Structure, Volume 30

# **Supplemental Information**

# Structural insights into the binding

## of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike

## receptor-binding domain to horse ACE2

Jun Lan, Peng Chen, Weiming Liu, Wenlin Ren, Linqi Zhang, Qiang Ding, Qi Zhang, Xinquan Wang, and Jiwan Ge

## Structural insights into the binding of SARS-CoV-2, SARS-CoV and hCoV-NL63 spike receptor-binding domain to horse ACE2

Jun Lan<sup>1,#</sup>, Peng Chen<sup>2,#</sup>, Weiming Liu<sup>5,#</sup>, Wenlin Ren<sup>3</sup>, Linqi Zhang<sup>2</sup>, Qiang Ding<sup>3</sup>, Qi Zhang<sup>2</sup>, <sup>\*</sup>, Xinquan Wang<sup>1, \*</sup>, Jiwan Ge<sup>1, 4, 6, \*</sup>

<sup>1</sup>The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China <sup>2</sup>Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine and Vanke School of Public Health, Tsinghua University, Beijing, China

<sup>3</sup>Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.

<sup>4</sup>Tsinghua-Peking Center for Life Sciences, Beijing, China

<sup>5</sup>Department of Critical Care Medicine, Beijing Boai Hospital, China Rehabilitation Research Centre; No 10. Jiaomen Beilu, Fengtai District, Beijing, 100068, China

<sup>6</sup>Lead contact

<sup>#</sup>Equal contribution

<sup>#</sup>Correspondence: <u>zhangqi2013@mails.tsinghua.edu.cn (</u>Q.Z.)

xinquanwang@mail.tsinghua.edu.cn (X.W.) gejw@mail.tsinghua.edu.cn (J.G.)

|                                          | SARS-COV-2 RBD/eACE2   | SARS-COV RBD/EACE2                             | nCOV-NL63 RBD/eACE2     |  |  |  |
|------------------------------------------|------------------------|------------------------------------------------|-------------------------|--|--|--|
| Data Collection                          |                        |                                                |                         |  |  |  |
| Resolution range (Å)                     | 50-2.895(2.998-2.895)  | 50-2.655(2.75-2.655)                           | 50-3.193(3.307-3.193)   |  |  |  |
| Space group                              | I 4 <sub>1</sub> 2 2   | P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | P 6 <sub>1</sub> 2 2    |  |  |  |
| Unit cell dimensions                     |                        |                                                |                         |  |  |  |
| a, b, c (Å)                              | 196.173,196.173,144.36 | 57.963,126.314,171.637                         | 112.905,112.905,328.924 |  |  |  |
| α, β, γ (°)                              | 90,90,90               | 90,90,90                                       | 90,90,120               |  |  |  |
| Unique reflections                       | 30247(2521)            | 37045(3573)                                    | 21422(2019)             |  |  |  |
| Completeness (%)                         | 95.46(81.06)           | 99.30(97.51)                                   | 98.76(97.25)            |  |  |  |
| l/sigma                                  | 10.1(1.6)              | 16.8(1.5)                                      | 15.6(3.6)               |  |  |  |
| redundancy                               | 16.9(14.7)             | 8.9(7.6)                                       | 27.4(25.9)              |  |  |  |
| rmerge                                   | 0.302(1.162)           | 0.147(1.333)                                   | 0.459(2.127)            |  |  |  |
| Rpim                                     | 0.071(0.272)           | 0.049(0.464)                                   | 0.083(0.383)            |  |  |  |
| CC1/2                                    | 0.986(0.807)           | 0.994(0.706)                                   | 0.978(0.869)            |  |  |  |
| Wilson B-factor (Å <sup>2</sup> )        | 47.67                  | 58.56                                          | 64.08                   |  |  |  |
| Structure refinement                     |                        |                                                |                         |  |  |  |
| Resolution                               | 46.73-2.895            | 17.95-2.655                                    | 33.71-3.193             |  |  |  |
| R <sub>work</sub> /R <sub>free</sub> (%) | 0.2450/0.2656          | 0.2318/0.2546                                  | 0.2591/0.2800           |  |  |  |
| No.atoms                                 |                        |                                                |                         |  |  |  |
| Protein                                  | 6404                   | 6392                                           | 5876                    |  |  |  |
| Ligands                                  | 70                     | 57                                             | 77                      |  |  |  |
| Protein residues                         | 795                    | 790                                            | 732                     |  |  |  |
| B-factors (Å <sup>2</sup> )              |                        |                                                |                         |  |  |  |
| Protein                                  | 51.74                  | 61.78                                          | 62.02                   |  |  |  |
| Ligands                                  | 59.02                  | 49.18                                          | 98.12                   |  |  |  |
| RMSD                                     |                        |                                                |                         |  |  |  |
| Bonds length (Å)                         | 0.012                  | 0.011                                          | 0.013                   |  |  |  |
| Bonds angles (°)                         | 1.59                   | 1.37                                           | 1.93                    |  |  |  |
| Ramachandran plot                        |                        |                                                |                         |  |  |  |
| Favored (%)                              | 94.66                  | 95.16                                          | 95.01                   |  |  |  |
| Allowed (%)                              | 5.08                   | 4.59                                           | 4.85                    |  |  |  |
| Outliers (%)                             | Outliers (%) 0.25      |                                                | 0.14                    |  |  |  |

