3.6% 

I3-5 175 0 0.12 0 0.77 0 0 0 0.11 29.4% 2.0% 

I3-6 125 0 0.26 0.26 0 0 0 0.48 0 11.2% 3.0% 

I3-7 150 0 0.11 0.42 0 0 0.06 0.41 0 34.8% 6.7% 

I3-8 200 0 0.14 0 0.86 0 0 0 0 46.3% 7.0% 

I3-9 175 0 0.12 0.41 0 0 0.06 0.41 0 56.4% 4.4% 

I3-10 125 0 0.22 0.39 0 0 0.2 0.19 0 42.9% 1.1% 

I3-11 175 0 0.11 0.31 0 0.09 0 0.49 0 71.1% 7.1% 

I3-12 200 0 0.12 0.35 0 0 0.09 0.44 0 28.6% 0.8% 

I3-13 100 0 0.23 0.2 0 0 0 0.39 0.18 15.7% 1.6% 

I3-14 150 0.21 0.05 0.4 0 0 0 0.34 0 9.5% 1.1% 

I3-15 200 0 0 0 0.92 0 0 0 0.08 36.1% 3.2% 

I3-16 200 0 0.22 0.34 0 0 0.12 0.32 0 31.6% 2.6% 

I3-17 175 0 0.47 0 0 0 0.53 0 0 0.7% 0.3% 

I3-18 200 0 0.2 0.26 0 0.17 0 0.37 0 81.0% 1.5% 

I3-19 150 0 0.13 0.28 0 0.27 0 0.32 0 79.8% 3.5% 

I3-20 125 0.27 0.13 0.33 0 0 0 0.27 0 -1.9% 0.8% 

I3-21 200 0 0.51 0.12 0 0 0.37 0 0 -2.1% 0.2% 

I3-22 100 0 0.36 0.32 0 0 0.18 0.14 0 56.3% 1.6% 

I3-23 125 0 0.19 0.22 0 0.28 0 0.31 0 93.9% 5.4% 

I3-24 200 0 0 0.28 0.19 0.22 0 0.31 0 -0.8% 0.5% 

I4-1 175 0 0.2 0.29 0 0.15 0 0.36 0 76.9% 4.2% 

I4-2 100 0 0.3 0.27 0 0 0.15 0.28 0 36.2% 1.6% 

I4-3 150 0 0 0.36 0 0.17 0.07 0.4 0 69.5% 6.1% 

I4-4 100 0 0.22 0.29 0 0.18 0 0.31 0 56.9% 6.8% 

I4-5 125 0 0.08 0.3 0 0.3 0 0.32 0 57.6% 6.9% 

I4-6 150 0 0.23 0.29 0 0.17 0 0.31 0 68.9% 4.3% 

I4-7 125 0 0.21 0.29 0 0.19 0 0.31 0 60.6% 3.6% 

I4-8 125 0 0.19 0.38 0 0.23 0 0.2 0 66.3% 1.0% 

I4-9 125 0 0.3 0.31 0 0.15 0 0.24 0 70.5% 10.5% 

I4-10 175 0 0.31 0.19 0 0.19 0 0.31 0 67.7% 3.3% 

I4-11 125 0 0 0.39 0 0.24 0.08 0.29 0 62.0% 3.3% 

I4-12 175 0 0.07 0 0.93 0 0 0 0 52.3% 5.3% 

I4-13 150 0 0.33 0.18 0 0.21 0 0.28 0 68.9% 2.7% 
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I4-14 175 0 0.32 0.17 0 0.29 0 0.22 0 74.8% 5.5% 

I4-15 100 0 0.1 0.38 0 0.27 0 0.25 0 65.4% 2.1% 

I4-16 125 0 0 0.18 0 0.28 0 0.34 0.2 76.4% 4.8% 

I4-17 100 0 0.29 0.35 0 0.23 0 0.13 0 66.3% 6.7% 

I4-18 100 0 0 0.36 0 0.29 0 0.27 0.08 57.4% 9.9% 

I4-19 150 0 0.4 0.21 0 0.16 0 0.23 0 62.0% 2.3% 

I4-20 125 0 0.34 0.34 0 0.27 0 0.06 0 59.4% 0.3% 

I4-21 175 0 0.33 0.31 0 0.26 0 0.1 0 72.0% 4.1% 

I4-22 125 0 0.28 0.33 0 0.29 0.1 0 0 66.4% 11.3% 

I4-23 125 0 0.29 0.34 0 0.26 0 0 0.11 70.0% 7.8% 

I4-24 125 0 0.3 0.33 0.12 0.25 0 0 0 36.8% 11.0% 

I5-1 150 0 0.3 0.25 0 0.25 0 0.2 0 88.7% 21.8% 

I5-2 150 0 0.27 0.25 0 0.22 0 0.26 0 90.5% 17.1% 

I5-3 125 0 0.24 0.28 0 0.26 0 0.22 0 99.3% 13.4% 

I5-4 125 0 0.19 0.28 0 0.26 0 0.27 0 67.9% 43.5% 

I5-5 150 0 0.35 0.26 0 0.24 0 0.15 0 101% 18.7% 

I5-6 125 0 0.27 0.32 0 0.26 0 0.15 0 88.2% 18.1% 

I5-7 175 0 0.22 0.28 0 0.18 0 0.32 0 83.5% 18.6% 

I5-8 175 0 0.19 0.29 0 0.14 0 0.38 0 91.1% 6.6% 

I5-9 150 0 0.31 0.3 0 0.18 0 0.21 0 99.0% 7.2% 

I5-10 175 0 0.14 0.31 0 0.12 0 0.43 0 74.6% 4.6% 

I5-11 125 0 0.13 0.27 0 0.28 0 0.32 0 99.0% 7.4% 

I5-12 150 0 0.29 0.26 0 0.32 0 0.13 0 82.8% 7.5% 

I5-13 125 0 0.21 0.23 0 0.25 0 0.31 0 61.5% 6.6% 

I5-14 150 0 0.15 0.32 0 0.21 0 0.32 0 59.7% 0.8% 

I5-15 125 0 0 0.27 0 0.28 0 0.33 0.12 91.1% 18.7% 

I5-16 175 0 0.11 0.37 0 0.12 0 0.4 0 79.0% 19.9% 

I5-17 175 0 0.26 0.27 0 0.12 0 0.35 0 57.1% 10.8% 

I5-18 150 0 0.12 0.27 0 0.23 0 0.38 0 87.2% 8.0% 

I5-19 125 0 0.12 0.32 0 0.31 0 0.25 0 108% 9.4% 

I5-20 125 0 0.23 0.33 0 0.31 0 0.13 0 93.7% 9.9% 

I5-21 175 0 0.18 0.32 0 0.07 0 0.43 0 41.9% 3.5% 

I5-22 150 0 0.1 0.35 0 0.19 0 0.35 0 83.4% 12.8% 

I5-23 150 0 0.31 0.31 0 0.3 0 0.08 0 79.0% 2.4% 

I5-24 125 0 0 0.22 0 0.28 0 0.33 0.17 105% 6.6% 
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