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1 Simulation Methods
We use the HiP-HoP model to perform simulations of a chro-
matin region as detailed in Buckle et al. (2018). In this scheme,
a section of a chromatin fibre is represented as a chain of beads
connected by springs; this is a common model from polymer
physics (Barbieri et al., 2012; Brackley et al., 2013; Fudenberg

et al., 2016). We then use molecular dynamics simulations to
evolve the configuration of this polymer based on a set of phe-
nomenological potentials which describe how the beads inter-
act. Each bead represents a 1 kbp chromatin region. Three
additional model ingredients drive the chromatin configura-
tion: interactions with spheres representing complexes of pro-
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teins (Brackley et al., 2013, 2016, 2017; Brackley, 2020), a
heteromorphic polymer structure, and loop extrusion (Fuden-
berg et al., 2016; Sanborn et al., 2015). The original HiP-HoP
model includes a single species of model proteins which bind to
“active sites” on the polymer. In the present work we extend
this scheme by adding two additional protein species which
bind different repressed chromatin regions.

1.1 The polymer model
Interactions between the polymer beads are defined by four
potentials. First, non-adjacent beads interact sterically via the
Weeks-Chandler-Anderson (WCA) potential

VWCA(r) =
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where r is the separation of the beads, T and kB are the tem-
perature of the system and the Boltzmann constant, and σ is
the bead diameter. Second, adjacent beads are connected by
finitely-extensible non-linear elastic (FENE) springs with inter-
action energy
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with KFENE = 30kB T/σ2 being the bond strength and R0=1.6σ
the maximum bond length. Third, a bending stiffness is
provided by the Kratky-Porod potential

VBEND(φi) = KBEND (1+ cosφi) ,

where φi is the angle between beads i − 1,i and i + 1, and
KBEND = 4kB T leads to a persistence length comparable to that
of chromatin. Finally, additional springs are used to “crumple”
the polymer in some regions (i.e., to give it heteromorphic
properties). A harmonic spring potential is used, described by

VHARM(r) = KHARM(r − RHARM)
2,

with spring constant KHARM = 200kB T/σ2 and equilibrium
bond length RHARM = 1.1σ. This is applied between next-
nearest neighbour beads (i and i + 2). The regions of the
polymer where these springs are included then have a more
compacted structure, with regions where they are not included
being more open.

Protein complexes are represented by spheres, also of diameter
σ. They interact sterically with each other via the WCA poten-
tial as given in Eq. (1). They have a strong attractive interac-
tion with a subset of polymer beads which represent protein
binding sites on the chromatin, and a steric (WCA) interac-
tion with all other chromatin beads. The “active” species of
proteins additionally have a weak attractive interaction with
open chromatin regions (which lack the harmonic “crumple”
springs). The attractive interactions are described by a shifted
and truncated Lennard-Jones potential

VLJ/cut(r) =
§

[VLJ(r)− VLJ(rc)] r ≤ rcut,
0 otherwise,
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where rcut = 1.8σ is a cut-off distance and ε is the interaction
strength. For strong interactions (i.e., with protein binding
sites) we use ε = 8kB T , while for weak non-specific interac-
tions we use ε= 2kB T .

During the simulations proteins switch back and forward
between a binding and a non-binding state with at rate
kswitch (Brackley et al., 2017). This represents post-
translational modifications which alter the protein-DNA bind-
ing affinity (e.g., phosphorylation). We set kswitch = 10−3 τ−1,
where τ is the simulation time unit (see below). When in
the non-binding state the proteins interact with all chromatin
beads via the WCA potential.

1.2 Langevin Dynamics
To perform the simulations we use the LAMMPS molecular
dynamics software (Plimpton, 1995) in Langevin dynamics
mode. The positions of the polymer beads and proteins evolve
according to the Langevin equation

m
d2ri

dt2
= −∇i U − γ

dri

dt
+
Æ

2kB Tγηi(t), (2)

where ri is the position of the ith bead. For simplicity we as-
sume all polymer and protein beads have the same mass m; U
is the total potential energy of the system and γ is the friction
due to an implicit solvent, again assumed to be the same for all
polymer and protein beads. The vector ηi is a thermal noise
term with components where

〈ηi,α(t)〉= 0 and 〈ηi,α(t)η j,β (t
′)〉= δi, jδα,βδ(t − t ′),

where δi, j is the Kronecker delta and δ(t− t ′) is the Dirac delta
function.

Equation (2) is solved in LAMMPS using a velocity-Verlet
scheme. We use a time step dt= 0.01 τ, where τ is the simula-
tion time unit (see below for details of mapping to real times).

1.3 Loop extrusion
The HiP-HoP model includes the loop extrusion mechanism
thought to be performed by the cohesin complex (Nishiyama,
2019; Fudenberg et al., 2016; Sanborn et al., 2015). Cohesin
complexes are represented by additional spring bonds between
polymer beads; the pair of beads to which the bond is applied
is then moved outwards, i.e., from (i, i + 3)→ (i − 1, i + 4)→
(i−2, i+5), etc., to extrude a loop. Extruders are added at ran-
dom positions i, i + 3 with rate kon = 0.02 τ−1 and removed
with rate koff = 2.5 × 10−5 τ−1; we include 6 extruders per
Mbp of simulated chromatin. They are stepped stochastically
at rate kex = 2 bpτ−1. The spring potential is given by

UEXTR(r) = UWCA(r) + KEXTR(r − r0)
2,

where the bond has strength KEXTR = 40kB T/σ2 and length
r0 = 1.5σ. An extruder is halted either when it meets another
extruder, or when it meets a CTCF site whose direction is op-
posite to that of the extrusion. If an extruder is halted on one
side, the position at the other side continues to be moved, i.e.,
it continues to extrude the loop on one side. These parameters
were chosen because they were previously shown to generate
good predictions of single cell and population average chro-
matin configurations (Buckle et al., 2018); also the main ex-
trusion control parameter, processivity kex/koff, is in line with
values previously used in the literature (Goloborodko et al.,
2016).
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1.4 Simulation setup
For each locus of interest, we simulated a 3 Mbp region of
the genome (represented by 3000 polymer beads). In order
to improve the efficiency, in each simulation we included 11
copies of the same locus spread across a large polymer of
length 40,000 beads (a 600 bead “spacer” region was included
between each copy). By combining multiple copies of the locus
in this way, we were also able to match the typical chromatin
density of the nucleus [this was not possible in Buckle et al.
(2018), where only a single locus was represented in each sim-
ulation].

Initial 40,000 bead configurations were obtained by first arran-
ging the polymer in a mitotic chromosome-like structure sim-
ilar to that in Rosa and Everaers (2008). This was then relaxed
in the absence of protein interactions, but with loop extrusion.
This ‘equilibration’ simulation was run for long enough so that
the system had moved away from its initial structure, but re-
tained a looping probability curve consistent with the so-called
fractal globule (Mirny, 2011). Crumpling springs were then
added according to the input data (see below), before further
relaxation.

For the main results, for each locus we performed two inde-
pendent simulations for a run time of 500,000τ. After discard-
ing the first 100,000τ to allow the system to reach a steady
state, we then extracted a configuration every 2000τ (obtain-
ing 200 from each simulation). This then gives a total of 11×
2× 200 = 4400 configurations for each locus/rearrangement,
each of which can be thought of as representing a single cell.

