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Supplementary materials and
methods

Image augmentations used during training
During the training process, additional image augmentations were ap-
plied (including rotations, reflections, Gaussian blur, contrast variation,
horizontal and vertical translations jitter), and random compression or
jpeg noise were included as described in Zheng et al. (2016). In addi-
tion, new methods were used for augmentations including color rota-
tion (random swapping of bias among red, green and blue channels of
images during training), border additions (random addition of image
borders so the artificial intelligence (AI) learns to ignore those features
in incorrectly cropped images), resolution (randomly selected resolu-
tions for each batch, so that the training is robust to the input resolu-
tion of the image) and coarse drop-out (introduction of random image
artifacts, such as limited-sized regions of black pixels so that the train-
ing is robust to image noise artifacts).

Details regarding the model training and
selection process
The first step in the model selection process involved applying the
untrainable data cleansing (UDC) method (Dakka et al., 2021) and
cleansed training datasets were obtained for a range of UDC thresh-
olds and three segmentation styles: no segmentation, zona segmenta-
tion and intra-zonal cavity (IZC) segmentation. IZC segmentation
indicates that the training dataset was curated through model configu-
rations that require input images that masked the zona pellucida and
background region of the image (as black), exposing the IZC and inner
cell mass regions. Zona segmentation indicates that model configura-
tions require inputs of images masking the IZC region. Zona segmen-
tation models were considered during the model selection process,
but the final model described below did not include any zona models.
The UDC method represents a unique contribution which is not typi-
cally employed in AI training, and the computer-vision preprocessing
methods to isolate the IZC and zona regions of the embryo image
prior to deep learning were developed in VerMilyea et al. (2020).

The neural network architectures considered during training repre-
sent standard architectures and were updated only to include a binary
classifier layer and softmax layer. A range of architectures was consid-
ered, with the final chosen solely on performance on the holdback
validation dataset. Hyperparameters were also chosen with a diverse
range of options and further refined during training to optimize
each value.

To measure the performance of the trained models to guide selec-
tion, a holdback validation dataset was chosen from the union of the
source images among the candidate training datasets (n¼ 300), which
was kept identical for all model configurations and segmentation styles,
to act as a benchmark for comparison. The shared holdback validation
dataset was used to select teacher models for distillation, then candi-
date models for inclusion in an ensemble model, and finally for

selecting the final ensemble model. While distillation has been previ-
ously described in the field of machine learning (Hinton et al., 2014),
the number of models chosen to distill together is treated as an addi-
tional hyperparameter to optimize during training. In this study, it was
found that between 1 and 3 models were optimal.

The deep learning optimization specifications were the same as
those described in VerMilyea et al. (2020). In brief, each deep neural
network used weight parameters obtained from pretraining on
ImageNet, with the final classifier layer replaced with a binary classifier
corresponding to aneuploid and euploid classification. Training of AI
models was conducting using PyTorch library (version 1.3.1 including
Torchvision version 0.4.2; Adam Paszke, Sam Gross, Soumith Chintala
and Gregory Chanan; 1601 Willow Rd, Menlo Park, CA 94025, USA),
with CUDA support (version 9; Nvidia Corporation; 2788 San Tomas
Expy, Santa Clara, CA 95051, USA). The optimizations considered are
standard in the industry, with novel methods applied in preparation of
the training dataset, including UDC and removal of mosaic embryos
prior to training to reduce label noise in the dataset.

The following methods were used to evaluate constituent models
to select the final ensemble model:

• Confidence metrics for translatability: Multiple confidence metrics

were defined, which were considered more robust indicators of

translatability (ability of the model to generalize to unseen data)

than accuracy measures. The two confidence metrics used in the fi-
nal model selection were log loss and tangent score.

• Model stabilization: The stability of the selection metric value on the

validation dataset was measured over all epochs of the training

process.

• Prediction accuracy: Which models provided the best validation ac-

curacy, for both classes individually: euploid and aneuploid labeled

embryos, the total combined accuracy and the balanced accuracy

(defined as the weighted average accuracy across both class types

of embryos) was recorded, and the result of accuracy metrics on
the test dataset were used to determine if the final model selected

had translated well. AUC/receiver-operating characteristic and

AUC/precision-recall curves were also evaluated. In all cases, use

of ImageNet pretrained weights demonstrated improved perfor-

mance of these quantities.

The process of selecting models on a validation dataset prior to
reporting on a test dataset is standard practice, but the reliance on a
confidence-based metric rather than an accuracy-based metric, and
the use of tangent score as a selection metric for classes that include a
greater degree of noise, were novel contributions in this study.

The first round of training identified a set of potential teacher mod-
els, which were selected on the aforementioned set based on the
metric tangent score. One to three teachers were selected for both
segmentation styles, and a second round of models was trained. Both
student and teacher models were considered (from both training
rounds) as candidates for ensembling. Ensembling was performed as
described in Maclin and Opitz (2011), with voting strategies evaluated
including mean, median, max and majority-mean voting. The use of an
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ensemble method is standard practice in machine learning, with the
choice of voting strategies employed treated as hyperparameters and
only optimized on the validation dataset.

Methods to address overfitting
Training and selection of constituent models making up the final en-
semble AI model were performed primarily using two confidence
score metrics, log loss and tangent score. These were prioritized over
traditional accuracy metrics to select models that would be more likely
to generalize well to unseen datasets. The dependence of log loss on
the confidence score assigned to an image during training is highest for
confidently misclassified images. The dependence of tangent score on
the confidence score for an image is equally high for confidently mis-
classified and correctly classified images. As a result, the two confi-
dence metrics are highly complementary when dealing with levels of
noise distributed unequally among the classes, which in this case are
euploid and aneuploid embryos, as both of these metrics take into ac-
count the distribution of the AI scores (i.e. to what extent they have
correctly or incorrectly classified an embryo). This differs from the use
of accuracy as a selection metric, where a poorly performing model
can overfit by chance, with a score distribution akin to a lop-sided
Gaussian, where only a slight change in scores and distribution can sig-
nificantly change the accuracy. Instead, the clusters of scores are well-
separated when optimizing on confidence score metrics, leading to
more robust model selection for translatability.

Overfitting of the genetics AI algorithm in the current study was
tested for by comparing the performance of the final ensemble model
to that of the individual constituent AI models making up the final
model. It was found that the three constituent models had overall

accuracies of 65.4%, 62.5% and 65.5% on the uncleansed Day 5 blind
test dataset, similar to that of the final ensemble model (65.3%). The
log loss values, representing one of the primary metrics used to select
constituent models, were 0.78, 0.80 and 0.84 for the constituent mod-
els, compared to the superior value of 0.75 for the final AI model.
These performance values demonstrate that the ensemble has not
been overfitted to the validation dataset during training.
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