# Supplementary Table 1 Data collection and refinement statistics, related to Figure 2.



Supplementary Figure 1 Structural alignment of horse ACE2/RBDs with human ACE2/RBDs, related to Figure 3. Alignment was performed according to each RBD. (A) eACE2/SARS-CoV-2 RBD vs. hACE2/SARS-CoV-2 RBD. (B) eACE2/SARS-CoV RBD vs. hACE2/SARS-CoV RBD. (C) eACE2/hCoV-NL63 RBD vs. hACE2/hCoV-NL63 RBD. The arrow points to the difference in the N terminal helix. Left: alignment according to RBD; right: alignment according to ACE2.

Supplementary Table 2 Contact residues at the binding interfaces of RBDs and ACE2 orthologs (a distance cut-off 4 Å), related to Figure 3.

| Human | SARS-CoV-2  | SARS-CoV    | hCoV-NL63   | Horse | SARS-CoV-2  | SARS-CoV    | hCoV-NL63   |
|-------|-------------|-------------|-------------|-------|-------------|-------------|-------------|
| ACE2  |             |             |             | ACE2  |             |             |             |
| Q24   | A475, N487  | N473        |             | L24   | A475, G476, | P462, N473  |             |
|       |             |             |             |       | N487        |             |             |
| T27   | F456, A475, | L443, Y475  |             | T27   | F456, Y489  | L443, P462, |             |
|       | Y489        |             |             |       |             | Y475        |             |
| F28   | Y489        | Y475        |             | F28   | Y489        | Y475        |             |
| D30   | K417, F456  |             | S496        | E30   | K417, F456  | Y442, L443  |             |
| K31   | Y489, Q493  | Y442, Y475  |             | K31   | L455, F456, | Y442, Y475  |             |
|       |             |             |             |       | Q493        |             |             |
| N33   |             |             | S496        | N33   |             |             |             |
| H34   | Y453, L455, | Y440, N479  | G494, G495, | S34   | Y453, L455, | N479        |             |
|       | Q493        |             | S496, H503  |       | Q493        |             |             |
| E35   | Q493        |             |             | E35   | Q493        |             |             |
| E37   | Y505        | Y491        | C497, Y498  | E37   | Y505        | Y491        | G495, S496  |
| D38   | Y449        | Y436        |             | E38   | Y449, G496, | Y436, G482  |             |
|       |             |             |             |       | Q498        |             |             |
| Y41   | Q498, T500, | Y484, T486, | G534, S535, | H41   | N501        | Y484        | G534, S535  |
|       | N501        | T487        | P536        |       |             |             |             |
| Q42   | G446, Y449, | Y436, Y484  |             | Q42   | G446, Y449, | Y436, Y484  |             |
|       | Q498        |             |             |       | Q498        |             |             |
| L45   |             | Y484, T486  |             | L45   | Q498        | Y484        |             |
| L79   | F486        | L472        |             | L79   |             |             |             |
| M82   | F486        | L472        |             | T82   | F486        |             |             |
| Y83   | F486, N487, | N473, Y475  |             | Y83   | F486, N487, | N473, Y475  |             |
|       | Y489        |             |             |       | Y489        |             |             |
| P321  |             |             | H586        | P321  |             |             |             |
| N322  |             |             | H586        | N322  |             |             | H586        |
| M323  |             |             |             | M323  |             |             | H586        |
| T324  |             |             | S540, H586  | T324  |             |             | S540, W585, |
|       |             |             |             |       |             |             | H586        |
| Q325  |             | R426, I489  | P536, S540  | Q325  |             |             | S539        |
| G326  |             |             | P536        | G326  |             |             | P536        |
| E329  |             | R426        |             | E329  |             |             |             |
| N330  | T500        | T486        | P536        | N330  | T500        | T486        | P536        |
| K353  | G496, N501, | G482, T487, | Y498, S535, | K353  | G496, Q498, | G482, Y484, | Y498, S535, |
|       | G502, Y505  | G488, Y491  | G537        |       | N501, G502, | T487, G488, | G537        |
|       |             |             |             |       | Y505        | Y491        |             |
| G354  | G502, Y505  | G488, Y491  | Y498, S535, | G354  | G502        | G488, Y491  | G537, W585  |
|       |             |             | G537        |       |             |             |             |
| D355  | T500        | T486, G488  | P536        | D355  | T500        | T486        | P536        |

| F356 |      |      | W585 | F356 |      |      | W585 |
|------|------|------|------|------|------|------|------|
| R357 | T500 | T486 |      | R357 | T500 | T486 | P536 |
| A386 |      |      |      | A386 |      |      | C497 |
| A387 |      |      | C500 | V387 |      |      | C497 |
| R393 | Y505 |      | C497 | R393 | Y505 |      | S496 |



**Supplementary Figure 2 Sequence alignment of ACE2 orthologs, related to Figure 2.** (A) Horse, human and donkey ACE2 orthologs were aligned and the predicted binding regions of ACE2 recognized by the RBDs of the three ACE2-dependent coronaviruses were highlighted with different colors. Residues in cyan and magenta were predicted to bind to SARS-CoV and SARS-CoV-2; residues in cyan and green were predicted to bind to hCoV-NL63. The signal peptide was shown in grey, while the transmembrane and cytoplasmic domains were colored in palm green. (**B**) The deletion in donkey ACE2 is labeled.