Our simulations have several parameters and the values of
these affect the result to a greater or lesser extent. Our pre-
vious work (Buckle et al., 2018) suggests that the number (or
density) of model proteins, the number of loop extruders, and
the speed and unbinding rate of loop extruders have the largest
effect on the predicted chromatin interactions. Parameter
choices here were guided by those of Buckle et al. (2018); it
was not always possible to keep the parameters the same, how-
ever, due to change in the simulation set-up. Here we simulate
several copies of the locus in each simulation, and we use a
more realistic chromatin density than in previous work; this af-
fected our choice of the number of proteins, as there is no clear
way to map from the previous work (e.g., one could preserve
protein concentration or the ratio between proteins and bind-
ing sites). Secondly, as detailed below, the mapping between
simulation lengths and times and real lengths and times was
not fixed in advance in our simulations, but inferred by com-
parison to data. The higher chromatin density here compared
to previous work means that this mapping is different; this
meant that difference choices of rate parameters (kex, koff etc.)
were appropriate. We did not perform any parameter optim-
isation, and so it may be possible to further improve our simu-
lation predictions; however we would not expect this to change
any of our conclusions.

1.5 Length and time units
In the simulations, lengths are defined relative to the bead
diameter σ, while the simulation time unit follows naturally
from the length, mass, and energy scales as τ =

p

σ2m/kB T .
Another important time scale is the time it takes a bead to
diffuse across its own diameter, the so-called Brownian time,
τB = σ2/D, where D is the diffusion constant defined through
the Einstein relation D = kB T/γ. As noted above, for simpli-

city we set the mass of polymer beads and proteins to be the
same, m = 1, and we set the friction γ = 2. With this choice
τB = 2τ; the system is therefore over-damped, though the in-
ertial forces are larger than in reality. This approximation is
necessary to keep the overall simulation times feasible.

While each polymer bead in the simulations represents 10 kbp
of chromatin, it is not necessary to specify a physical size which
this occupies. We therefore quote lengths in units of σ, the
bead diameter, throughout. Nevertheless, it is possible to ob-
tain a mapping between simulation and real lengths, e.g., by
comparing simulation measurements with 3D FISH measure-
ments. In Buckle et al. (2018) this led to a length unit of
σ ≈ 21.8 nm.

Simulation time units can be mapped to real units through the
Brownian time by calculating the mean square displacement
(MSD) as a function of lag time for all polymer beads. This is
then compared to experimental data from Hajjoul et al. (2013),
where MSDs were obtained from various chromatin loci which
were fluorescently labelled in live yeast cells. The value for τB

which gives the best fit to this data was obtained (using the
value of σ quoted above for the length unit). We find a map-
ping where τ≈ 5 ms. This means that a 500,000τ simulation
run maps to approximately 42 minutes.

2 Simulation input data
As detailed in the main text, a number of publicly available
data sets are used as an input for the simulations.

First, DNase hypersensitive sites (DHS) are used to identify act-
ive protein binding sites. We use the simplifying assumption
that there is a single species of active protein (e.g., a complex
of transcription factors and RNA polymerase) which binds all
DHS with equal affinity. DNase-seq data were obtained from
the ENCODE Project for GM12878 cells (The ENCODE Project
Consortium, 2012) or the BLUEPRINT Project for U266 and Z-
138 cells (Stunnenberg et al., 2016). In both cases DNase “hot-
spots” (peaks) and “fold enrichment” (FE) data were available.
Many hotspots, while having a statistically significant enrich-
ment of reads, nevertheless have very low signal. We there-
fore further filtered these using a peak threshold and minimum
separation criteria based on the FE signal. Since our polymer
model has a resolution of 1 kbp we required peaks to have a
minimum 1 kbp separation. The centre point of each peak was
used to identify the corresponding polymer bead.

Second, a panel of six ChIP-seq data sets for different histone
modifications (H3K4me3, H3K4me1, H3K27me3, H3K9me3,
H3K27ac and H3K36me3) were used to identify 11 chromatin
states via a hidden Markov modelling (HMM) scheme as de-
tailed in Carrillo-de Santa-Pau et al. (2017); see also Sup-
plemental Table S1. States for U266 and Z-138 cells were
available from the BLUEPRINT Project directly (Stunnenberg
et al., 2016). For GM12878 cells we obtained ChIP-seq data
from the ENCODE project (The ENCODE Project Consortium,
2012), and generated states using the ChromHMM software
[Ernst and Kellis (2012); briefly, ChromHMM segments the
genome into 200 bp bins and assigns each to one of the 11
states from the previously learned model from Carrillo-de
Santa-Pau et al. (2017)]. States associated with H3K27me3
were used to identify binding sites for a polycomb (repress-
ive) model protein (Bantignies and Cavalli, 2011). States as-
sociated with H3K9me3 (found in heterochromatin regions)
were used to identify binding sites for a second repressive spe-
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cies of model protein [e.g., representing HP1 (Eissenberg and
Elgin, 2000)]. States associated with H3K27ac were used to
identify the regions of the polymer which have the more open
(no “crumpling” springs) structure (Risca et al., 2017). Details
of the mapping between states and the simulations are given
in Supplemental Table S1. We note that the ChIP-seq data rep-
resent histone modifications at both alleles of the locus of in-
terest, and so in this sense the simulations generate structures
based on merged information. This is a limitation of the input
data rather than the simulation method; if the data could be
mapped in an allele-specific way, it would be possible to simu-
late these separately.

Finally, ChIP-seq data for CTCF obtained from the ENCODE
project (The ENCODE Project Consortium, 2012) was used to
identify “loop anchors”, which halt loop extrusion in a direc-
tion depended way. Data was available for the GM12878 cell
line; no data was available for the U266 or Z-138 cell lines, so
we instead used data from healthy B cells (CD20+ cells). In
all cases we obtained read alignments from ENCODE for “sig-
nal” and “input” experiments (in BAM format aligned to the
hg19 reference genome), and performed peak calling using the
MACS2 software (Zhang et al., 2008). For each called peak we
searched the underlying sequence for the CTCF biding motif
[matrix MA0139.1 obtained from the JASPAR database (Fornes
et al., 2019)] using the FIMO tool (Grant et al., 2011) from the
MEME software suit (Bailey et al., 2009), identifying the direc-
tion of the motif. Where multiple motifs with different direc-
tions were found within a single peak, we used the motif which
fit most closely to the consensus (unless motifs with opposite
directions scored similarly in comparison to the consensus, in
which case the peak was labelled as having both directions). In
each simulated copy of the locus a CTCF site is assumed to be
bound by a CTCF protein with a probability based on the ChIP-
seq peak height (i.e., this varied between copies, accounting
for cell-to-cell variation in CTCF binding).

Details of the source of each data set, including paper refer-
ences and accession numbers where appropriate, are given in
Supplemental Table S3. We used the hg19 reference genome
as some of the data sets were only available already mapped to
this build; since our simulations do not depend on the precise
underlying sequence, none of our conclusions would be altered
by using a more recent genome build, such as GRCh38.

3 Simulation Measurements
As noted above, for each locus/rearrangement we generated
4400 independent 3D configurations. These provide the posi-
tions in simulation space of each 1 kbp chromatin bead which
makes up the 3 Mbp (3000 bead) region of interest.

To obtain a simulated Hi-C interaction map, the procedure was
as follows. Two chromatin beads were selected at random, and
their separation calculated; this was then counted as a contact
with probability Pcontact = exp(−r/rc), where r is the separa-
tion and rc is a threshold length scale which we set to 2σ. This
mimics a Hi-C experiment where the likelihood of two loci be-
ing joined during fixation and subsequently becoming ligated
decreases with 3D separation. This was repeated N(N − 1)/2
times for each configuration so that each possible pair of N
beads had the chance to be selected. This entire process was
then repeated enough times such that the number of contacts
found was of the same order of magnitude as the number of
reads in an experimental Hi-C map of the same size (i.e., we

approximately matched the read depth). Reads were then or-
ganised into 3 kbp bins and contact maps plotted using the
HiCExplorer software (Ramírez et al., 2018).

To obtain simulated 4C-like profiles we first identified a set
of ‘bait’ (or ‘target’) beads, before following a similar proced-
ure as for the Hi-C maps. For each bait, in each simulated
configuration we picked a bead at random, and calculated the
separation between it and the bait. We counted it as a contact
with probability Pcontact as above; this was done N times so that
each bead had the chance to be selected. A profile was then
generated at 1 kbp resolution.

To measure the 3D size of a given region of the genome, we
computed the radius of gyration, Rg , of the beads which made
up that region. This is defined by

R2
g =

1
M

∑

i

(ri − rCoM)
2,

where ri is the position of bead i, the sum runs over the M
beads within the region of interest, and rCoM is the centre of
mass of these beads, as given by

rCoM =
1
M

∑

i

ri .

A more accurate measure of the 3D size of a region which takes
some account of the shape was used in Fig. 6G in the main
text. A gyration tensor can be defined, where the α,β element
is given by

Gαβ =
1
N

M
∑

i=1

r(i)
α

r(i)
β

,

where r(i)
α

is the αth component of the vector (ri − rCoM), and
the sum runs over the M beads within the region (gene) of
interest. The sum of the eigenvalues of this matrix is equal
to R2

g , and the eigenvalues themselves can be thought of as
the squares of the lengths of the principal axes of an ellipsoid.
The volume of this ellipsoid gives a measure of the volume the
region occupies in 3D space.

4 Chromosome-conformation-capture data for
comparison with simulations

Hi-C data for GM12878 (Fig. 2Ai and Supplemental Figs. S1
and S2) was obtained from Rao et al. (2014). We used the
processed data available from that reference using the “square
root vanilla coverage” normalisation as detailed therein. Hi-C
data (raw unprocessed paired-end reads) for U266 cells
(Fig. 4C and Supplemental Fig. S4) was obtained from Wu
et al. (2017). For comparison with our simulations we gener-
ated a U266 reference genome based on hg19, which included
the Chromosome 14 IGH enhancer region inserted near CCND1
on Chromosome 11 (see section below for details of how the
rearrangement was mapped). In other words, we generated
an in silico rearranged reference genome. Though we expect
U266 cells to harbour additional rearrangements and point
mutations, including this single insert is sufficient for com-
parison with our simulations. To avoid having reads map to
multiple locations we did not include Chromosome 14 in our
reference. We note that the Hi-C data set will include interac-
tion reads from both copies of these chromosomes (those with
the rearrangement and those without). We proceeded to map
reads and generate Hi-C interaction maps using the HiC-Pro
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software (Servant et al., 2015), which employs Bowtie 2 (Lang-
mead and Salzberg, 2012) for read mapping, and the ice mat-
rix normalisation method (Imakaev et al., 2012). The Wu et al.
(2017) paper provides data from experiments using HindIII
and MBoI restriction enzymes, which we analysed separately,
and then combined. The GM12878 dataset has a high read
depth (4.9 billion reads), allowing interaction maps to be gen-
erated with a resolution of 10 kbp bins; the U266 data had a
lower read depth (228 million reads), but a lower 20 kbp resol-
ution enabled the same downstream analysis to be performed.

We note that, importantly, Hi-C data was not used as an in-
put to the simulations, only as a comparison. The simula-
tions therefore predict 3D structure based only on 1D genomic
information. To compare domain patterns between the sim-
ulations and experimental Hi-C data, we used the Hi-C Ex-
plorer software (Wolff et al., 2020) to call TAD boundaries.
As with most boundary algorithms, calls depend strongly on
bin size and read depth/noise, and several parameters need
to be tuned. For an unbiased comparison, we tuned paramet-
ers to obtain TAD calls which closely matched the visible do-
mains on the experimental interaction maps, and then used
the same parameters for the simulated maps (with the latter
using the same bin size as the former). Supplemental Fig. S2B
shows TAD calls for the GM12878 cells overlaid on an interac-
tion map. From the experimental data there were 6 boundary
calls; from the simulation data there were 5 boundary calls
which matched those from the experiment to within two bins.
The simulation showed two additional boundaries which did
not exactly match the experiment (green arrows in Supple-
mental Fig. S2B); while this suggests that the simulations per-
formed less well in this region, a visual comparison of the maps
show there is still reasonable agreement, and that the discrep-
ancy could instead be a result of poorer boundary calling in
that region. TAD calls for the U266 cells are shown in Supple-
mental Fig. S4B; again, there were 6 boundaries called from
the experimental data. The simulations also showed 6 bound-
aries, with 5 matching to within two bins. The boundary which
does not match (cyan arrow in Supplemental Fig. S4B) is next
to an unmappable DNA region, which has likely caused the
boundary calling to fail; a more likely position for the bound-
ary is shown by the purple arrow in the figure, and this does
match that found in the simulations. We also note a ‘stripe’
of enriched interactions between CCND1 and the region to its
left in both simulations and data (green ellipses in Supple-
mental Fig. S4B). Together this suggests that the CCND1 gene
does indeed fall within the TAD which encompasses the insert
region, as predicted by the simulations.

For a more holistic comparison between the experimental and
simulation Hi-C maps, we considered correlations between ex-
perimental and simulated interaction maps. There is a strong
drop off in Hi-C interaction with genomic separation (see Sup-
plemental Fig. S2C), so to obtain a measure which is inde-
pendent of this, we considered the interactions between all
points at a given genomic separation (equivalent to taking a
line across the interaction map parallel to the diagonal, Sup-
plemental Fig. S2E). We calculated the Pearson’s correlation
coefficient between this signal from experiments and simula-
tions, and then plot as a function of genomic separation. Sup-
plemental Figure S2E shows this for the GM12878 cell line; we
found statistically significant correlation coefficients of around
0.5 over a wide range of genomic separations. To put this
into context we also consider two ‘control’ cases. First, we
generated a ‘shuffled’ interaction map by randomly swapping

interaction intensities in a way which preserves the depend-
ence on genomic separation (the resulting map is devoid of
TAD or other patterns, as shown in Supplemental Fig. S2D).
Second, we generated a ‘shifted’ map, where all interaction
were shifted to the right by 250 kbp (the resulting maps has
TAD boundaries and interaction spots in different locations,
Supplemental Fig. S2D). Supplemental Figure S2E shows that
there is very little correlation between these controls and the
experimental map (Pearson’s correlation coefficients are close
to zero, and the correlation is not significant, p > 0.01).
Similar results were obtained for the U266 cell line (Supple-
mental Fig. S4C), though here the lower read depth/noisier
data led to lower correlation values.