Supplementary Table 3 Summary of SARS-CoV-2 variants, related to Figure 4.

| wно     | wно        | Pango     | Earliest                     | Mutations                                                         |                                                                                                   |                                                                       |  |
|---------|------------|-----------|------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| label   | definition | lineages  | samples                      | NTD                                                               | RBD                                                                                               | others                                                                |  |
| Alpha   | VOC        | B.1.1.7   | United Kingdom               | 69-70del, Y144del                                                 | N501Y                                                                                             | A570D, D614G, P681H, T716I, S982A, D1118H                             |  |
| Beta    | VOC        | B.1.351   | South Africa                 | D80A, D215G, 242-244del                                           | K417N, E484K, N501Y                                                                               | D614G, A701V                                                          |  |
| Gamma   | VOC        | P.1       | Brazil                       | L18F, T20N, P26S, D138Y, R190S                                    | K417T, E484K, N501Y                                                                               | D614G, H655Y, T1027I, V1176F                                          |  |
| Delta   | VOC        | B.1.617.2 | India                        | T19R, G142D, 156-157del,<br>R158G, A222V                          | L452R, T478K                                                                                      | D614G, P681R, D950N                                                   |  |
| Omicron | voc        | B.1.1.529 | South Africa and<br>Botswana | A67V,<br>69/70del,T95I,DEL142/144,Y145D,<br>Δ211/L212I, ins214EPE | G339D,S371L,S373P,S375F,K417N,N440K,<br>G446S,S477N,T478K,E484A,Q493R,G496S,<br>Q498R,N501Y,Y505H | T547K,G614D,H655Y,N679K,P681H,N764K,D769Y,<br>N856K,Q954H,N969K,L981F |  |
| Карра   | VOI        | B.1.617.1 | India                        | T95I, G142D, E154L                                                | L452R, E484Q                                                                                      | D614G, P681R, N1071H                                                  |  |
| n/a     | VOI        | A23.1     | Uganda/Liverpool             | F157L                                                             | V367F                                                                                             | Q613H, P681R                                                          |  |
| Eta     | VOI        | B.1.525   | Nigeria (Multiple countries) | Q52R, A67V, 69-70del, Y144del                                     | E484K                                                                                             | D614G, Q677H, F888L                                                   |  |
| Epsilon | VOI        | B.1.429   | US, CA                       | S13I, W152C                                                       | L452R                                                                                             | D614G                                                                 |  |
| lota    | VOI        | B.1.526   | US, NY                       | L5F, T95I, D253G                                                  | E484K                                                                                             | D614G, A701V                                                          |  |

| Lambda        | VOI | C.37                 | Peru           | G75V,T75I,R246N,DEL247/353               | L452Q,F490S        | D614G,T859N         |
|---------------|-----|----------------------|----------------|------------------------------------------|--------------------|---------------------|
| Mu            | VOI | B.1.621              | Colombia       | T95I,Y144S,Y145N,                        | R346K,E484K, N501Y | D614G,P681H,D950N   |
| Delta<br>plus | VUM | B.1.617.2 +<br>K417N | United Kingdom | T19R, G142D, 156-157del,<br>R158G, A222V | K417N,L452R, T478K | D614G, P681R, D950N |

n/a: not applicable, no WHO label has been assigned to this variant at this time.



Supplementary Figure 3 Binding of HEK 293T cell surface expressed SARS-CoV-2 variants by eACE2 and hACE2, related to Figure 4. Wildtype D614G and mutant S proteins were expressed on the surface of HEK 293T cells, incubated with the eACE2 or hACE2, followed by staining with PE anti-his or FITC anti-mouse IgG, and analyzed by FACS. The percentage of positive cells is shown in the gate. S2 is used as a positive control for normalization of S expression. NC (negative control) contained mock-transfected HEK 293T cells. Data shown were taken from one of two independent experiments.



Supplementary Figure 4 The binding of equine and human ACE2 orthologs with RBDs of SARS-CoV-2 variants, related to Figure 4. (A) SPR characterizations of the binding between eACE2 or hACE2 and RBD of SARS-CoV-2 variants. eACE2 or hACE2 was immobilized on the CM5 chip and RBDs were flowed through. The raw and fitted curves were displayed in colored and black lines, respectively.