We note that while the correlation measure detailed above is
not affected by the strong drop off in interactions as genomic
separation increases (Supplemental Fig. S2C), it is highly sens-
itive to noise (particularly at large genomic separations). As an
alternative, we also considered the ‘directionality index’ (DI),
which is often used to quantify domain insulation [e.g, in Dixon
et al. (2012)]. The DI at bin i in a Hi-C map is defined as

DIi =

�

i+w
∑

j=i+1

Hi j

�

−

�

i−1
∑

j=i−w

Hi j

�

,

where Hi j is the Hi-C count of interactions between bins i and
j, and w is a window length. In other words, the DI is the
difference between the level of interactions to the right and to
the left of a point within a distance of w bins (see also Supple-
mental Fig. S2F). For a given value of w we can find a DI profile
for both experiments and simulations, and then calculate the
Pearson’s correlation coefficient. Supplemental Fig. S2F shows
a plot of the correlation coefficient as a function of window
length. For small window lengths, this measure is also sensit-
ive to noise; however, as w increases it becomes more robust
(the measure effectively averages over the window). As expec-
ted, the DI correlation increases with window length, reaching
values of around 0.7-0.75; this drops off again as the window
size gets larger, due to the finite size of the simulated region.
For all points in Supplemental Fig. S2F, the correlation is stat-
istically significant (p < 0.01). Also shown is the correlation
for the shuffled and shifted maps as detailed above; in these
cases the values are close to zero, and the correlation is not sig-
nificant (p > 0.01). Again, similar results were observed for
the U266 cell line (Supplemental Fig. S4C); while the correla-
tion is smaller due to the lower read depth, values still reached
0.5.

ChIA-PET data for Rad21 (a cohesin subunit) in GM12878 cells
was obtained from Heidari et al. (2014), and HiChIP data for
H3K27ac in GM12878 cells was obtained from Bhattacharyya
et al. (2019). Both of these methods combine mapping of
chromatin interactions with an immunoprecipitation step, thus
providing information on interactions between regions which
bind a specific protein or possess a specific histone modific-
ation. They therefore provide a more targeted method than
Hi-C, and so give higher resolution. In Supplemental Fig. S2G
we show interactions from these data sets as ‘arcs’ alongside
a section of a simulated interaction map. As noted in the
main text, Hi-C maps tend to show rather uniform interactions
within TADs. Our simulations often show more details, with
dark spots indicating interactions between, e.g., promoters and
enhancers. Supplemental Fig. S2G shows that many of the
predicted interactions for the promoters of CCND1 and nearby
LTO1 are indeed present in the more targeted data sets. Calling
significant interactions from 3C based data typically requires
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building a genome wide background model, which is not pos-
sible from simulations which include only a 3 Mbp region; a
direct comparison between the simulations and HiChIP/ChIA-
PET arcs is therefore not possible. Nevertheless, we can show
quantitatively that the simulations do predict enrichment of in-
teractions at these arcs. To do this, first we find a normalised
interaction score for all pairs of Hi-C bins in our simulation map
by dividing by the mean interaction level for the given genomic
separation (i.e., we scale out the strong dependence shown in
Supplemental Fig. S2C). We can then compare the distribution
of normalised interaction scores for the whole simulated re-
gion, with the subset of interactions at the arcs from the ChIA-
PET dataset. Supplemental Figure S2G top right shows that
there is a clear enrichment of interactions for this set of arcs
in the simulations (a Kolmogorov-Smirnov test rejects the null
hypothesis that the distributions are the same, p < 10−12). We
also considered two ‘negative controls’: first, we randomly re-
wired all of the arcs from the HiChIP data set, preserving the
arc bases; and second, we randomly repositioned all of the
arcs within the 3 Mbp region, preserving the arc lengths. Sup-
plemental Figure S2G bottom right shows that the two sets of
control arcs do not show enrichment of interactions in the sim-
ulations (in both cases, a Kolmogorov-Smirnov test rejects the
null hypothesis that the distributions are the same, p < 10−5).

5 Cell lines
Here we provide some additional details on the cancer cell
lines. The Z-138 cell line was derived from a patient ini-
tially diagnosed with chronic lymphocytic leukaemia. Around
two years later, the disease transformed into an aggress-
ive mature B cell malignancy being classified as mantle
cell lymphoma with blastoid transformation. Importantly
for this study, the cells harbour a reciprocal translocation,
t(11;14)(q13;q32)/IGH-CCND1 resulting in overexpression of
cyclin D1. The breakpoint for this translocation within the IGH
locus, is located in the J gene region close to the IGH Eµ super-
enhancer, suggesting the translocation arose in an immature B
cell undergoing V(D)J rearrangement.

The U266 cell line was derived from a patient with refractory
and terminal myeloma. On the background of a complex ka-
ryotype, this cell line harbours an insertion of Chromosome
14q32 material into Chromosome 11q13. This insertion res-
ults in the relocation of the Eα1 IGH super-enhancer into close
proximity to the CCND1 gene at 11q13. Again, this insertion
event leads to overexpression of cyclin D1. The breakpoints
within the IGH locus reside in the constant region, suggest-
ing this rearrangement occurred when the cell was undergo-
ing class switch recombination to result in the production of
IgE-secreting plasma cells.

6 Gene expression measurements
To understand how the level of expression of CCND1 in
GM12878 cells compares with expression levels in general, we
obtained RNA-seq data from the ENCODE project [assession
ENCSR889TRN; The ENCODE Project Consortium (2012)].
Specifically, we used the ENCODE gene expression quantifica-
tions, which provide a ‘fragments per kilo-base of transcript per
million mapped reads’ (FPKM) measure. As a reference point
we considered the set of standard housekeeping genes, pre-
viously identified by Eisenberg and Levanon (2013), namely
C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5,

SNRPD3, VCP and VPS29. We found that in GM12878 cells,
CCND1 has an FPKM which is 105.3 times smaller than the
average of these housekeeping genes.

To further quantify gene expression across the three cell lines,
we performed qPCR as detailed in the Methods section in
the main text. The oligonucleotide sequences are shown
in Table S2. Some additional results are shown in Supple-
mental Fig. S3; for each cell line we show the relative expres-
sion level for each gene, using that of TPCN2 as a reference
[Supplemental Figs. S3Ai, Bi and Ci].

Our simulations predict the configuration of the gene locus in
3D, providing a set of structures which each represent a single
cell. Exactly how 3D structure affects the expression of a given
gene remains the subject of current research (Kempfer and
Pombo, 2020). For some genes it has been shown that physical
interaction between a promoter and an enhancer, mediated by
proteins bound at these elements, is required to activate tran-
scription (Schoenfelder and Fraser, 2019). Based on this we
hypothesised that our simulated structures could also be used
to predict gene expression level.

In previous work using a simpler polymer model for chro-
matin (Brackley et al., 2021) we measured the fraction of time
during a simulation which a promoter region is bound by an
active protein (in the simulations the active proteins repres-
ent a general complex of transcriptional activators, transcrip-
tion factors, and/or polymerase), and found that this correl-
ates with gene expression as measured by GRO-seq experi-
ments. This is a very simple predictor measure, since it does
not take into account enhancer “strength” or compatibility,
nor any further biochemical regulatory mechanisms (e.g., tran-
scription factor specificity). We therefore cannot expect a clear
mapping between the predictor and actual transcription level,
only a correlation. We performed similar measurements for
the present simulations (Supplemental Fig. S3Di); a protein
was defined as being bound to a promoter if the separation
between the protein bead and polymer bead was less than
2.25σ. This measure did not give particularly good predic-
tions of relative expression levels within the same cell line,
however the predicted difference between cell lines was better
(Supplemental Fig. S3Ei and ii, left panels). This is not surpris-
ing, given the limitations discussed above. We also considered
a second predictor for transcription, instead asking how of-
ten the promoter of a gene interacts with another chromatin
region which has an enhancer associated state (an “interac-
tion” was again defined as when the two beads were closer
together than 2.25σ, and we also specified that the enhancer
must be at least 4 kbp away from the promoter). Such in-
teractions/loops tend to arise due to proteins binding at both
elements to form bridges (and clusters of proteins), though
they can also be driven by the loop extrusion mechanism.
This measure gave even better predictions of the experiment-
ally measured differences in expression between the cell types
(Supplemental Fig. S3Ei and ii, right panels and Fig. 6C in the
main text). We note though that the same limitations as dis-
cussed above apply.

7 Fluorescence in situ hybridisation microscopy
As detailed in the Methods section in the main text, we
performed fluorescence in situ hybridisation microscopy
experiments on the three cells lines. More specifically,
fosmid clones found to cover TPCN2 (G248P87917D11/WI2-
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1721H21), MYEOV (G248P87014D2/WI2-2222G4) and
CCND1 (G248P86668E2/WI2-2191I3) loci were obtained
from BACPAC resources (California, USA). Single bacterial
colonies were cultured in the presence of chloramphenicol
and DNA extracted using the GeneJET Plasmid Maxiprep Kit
(Thermo Scientific, Massachusetts, USA). 1µg of DNA was
labelled by nick translation using the Enzo Nick translation
DNA labelling system 2.0 (Enzo Life Sciences, Exeter, UK)
and fluorophores SEEBRIGHT Green 496 dUTP, SEEBRIGHT
Red 598 dUTP or SEEBRIGHT Gold 525 dUTP. The resulting
fluorescently labelled probes were mixed 1:1 with hybrid-
isation buffer (Cytocell, Cambridge, UK ) and denatured
at 75◦C for five minutes followed by hybridisation at 37◦C
overnight. Slides were washed for two-minutes in 0.02% SSC
with 0.003% NP40 at 72◦C followed by two minute room
temperature incubation in 0.1% SSC. Slides were mounted
with 10µl DAPI (Vector laboratories, California, USA).

Images were acquired on a Leica SP8 point scanning confocal
microscope with white light super continuum lasers (tunable
from 470 nm to 670 nm and a fixed 405 nm Argon laser using
a HC PL APO CS2 63×/1.40 OIL lens. Images were acquired
as Z-stack for measurement and analysis of 3D volumes. Voxel
size for all images was set at 43×43×130 nm (x , y, z) to al-
low deconvolution and consistent particle analysis (where a
‘particle’ is a contiguous region within which a given probe
fluorescence intensity was above a threshold). All the other
settings were also kept consistent between experiments, spe-
cifically: DAPI (for nuclear counterstain), Ex 405 nm – Em
410/480nm, Seebright-green, Ex 496 nm – Em 502/525 nm,
Seebright-gold, Ex 525 nm – Ex 531/592 nm, Seebright-red-
598-dutp, Ex 596 nm – Em 606/781 nm. Images were decon-
volved using Huygens 20.04 software (www.svi.nl). Particle
analysis was performed using Huygens 20.04 on deconvolved
images as recently shown (Prendergast et al., 2020). Spe-
cifically, we measured ‘Small Particle Geometry’, obtaining the
volume in voxels.

We found that these large fosmid probes were difficult to work
with in these cell lines, and this limited the number of imaged
cells available. Often, in a given cell we would observe more
than the two expected particles (one per chromosome copy).
This was likely due to hybridisation problems (the probe not
hybridising uniformly, so the region appears as multiple dis-
tinct particles), or because different cells were at different
stages of the cell cycle (particles from different sister chromat-
ids being visible in G2, or different chromosomes being rep-
licated to different extents in S-phase). It was difficult to find
cells where there were exactly two particles for each probe. In
cases when this was the case, it was not always clear which
particles were on the same chromosome copy. Nevertheless,
we were able to obtain volume measurements for at least 20
cells (40 particles) for each probe in each cell line, as shown in
Fig. 6F and Supplemental Figs. S10B, E and D. The differences
between probe volumes in different cell lines showed similar
trends to those predicted in simulations (namely, volumes for
CCND1 and MYEOV probes tended to be larger in the cancer
cell lines, Supplemental Figs. S10A, D and G). However, with
these numbers of cells, there was insufficient statistical power
to reject the null hypothesis that the volumes were drawn from
the same distribution (via a two-sample Kolmogorov-Smirnov
test).

Another feature of the FISH measurements, is that (with
the exception of Z-138 cells) it is not possible to distin-
guish particles from the rearranged or non-rearranged chro-

mosomes. Under the assumption that one of the CCND1 alleles
will behave as in a healthy cell, we can construct a more real-
istic prediction of the volume trends by combining simulated
measurements from the cancer and healthy cell lines. These
predictions are shown in Supplemental Fig. S10C, F and I. We
have also ‘downsampled’ the data so that the number of meas-
urements matches that of the experimental data; i.e., we pick
a random subset of measurements from a given simulation.
For example, for the green box in Supplemental Fig. S10C we
randomly picked 23 measurements from the U266 simulations
and 23 measurements from the GM12878 measurements, to
match the 46 measurements from the U266 experiment (where
half of the particles are from non-rearranged chromosomes).
A similar downsampling is done for the other two cell lines
(in GM12878, all measurements are taken from the GM12878
simulations). After this procedure, we observe the same gen-
eral trends as with the full simulation data set, but now there is
not sufficient statistical power to reject the null hypothesis. In
this respect, the trends observed in our simulations are consist-
ent with the FISH data (as expected with a simple model, we
obtain qualitative rather than quantitative spatial predictions).

8 Break-point mapping in U266 and Z-138 cells
Chromosomal break-points of t(11;14) in U266 (Mikulasova
et al., 2021) and Z-138 cell lines were detected using paired-
end read targeted sequencing of the DNA involving extens-
ive coverage of the IGHC, IGHJ, and IGHD loci (∼300 kbp)
(Mikulasova et al., 2020). FASTQ files were aligned to the hu-
man genome assembly GRCh37 using BWA-MEM (Li, 2013).
Chromosomal rearrangements were called using Manta (Chen
et al., 2015) with default settings. Detected break-points were
manually inspected in the Integrative Genomics Viewer [Thor-
valdsdóttir et al. (2013); Broad Institute, Cambridge, MA,
USA]. The sequencing data are available at the Sequence Read
Archive (SRA), National Center for Biotechnology Information
(NCBI, Bethesda, MD, USA) under the BioProject accession
number PRJNA635269.
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Supplemental Tables

State Description Use in simulations
1 Transcription low signal H3K32me3 –
2 Transcription high signal H3K32me3 –
3 Heterochromatin high signal H3K9me3 heterochromatin protein binding
4 Low signal –
5 Heterochromatin high signal H3K27me3 polycomb protein binding
6 Heterochromatin low signal H3K27me3 –
7 Repressed polycomb promoter high H3K4me3, H3K4me1, H3K27me3 polycomb protein binding
8 Enhancer high signal H3K4me1 ‘open’ chromatin
9 Active enhancer high signal H3K4me1, H3K27ac ‘open’ chromatin

10 Distal active promoter high signal H3K4me3, H3K4me1, H3K27ac ‘open’ chromatin
11 Active TSS high signal H3K4me3, H3K27ac ‘open’ chromatin

Supplemental Table S1. Chromatin states. Table showing chromatin states obtained from the HMM analysis, and how they are
used in simulations.

Gene Sequence
LTO1 ATCGTGATGGCGGATGAGAG CTTCCCTCCATCACACCCAA
MYEOV GTTCTTGGTGGGATCTGAGC GACACACCACGGAGACAATG
TPCN2 ACTTACCGCAGCATCCAAGT TTCGATGAAGACCACAGCCT
CCND1 CTGTGCTGCGAAGTGGAAAC TCACATCTCCAGCATCCAGG
GAPDH GGAAGATGGTGATGGGATTT GGATTTGGTCGTATTGGG

Supplemental Table S2. Oligonucleotide sequences used in qPCR experiments.

Cell line Experiment Source Accession Reference
GM12878 ChIP-seq CTCF ENCODE ENCSR000AKB The ENCODE Project Consortium (2012)
GM12878 DNase-seq ENCODE ENCSR000EMT The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K4me3 ENCODE ENCFF788INU The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K4me1 ENCODE ENCFF753GZX The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K27ac ENCODE ENCFF197QHX The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K9me3 ENCODE ENCFF331ODM The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K36me3 ENCODE ENCFF750QYL The ENCODE Project Consortium (2012)
GM12878 ChIP-seq H3K27me3 ENCODE ENCFF622QTG The ENCODE Project Consortium (2012)
GM12878 Hi-C GEO GSE63525 Rao et al. (2014)
whole B cell ChIP-seq CTCF ENCODE ENCSR000AUV The ENCODE Project Consortium (2012)
U266 DNase-seq BLUEPRINT – Stunnenberg et al. (2016)
U266 Chromatin states BLUEPRINT – Stunnenberg et al. (2016)
U266 Break-point mapping Sequence Read Archive (SRA), National

Center for Biotechnology Information (NCBI,
Bethesda, MD, USA)

PRJNA635269 Mikulasova et al. (2021)

U266 Hi-C GEO GSE87585 Wu et al. (2017)
Z-138 DNase-seq BLUEPRINT – Stunnenberg et al. (2016)
Z-138 Chromatin states BLUEPRINT – Stunnenberg et al. (2016)

Supplemental Table S3. Data sources. Table showing source and accession numbers for all publicly available data used in this
work. Reference numbers are those given in this Supplemental Material document.

Data Availability url Accession / doi
Simulation data Edinburgh DataShare repository https://datashare.ed.ac.uk doi: 10.7488/ds/3457
Z-138 sequencing data Sequence Read Archive (SRA), National

Center for Biotechnology Information
(NCBI, Bethesda, MD, USA)

https://www.ncbi.nlm.nih.gov/sra PRJNA635269

FISH measurement data Edinburgh DataShare repository https://datashare.ed.ac.uk doi: 10.7488/ds/3457

Supplemental Table S4. Data availability. Table showing availability of all new data generated in this work.
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B. 3 Mbp simulated region of chr11 in ENCODE GM12878 cells (hg19)
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Supplemental Figure S1. Model schematic with input data and output (simulated Hi-C). A. Schematic of the HiP-HoP model
(left), showing the three included mechanisms which drive 3D structure (middle), with a table describing the simulation input
data (right). Three species of diffusing proteins interact with a bead-and-spring polymer representing a chromatin region; binding
sites are identified using chromatin states and DNase hypersensitive sites (DHS). Chromatin states are also used to identify regions
which have a more open decompacted chromatin fibre structure. The loop extrusion mechanism is incorporated, with CTCF ChIP-
seq data used to identify anchor sites. B. Map showing the gene positions within the 3 Mbp region of human Chromosome
11 which was simulated. C. Hi-C interaction maps for GM12878 cells from simulations (top) and experimental data [bottom;
obtained from Rao et al. (2014)]. D. Data from the GM12878 cell line used as an input to simulations. Red blocks show DHS
(DNase-seq data obtained from the ENCODE project (The ENCODE Project Consortium, 2012)). Yellow, blue and black blocks
show regions identified as being associated with H3K27ac, polycomb (H3K27me3) and heterochromatin chromatin states from a
hidden Markov model (HMM) as detailed in Supplemental Methods. Arrowheads indicate the position and direction of CTCF sites
[purple and orange arrowheads indicate left and right facing sites respectively; ChIP-seq data for CTCF obtained from the ENCODE
project, The ENCODE Project Consortium (2012), and the direction was determined as detailed in Supplemental Methods].
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A. Hi-C comparison. B. With TAD calls. C. Interactions vs.
genomic separation.
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G. Comparison with higher-resolution interaction data.
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Supplemental Figure S2. Simulations of CCND1 in GM12878 cells: quantitative comparison with experiments. A. Simu-
lated Hi-C is shown alongside the experimental data obtained from Rao et al. (2014) for the whole of the 3 Mbp region which was
simulated. White gaps in the maps appear at unmappable (repetitive sequence) DNA regions; for ease of comparison, where no
data are available from the experiments, the same regions have been masked for simulations. Positions of genes are shown above
the plot. B. A similar Hi-C map is shown, with overlaid blue dashed lines showing TADs called from the experimental (bottom left)
and simulation (top right) maps as detailed in Supplemental Methods. Green arrows show the position of TAD boundary calls
which do not match between simulations and data. C. Plot showing interactions as a function of genomic separation on a log-log
scale. Separations are binned on a logarithmic scale, and each point represents an average over interactions between all pairs of
locations with separations falling within the bin. Simulation and experimental data are show; in the latter case, only interactions
within the 3 Mbp region which was simulated are included. The interaction level is normalised such that the area under each
curve sums to unity. D. As detailed in Supplemental Methods, to put quantitative comparisons into context, we consider two ‘neg-
ative control’ cases. Top: the simulation data are shuffled randomly, but preserving the decay with genomic separation. Bottom:
the simulation map is shifted laterally by 250 kbp, and periodically wrapped. This results in a map which is different from the
original simulation map, but still shows domains and interaction peaks. E. Left: schematic showing how an interaction profile
can be obtained for all pairs of points at a given genomic separation. The Pearson’s correlation coefficient between simulated
and experimental profiles can be obtained, again for a given genomic separation. Right: the correlation coefficient is plotted as
a function of genomic separation. For over 70% of the points, the shown correlation is statistically significant (p < 0.01). For
context, correlations between the experiment and the shuffled and shifted maps are also shown. These show values close to zero,
and are statistically significant for fewer than 5% of the points.

Caption continued on next page.
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Continued caption to Supplemental Figure S2. Simulations of CCND1 in GM12878 cells: quantitative comparison with exper-
iments. F. Left: the directionality index (DI) measures insulation as the difference between forward and backward interactions
out to a window length w (see Supplemental Methods for details). A profile of DI as a function of position, x , can be obtained and
the Pearson’s correlation coefficient between simulated and experimental profiles calculated. Right: the correlation is shown as a
function of window length. For all points the correlation is statistically significant. Also shown are correlations for the shifted and
shuffled maps; again these have values close to zero, and in this case none are statistically significant. G. Comparison between
interactions in simulations and higher resolution experimental data. Arcs show ChIA-PET data from cohesin sub-unit Rad21 [blue,
obtained from Heidari et al. (2014)] and HiChIP data using an antibody for H3K27ac [orange, obtained from Bhattacharyya et al.
(2019)]. Arcs are shown for interactions with one end within the region bounded by the green dashed lines. The heat map shows
a strip from the simulated Hi-C map, with the green box around the diagonal; this therefore shows interactions with CCND1 and
LTO1. Grey dashed lines pick out some interactions from the data which are correctly predicted by the simulations. Top right: plot
showing how the distribution of interaction signal strengths predicted from simulations for HiChIP loops compares to all interac-
tions. Here interaction strength is normalised so as to remove the dependence on genomic separation; see Supplemental Methods
for full details. Bottom right: plot showing how the distribution of interaction signal strengths predicted from simulations for
HiChIP loops compares to two ‘negative control’ cases. First, if loops are rewired (i.e., arcs are randomised, but the same arc
bases are used). Second, if arcs are randomly position, but the same arc lengths are used. Full details are given in Supplemental
Methods Section 4.
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A. qPCR expression in GM12878
vs. TPCN2
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B. qPCR expression in U266 cells
i. vs. TPCN2
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ii. U266 vs. GM12878
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C. qPCR expression in Z-138
i. vs. TPCN2
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ii. Z-138 vs. GM12878
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D. Simulation expression predictors
i. protein binding at promoter ii. promoter interacts with enhancer state chromatin
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E. Comparison between qPCR and simulations
i. U266 vs. GM12878
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Supplemental Figure S3. Measuring expression of genes in the CCND1-TAD. A. Bar plot showing expression levels of MYEOV,
CCND1, and LTO1 using TPCN2 expression as a reference, obtained from qPCR experiments in GM12878 cells. Values are expressed
as the log2 fold-change and are an average over three replicate experiments; error bars show the standard error in the mean.
B. Panel i shows a similar plot of expression level using TPCN2 as a reference for U266 cells. Panel ii shows the expression
of all four genes in U266, relative to the expression in GM12878 cells. C. Panel i shows the expression in Z-138, again using
TPCN2 as a reference, while in panel ii the expression level in GM12878 is used as a reference. D. Plots showing the values of
predictors of expression obtained from the simulations as detailed in the main text and Supplemental Methods. Panel i shows the
fraction of simulated configurations where the gene promoter was bound by an ‘active protein’. Panel ii. shows the fraction of
simulated configurations where the promoter was interacting with a distal (i.e., at least 4 kbp away) chromatin region which has
an enhancer associated state. Error bars show the standard error for the fraction of 440 configurations. E. Plots comparing the
change in expression compared to GM12878 as predicted from the simulations and as determined experimentally via qPCR. Panels
i and ii show data for U266 and Z-138 cells respectively. Left hand plots show the fold change as predicted by proteins binding
at the promoter, while right hand plots show the fold change predicted by interaction with distal enhancer state chromatin. We
do not necessarily expect a linear relationship between simulation and experimental values, but a good correlation is implied if
the points lie close to a monotonically increasing curve (see main text and Supplemental Methods; grey dotted lines show such
curves as a guide to the eye).
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Supplemental Figure S4. Quantitative comparison between simulated and experimental Hi-C maps for the U266 cell line.
A. Hi-C interaction map for the 3 Mbp region around CCND1 which was simulated; data are shown in 20 kbp bins (the significantly
lower read depth compared to the GM12878 case necessitates this lower resolution). Top right is obtained from simulations;
bottom left are Hi-C data for U266 cells obtained from Wu et al. (2017). Reads were mapped to an in silico re-arranged U266
genome as detailed in Supplemental Methods Section 4. White gaps in the maps appear at unmappable (repetitive sequence)
DNA regions; for ease of comparison, where no data are available from the experiments, the same regions have been masked
for simulations. Positions of genes are shown above the plot, and the green block indicates the position of the insert region.
B. A similar Hi-C map is shown, with several features overlaid. Blue dashed lines show TADs called from the experimental
(bottom left) and simulation (top right) maps as detailed in Supplemental Methods. In the experiments, the position of one TAD
boundary has been called at the edge of an unmappable region where not data are available (cyan arrow). Due to these gaps in
the data, a nearby visible boundary (purple arrow) was not called. Green ellipses show an enrichment of interactions between
CCND1 with the TAD to its left, strongly suggesting that this gene sits within this TAD. C. Plots showing quantitative comparisons
between the simulation and experimental Hi-C maps (see Supplemental Fig. S2E-F for schematic). Top: the interaction signal for
all pairs of points at a given genomic separation was obtained, and the Pearson’s correlation coefficient comparing the simulation
and experiment calculated. This is plotted as a function of genomic separation (green points; for 38% of points the correlation is
statistically significant, p < 0.01). Also shown is the same measure for a shuffled and a shifted contact map (see Supplemental
Methods and Supplemental Fig. S2D for details; the values of the correlation coefficient are close to zero, and for only 8% of these
points was the correlation significant). Bottom: the directionality index for a given window width was obtained, and the Pearson’s
correlation coefficient comparing the simulation and experiment calculated. This is plotted as a function of window width (green
points; for 86% of points the correlation is statistically significant, p < 0.01). Again, the same measure for a shuffled and a shifted
contact map; the correlation values in these cases are close to zero, and none are statistically significant.
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B. Map of CCND1 region in hg19_u266.
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Supplemental Figure S5. Single cell-like measurements from simulations. In a given simulated structure we can make 3D
distance measurements between specific points on the chromosome, e.g., between the centres of mass of two gene bodies. We can
also measure the 3D size of a given region. Each simulated structure represents a single cell, and we can obtain the distribution
of these single cell measurements across the population of structures. A. Map showing gene locations within the hg19 genome,
with their genomic separations indicated. The coloured blocks indicate the extent of the CCND1-TAD as detailed in the main text,
and a 184.6 kbp region covering CCND1. B. A similar map shows the genes in the hg19_u266 genome which includes the insert
(green block; the insert position is also shown in A). Note that due to the insert the genomic separation of MYEOV and CCND1
increases, as does the linear size of the TAD. Another 184.6 kbp region covering CCND1 is also shown (note it is the same size as
in A). C. Separations of genes can be measured from each generated configuration. We define the position in 3D as the centre
of mass of all beads within the gene. The box plot shows the distribution of separations across 4400 configurations for pairs of
genes in the two cell lines (U266 with, and GM12878 without the insert). Only the MYEOV-CCND1 separation shows a statistically
significant difference (p < 10−6 from a Kolmogorov-Smirnov two-sample test; the mean separation is 12% larger in U266 cells).
Separations are given in simulation units σ, which represent approximately 21.8 nm (Buckle et al., 2018). D. The 3D size of a
given genomic region can be determined by its radius of gyration, Rg (see Supplemental Methods for definition). Box plots show
the distribution of Rg measurements across 4400 configurations from each cell line. The left plot shows that the space taken up
by the CCND1-TAD increases in U266 cells (p < 10−5 from a Kolmogorov-Smirnov two-sample test; on average a 6% increase,
note that the genomic length is also larger due to the insert). The right plot shows that a 184.6 kbp region covering CCND1 in
each cell line also increases in U266 cells (the genomic length is the same, but the chromatin states differ).
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Supplemental Figure S6. Schematic of the IGH-CCND1 translocation in the U266 and Z-138 cell lines. A and B. In the U266
cell line (left), two chromosomal break-points at IGHC (A, red) define a region that was cut and pasted into the CCND1 locus
(B). The IGH break-point positions suggest that this abnormality was likely formed as an error during class-switch recombination,
resulting in insertion of IGHC next to CCND1. In the Z-138 cell line (right), exchange of DNA material between IGH and CCND1
loci was confirmed. Two chromosomal break-points at the IGH locus were detected (A), in IGHJ (blue) and in IGHD (green).
The break-point at Chromosome 11 (B) showed that the part of this chromosome with CCND1 becomes joined to the IGHJ end
of Chromosome 14. The architecture of this translocation suggests that it is a reciprocal translocation likely formed as an error
during V(D)J recombination. Chromosomal break-points are shown as black vertical lines at each locus. Coloured horizontal
arrows represent the translocation architecture; arrow colour indicates the parts of the chromosomes which are connected after
the rearrangements (like colours are connected). C. The rearranged genome at CCND1 is shown schematically for each cell line.
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A. Alternative breakpoints for Z-138 cells.

69.1 69.2 69.3 69.4 69.5 69.6  Mbp
chr11

MYEOV CCND1
LTO1

FGF19

FGF4

alt1 mapped alt2

106.0 106.1 106.2 106.3 106.4  Mbp
chr14t11

MTA1CRIP2CRIP1CRIP1C14orf80TMEM121ATP5G1P1

ELK2BPIGHA2IGHEIGHG4

IGHG2

IGHGP

ELK2APIGHA1IGHEP1

IGHG1IGHG3 IGHDIGHMIGHJ6
CCND1LTO1

B. Simulate 4C for alternative breakpoint 1.
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Supplemental Figure S7. Simulating alternative break-points for Z-138 cells. A. Map of Chromosome 11 showing two
alternative break-points and the mapped break-point. The first (alt1) is further upstream from the CCND1 promoter than the
mapped break-point, while the second (alt2) is closer to CCND1 (i.e., it is immediately upstream of the promoter). B. Simulated
4C data from three viewpoints, one at the CCND1 promoter and two at DHS within the Eδ and Eµ super-enhancers. Simulations
were performed for a rearranged genome with alternative break-point alt1, and input data from Z-138 cells. C. Similar plot but
for the second alternative break-point. These results show that the frequency of interactions between CCND1 and the enhancer
increases the closer they are genomically. In the case of break-point alt1 (panel B), an additional DHS upstream of CCND1 is
brought from Chromosome 11, which gives rise to a small additional peak of interactions.
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Chromatin states and accessibility (mapped to hg19 reference)
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Supplemental Figure S8. Differences between chromatin states at CCND1 in the three cell lines. Three Chromosome 11
regions within the CCND1-TAD which show substantial chromatin remodelling in U266 and Z-138 cells are indicated with blue
lines. Plots showing chromatin states as coloured blocks are shown for these regions as indicated by arrows; the data are mapped
to the hg19 reference genome. Yellow, orange, blue and grey blocks indicate enhancer, promoter, polycomb and heterochromatin
states respectively, with red lines indicating positions of DHS. Note that both enhancer and promoter states are associated with
H3K27ac, and so are treated the same in simulations (open chromatin). Green text indicates how the chromatin is remodelled
compared to GM12878.
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Supplemental Figure S9. Interactions at the IGH enhancers in U266 vs. Z-138. Plots showing 4C interactions across the
IGH locus from a viewpoint at CCND1 from simulations of U266 and Z-138 cells. These have been mapped back to the hg19
reference genome; only regions which are proximate to CCND1 after the rearrangement show a signal. Enhancer positions are
shown as purple blocks; red, yellow, blue and black blocks show positions of DHS, open chromatin, polycomb and heterochromatin
regions. There are differences in the pattern of chromatin states and DHS between the two cell lines. Particularly, within Eα1,
there are three DHS in Z-138, but only two in U266. In the latter these show strong interactions with CCND1 due to their
proximity to the gene. We also note that a DHS at around Chr11:106,100,000 in U266 which interacts with CCND1 is not
present in Z-138; the chromatin state here is also different in the two cell lines. This suggests that the rearrangement not only
leads to a remodelling of chromatin around CCND1, but also within the IGH enhancer region. It is important to note, however,
that the aberrant rearrangements may arise from different errors in antibody production processes at different stages of B cell
differentiation (as discussed in Supplemental Methods section 5). From the interaction profiles we see that in U266, the two
most frequently interacting DHS are at opposite ends of the Eα1 enhancer region. The DHS closest to the gene interacts most
strongly. In Z-138, the strongest interaction with the CCND1 promoter is with a cluster of DHS within Eµ (i.e., the closest enhancer
genomically).
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Supplemental Figure S10. Fluorescence in situ hybridisation experiments. Measurements of the volume of three BAC probes
(genomic positions shown in Fig. 6D in the main text) were obtained for in GM12878, U266 and Z-138 cells (see Supplemental
Methods for details). Distributions of volumes are shown as box plots, and the number of measurements n is indicated above each
box. A two-sample Kolmogorov-Smirnov test was used to determine the significance of the differences between the probe volumes
in different cell line, as shown by brackets above the bars; ‘*’ indicates that the null hypothesis could be rejected (p < 0.01), while
‘ns’ indicated that the null hypothesis could not be rejected and there is no significant difference between the distributions. Left
panels (A,D,G) show simulated data (volumes obtained from the gyration tensor of the beads representing chromatin covered
by the probe, see Supplemental Methods Section 4). Middle panels (B,E,H) show experimental data as in Fig. 6F in the main
text. In our images, probe volume was determined by counting the contiguous voxels which have fluorescence intensity above a
threshold; voxels had dimension 43×43×130 nm (volume 2.4×10−4 µm3). Right panels (C,F,I) show a reduced simulation data
set. As detailed in Supplemental Methods Section 7, for better comparison between simulations and data, we chose a random
subset of simulation measurements such that the total number of measurements matched the experimental data. In experiments
we cannot differentiate between probes on rearranged and non-rearranged chromosomes, so to mimic this, in the U266 and
Z-138 simulation cases, half of the included measurements were from GM12878 simulations. Box plots show one random subset
of simulation measurements. When testing for significant differences, we repeated the test with 10 different random subsets for
each case; ‘*/ns’ indicates that for some random subsets there was a significant different, while for others there was not (suggesting
that this number of measurements is on the cusp of being sufficient to differentiate the distributions). Each row of panels refers
to a different probe: A-C for the CCND1 probe; D-F for the MYEOV probe; and G-I for the TPCN2 probe.
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Supplemental Figure S11. A and B: Simulating the CCND1 locus in GM12878 cells, but adding the insert with U266
chromatin states. A. Simulated Hi-C interaction maps for the CCND1 locus with the IGH insert (hg19_u266 genome). Input data
(chromatin states, DHS, and CTCF sites) for Chromosome 11 are from GM12878 cells. The green block indicates the position of
the insert, and coloured blocks show the input data as in Fig. 2 in the main text. In (i) the input data for the insert region are from
GM12878 cells. In (ii) the input data for the insert region are from U266 cells; in this case the insert contains several DHS and
a broad H3K27ac region, and so this constitutes a simulation where an active enhancer is inserted into the locus (but no further
“epigenomic” rearrangement takes place). We note that there is very little difference between the maps; in (ii) there are some
additional interactions within the insert region. B. Plots showing simulated 4C from the same simulations as in A. Positions of
viewpoints are indicated by blue triangles, and red blocks above the plots show the positions of DHS. Vertical green dashed lines
show the position of the insert. Interaction profiles from viewpoints at the promoters of TPCN2, MYEOV and CCND1 do not show
any difference between the two simulations. In the case of TPCN2 this is because the gene is too far away genomically to interact
with the insert; MYEOV and CCND1 do not have DHS within their promoters, so there is nothing to drive interactions with the
insert. The viewpoint at LTO1 shows some additional interaction with the insert region in (ii): protein binding at the DHS within
the LTO1 promoter drives looping interaction with the DHS in the insert. In (ii) additional interactions between DHS within the
insert are also observed. C-E: Simulating the CCND1 locus in U266, but editing the input data to remove DHS (active protein
binding sites). C. Plot showing simulation 4C for a probe at the CCND1 promoter (blue triangle) for U266 cells, as in Fig. 3.
in the main text. D. Similar plot but from a simulation where the input data has been edited to remove four DHS within the
promoter and gene body of CCND1 (as indicated by the purple arrow). A loss of interactions with nearby and more distant DHS
is observed. E. Plot showing how the prediction for CCND1 expression changes due to this “in silico epigenome editing”.
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